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Advanced cell therapeutics are changing
the clinical landscape: will mesenchymal
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Abstract

During the past 15 years there have been dramatic changes in the medical landscape, particularly in oncology and
regenerative medicine. Cell therapies have played a substantial part in this progress. Cellular immunotherapies can
use immune cells, such as T cells or natural killer cells that, after functional modification ex vivo, exert powerful
anti-cancer effects when given to the patient. Innovative technologies, such as re-programming terminally
differentiated cells into pluripotent stem cells or into other cell types and applying specific enzymes to more
precisely edit the human genome, are paving the way towards more potent cell and gene therapies.
Mesenchymal stromal cells are promising cellular immunotherapeutics, which also have potential for use in tissue
engineering strategies and other regenerative medicine applications. However, substantial gaps in our knowledge
of their biology and therapeutic efficacy present major challenges to their sustainable implementation in the

clinical routine.

In this article, progress in the field of cell therapeutics during the past 15 years will be briefly discussed, with a
focus on mesenchymal stromal cells, highlighting the impact of this field on patient care.
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Background

When BMC Medicine was inaugurated 15 years ago,
available cell therapies were mainly haematopoietic stem
cell transplantations, which had been established as
standard treatment for haematologic malignancies. How-
ever, allogeneic haematopoietic stem cell transplantation
carried a major risk of developing life-threatening com-
plications, such as non-engraftment, serious infections
and graft-versus-host disease (GvHD) [1]. Within this
period, groundbreaking novel technologies were also de-
veloped; for example, re-programming of differentiated
cells into induced pluripotent stem cells (iPSC) [2, 3]
and precise enzymatic genome editing [4], both provid-
ing yet unknown options for cell and gene therapies.
Advancing adoptive cellular immunotherapy, novel insights
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into interactions between immune cells and cancerous tis-
sue, efficacious cell collection using optimised apheresis
techniques, as well as sophisticated ex vivo-cell engineering,
enabled the introduction of chimeric antigen receptor (-T)
cell therapies into the clinic [5]. Personalised vaccination
strategies use patient-derived cancer cells to generate indi-
vidual dendritic cell-based vaccines that were successfully
applied against malignancies including ovarian cancer and
acute leukaemia [6, 7].

Based on findings of the therapeutic potential of
non-haematopoietic precursor cells [8, 9], early experi-
mental cell therapy concepts had been suggested to
regenerate damaged tissue, particularly the heart [10-12],
heralding the field of regenerative medicine at the
beginning of the new millennium. Because of their immu-
nomodulatory and regenerative effects, mesenchymal
stromal cells (MSCs) were extensively evaluated for their
potential uses in cellular immunotherapy and regenerative
medicine. MSCs can be isolated from a variety of tissues
such as bone marrow (BM), adipose tissue, cord (blood),
or amniotic fluid [13], as well as from iPSC, with the
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potential of an inexhaustible source [14]. Here I elaborate
on significant developments in MSC therapies during the
past 15 years.

Immunomodaulation cell therapies

Interacting with different immune cell subsets, MSCs exert
immunomodulatory effects in vitro, such as suppressing
activated T cell proliferation and cytokine production. They
have been shown to induce a tolerogenic immune
phenotype in vivo, as characterised by a decrease in
pro-inflammatory IL-17 positive T cells and an increase in
regulatory T cells [13, 15, 16]. These observations suggest
that MSCs may be interesting candidates for the treatment
of immunopathologies. Indeed, MSC therapeutics have
been applied in multiple clinical trials for GvHD and organ
graft rejection, as well as for autoimmune diseases like mul-
tiple sclerosis, myasthenia gravis or type 1 diabetes mellitus
[16, 17]. Yet, clinical results over the past decade have been
variable [16]. Specifically, an allogeneic MSC product for
GvHD therapy performed disappointingly in 2009 [18],
dampening initial enthusiasm. Also, a recent Cochrane re-
view of numerous clinical trials [19] found insufficient
evidence that MSCs were an effective therapy for GvHD.
Innovative approaches for MSC-mediated GvHD therapy
include MSC-derived extracellular vesicles [20]; pooling of
BM-derived mononuclear cells to generate a more standar-
dised MSC product with robust immunomodulation cap-
acity [21]; and measuring the ability of immune cells to kill
MSC, thereby identifying patients who respond to MSC
immunotherapy [22].

Regenerative medicine

MSCs, without or with genetic modifications or other ex
vivo manipulations to increase their therapeutic potential,
have been shown to exert therapeutic effects in diseases of
various organs, including the heart, lung, liver, pancreas, kid-
ney, skeletal system and the central nervous system [23, 24].
To date, MSCs have been assessed for regenerative applica-
tions in numerous clinical trials, with the main sources be-
ing BM and adipose tissue [24]. As MSCs feature the
potential for mesodermal differentiation in vitro, direct tis-
sue replacement of damaged tissue by differentiated MSCs
was initially postulated as a mechanism of action [25].
However, growing evidence has shifted towards paracrine
factors and extracellular vesicles being responsible for me-
diating immunomodulatory and regenerative MSC func-
tions [23, 26]. Novel technologies allow the large-scale
production of MSCs in bioreactors [27]; MSC can also be
applied, with or without scaffolds, in tissue engineering
concepts [28] for disease modelling and therapy.

Challenges and novel approaches
The past decade has shown that, despite encouraging
clinical data, major challenges prevail before MSC
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therapies can be sustainably implemented in the clinical
routine. To date, the poorly understood heterogeneity of
MSCs means that major issues are yet to be addressed; for
example, between individuals and within respective MSC
preparations, variable manufacture technologies, and min-
imally defined media supplements (such as fetal calf
serum or human platelet lysate) [29, 30]. Consequently, it
is difficult to compare MSC therapeutics because they lack
standardized quality and there are only few measures
available — some of debatable relevance — to assess their
potency. Therefore, it remains unclear as to which
patients will ultimately profit from these therapies.

Advanced technologies, like single cell analyses, give
deeper insights into MSC heterogeneity, allowing func-
tional cell clusters and/or molecular signatures to be
identified, which could be linked to their therapeutic
potential [31, 32].

Conclusions
During the past 15 years, technological hallmarks like iPSC
generation, genome editing and single cell analysis platforms
have been developed. This biotechnological progress has led
to significant achievements in the cell therapy field, includ-
ing MSC-mediated immunomodulation and tissue regener-
ation. This progress is encouraging and the clinical MSC
field is, after some stagnation, now regaining momentum.
Better understanding MSC heterogeneity, their mecha-
nisms of action and evidence-based identification of patient
cohorts who might benefit from MSC therapeutics, could
help to sustainably translate these therapies to the clinic.
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