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Abstract

The huge amount of data acquired by high-throughput sequencing requires data reduction

for effective analysis. Here we give a clustering algorithm for genome-wide open chromatin

data using a new data reduction method. This method regards the genome as a string of 1s

and 0s based on a set of peaks and calculates the Hamming distances between the strings.

This algorithm with the systematically optimized set of peaks enables us to quantitatively

evaluate differences between samples of hematopoietic cells and classify cell types, poten-

tially leading to a better understanding of leukemia pathogenesis.

Author summary

High-throughput sequencing provides us huge amounts of data about gene regulation. In

order to extract useful information from the data, data reduction is needed. Although

RNA-seq data analysis has been extensively studied, where the focus is mainly on genetic

loci, tools for epigenetic sequencing data, such as ATAC-seq data which represent chro-

matin accessibility, are comparatively lacking. Since the binding of transcription factors

mainly occurs in open chromatin regions, it is presumably important to understand how

chromatin accessibility landscape affects cell phenotype. In this context, we developed a

systematic algorithm to select a set of peaks representing the open state of chromatin for a

given sample of ATAC-seq data. This algorithm quantifies the difference between samples

by regarding the genome as a string of 1s and 0s with Hamming distances and then per-

forms hierarchical clustering. This algorithm has less computational cost and gives a rea-

sonable cell type classification compared to a previous method. In this work, as an

application of this algorithm, we present a comparative analysis of leukemia samples with
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healthy hematopoietic cells and provide new insights about the relationship between chro-

matin structures, cell surface proteins, and symptoms in leukemia.

Introduction

Cellular phenotypes are governed by epigenetic mechanisms. For example, information about

how human DNA is packed and chemically modified in the nucleus plays an important role in

understanding the differentiation and regulation of cells [1–4]. Methods such as chromatin

immunoprecipitation sequencing (ChIP-seq) and assay for transposase accessible chromatin

using sequencing (ATAC-seq) have proven useful for understanding the modification and

detection of open chromatin on a genome-wide scale [5–9]. Those epigenetic data analysis

methods usually start with data enrichment along the whole genome, also known as “peak call-

ing” [10, 11].

Compared to RNA-seq data analysis, whose target regions are mainly in certain loci or

genes across samples, the target regions on epigenetic sequencing data are undetermined. To

determine the target regions, peak calling with an appropriate tool is often performed for the

entire genome of every sample, and the target regions are defined as merged peaks among all

samples. Then the total number of reads or fragments present in each region is counted for

each sample, leading to a matrix, X = (xi,j), where xi,j represents the number of reads/fragments

from sample i in region j. The matrix elements are normalized by quantile normalization to

reduce the biases arising from variations in the data size over samples, followed by down-

stream processing [7–9].

However, this process raises two concerns. First, we do not fully understand the effect of

merging all the peaks from different samples. For example, if two peaks from different samples

slightly overlap, those two peaks are considered as one peak after the peak merging step.

Therefore, the difference of the two peak positions, which may reflect cell identity, may be

unintentionally ignored. The second concern is that we have no justification for applying

quantile normalization over samples that are phenotypically different [12, 13].

Thus, the aim of the present study is to avoid these concerns by constructing an algorithm

that systematically classifies epigenetic data obtained from high-throughput sequencing. In

this analysis, toward cell type classification, we provide a systematic algorithm to select a set of

peaks used for the downstream analysis, where the difference between samples are quantified

by using the Hamming distance from information theory [14]. This algorithm has less compu-

tational cost while still producing reasonable classification compared to a previous method [7].

As an application of the developed algorithm, we use it to obtain new insights on samples of

leukemia cells from chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), and

adult T-cell leukemia (ATL) at the chromatin level. In particular, using this algorithm, we infer

the phenotype of a given leukemia sample as output by using only ATAC-seq data of that sam-

ple as input.

Results

ATAC-seq samples

In this paper, we mainly focused on 77 ATAC-seq datasets from 13 human primary blood cell

types [7] as test data. The 13 cell types are comprised of hematopoietic stem cells (HSC), multi-

potent progenitor cells (MPP), lymphoid-primed multipotent progenitor cells (LMPP), com-

mon myeloid progenitor cells (CMP), megakaryocyte-erythroid progenitor cells (MEP),
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granulocyte-macrophage progenitor cells (GMP), common lymphoid progenitor cells (CLP),

natural killer cells (NK), B cells, CD4+T cells (CD4+T), CD8+T cells (CD8+T), monocytes

(Mono) and erythroids (Ery). These cell types are experimentally categorized by immunophe-

notypes described by the combination of cell surface markers shown in Table 1.

For convenience, T denotes a set of the thirteen cell types;

T ¼ fB;CD4þT;CD8þT;CLP;CMP;Ery;GMP;HSC; LMPP;MEP;Mono;MPP;NKg:

For all 77 samples, we assigned ATAC-seq reads to reference genome hg19 (http://

hgdownload.cse.ucsc.edu/goldenPath/hg19/database/), and among them only those which had

high mapping quality values (MQ� 30) were used for the peak calling by MACS2 (see S1

Appendix for details of the preprocessing) [15]. The peak calling results consisted of the loca-

tion with a peak width and the associated p-value. Concretely, the location of the k-th peak is

expressed by gk = (γk, αk, βk), where γk is the chromosome number, αk is the start position, and

βk is the end position. Note that we used MACS2 to call all ATAC-seq peaks with the following

parameters (- -nomodel - -nolambda - -keep-dup all -p pG), where the number of peaks is

affected by the peak calling parameter ‘-p pG’. The parameter pG is larger than any p-values of

the peak calling results. (See Materials and methods for details of the peak-calling).

Note that the peak position depends on parameter pG of the MACS2 algorithm as shown in

Fig 1. For example, the start and end positions of a peak could change and one peak could split

into two peaks depending on pG. Thus, we need to take into account the dependence of a set of

peaks on different values of pG for careful analysis.

Parameterized binarization

First we ranked the peak results in the order of ascending p-values and then investigated the

relationship between the peak width and the corresponding ranking. We found that as the p-

value increased, the width of the ATAC-seq peaks became shorter statistically, which suggested

the feasibility of robust data reduction against small noise in the data by selecting peaks with

smaller p-values (Fig 2).

Table 1. Immunophenotypes of samples. Types of hematopoietic cells and their corresponding cell surface markers

in [7]. For example, CD34+ and CD38- for cell type ν means that a cell of type ν expresses CD34 but not CD38 at its

surface.

Cell type (ν) Number of replicates Immunophenotypes

HSC 7 Lin-, CD34+, CD38-, CD10-, CD90+

MPP 6 Lin-, CD34+, CD38-, CD10-, CD90-

LMPP 3 Lin-, CD34+, CD38-, CD10-, CD45RA+

CMP 8 Lin-, CD34+, CD38+, CD10-, CD45RA-, CD123+

MEP 7 Lin-, CD34+, CD38+, CD10-, CD45RA-, CD123-

GMP 7 Lin-, CD34+, CD38+, CD10-, CD45RA+, CD123+

CLP 5 Lin-, CD34+, CD38+, CD10+, CD45RA+

NK 6 CD56+

B 4 CD19+, CD20+

CD4+T 5 CD3+, CD4+

CD8+T 5 CD3+, CD8+

Mono 6 CD14+

Ery 8 CD71+, GPA+, CD45-low

https://doi.org/10.1371/journal.pcbi.1008422.t001
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Thus, we define Mcut as the threshold such that only peaks with rankings not greater than

Mcut are used for the analysis hereafter. Then, for a given set of (Mcut, pG), we introduce B =

{hγ,x}, where hγ,x = 1 when position x in chromosome γ is inside a peak and 0 otherwise

(Fig 3). The process to obtain the binary sequence from the reads data is illustrated in Fig 4.

Note that we do not perform any coarse-grained description for the genome position x but

keep 1bp resolution. (See Materials and methods for details of the binarization).

Quantifying differences between two binary sequences by Hamming

distance

Let us move onto the situation when one considers a set of samples to evaluate the difference

between two binary sequences B. Here our strategy is to find the proper distance that can be

measured from the normalized ATAC-seq data of two samples. Using that distance, we try to

obtain hierarchical clustering of a set of hematopoietic cell samples to quantitatively character-

ize the relationship among those samples.

Let Ns be the number of samples. We then write the set of samples as

S :¼ f1; 2; . . . ;Nsg;

where Ns = 77 in this study. For sample c 2 S, we add index c to related objects as a superscript.

For example, we write a binary sequence B associated to sample c as Bc :¼ fhc
g;xg.

There are many methods to evaluate the difference between a binary sequence Bc from sam-

ple c 2 S and Bc0 from sample c0 2 S. In this paper, we evaluated the difference between two

samples (c, c0) by using the Hamming distance HðBc;Bc0 Þ between two binary sequences, Bc

and Bc0 . HðBc;Bc0 Þ is calculated as the sum of the number of pairs with different values at every

position x between Bc and Bc0 (Fig 5). We used the distance as an initial condition for the hier-

archical clustering and then used Ward’s method to complete the hierarchical clustering [16].

Examples of hierarchical clustering with (Mcut, pG) = (2000, 10−2) and (80000, 10−2) are shown

Fig 1. The number of reads vs genomic positions. The plots show representative data of Mono obtained from SRA with accession number SRR2920475. (A) The

number of reads Yx at each position x along chr 1 (γ = 1) and the peak region (αk, βk) as determined by the MACS2 algorithm with peak calling parameter pG = 10−2

(pink shaded regions) is shown. The peak region and its associated p-value ((αk, βk), pk) are (1092756, 1094068, 10−20.36428). (B) The obtained peak regions are

((1092817, 1093330), 10−20.36428) and ((1093480, 1094025), 10−8.19447) for pG = 10−4.

https://doi.org/10.1371/journal.pcbi.1008422.g001
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in Fig 6. (See Materials and methods for details of the Hamming distance and hierarchical

clustering).

Optimization of hierarchical clustering toward cell-type classification

By using the methods explained above, we can obtain a clustering dendrogram that depends

on (Mcut, pG). We then need to systematically determine the best clustering, which is the clus-

tering closest to the “perfectly classified dendrogram” where each set Sn of all samples with

type n 2 T coincides with an offspring set. This condition can be restated as an optimization

problem by introducing a cost function “penalty” for the performance of clustering as follows.

Concretely, to quantitatively evaluate the obtained dendrogram for each combination of

(Mcut, pG), we define type penalty λν for a given cell type n 2 T. Type penalty λν corresponds to

the number of samples from different cell types in cluster ν formed when all samples of cell

type ν meet together from the bottom of the dendrogram (Fig 7). Additionally, we define

Fig 2. The statistics of peak width. Distribution of peak width (βk − αk) and its corresponding ranking k obtained from the peak calling

result of CD4+T cells with peak calling parameter pG = 10−2. The bin size is 400 × 400. The color code indicates the number of data in each

bin.

https://doi.org/10.1371/journal.pcbi.1008422.g002
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global penalty l :¼
P

n2T
ln as the “cost function” of the optimization. Note that λ� 0, and a

“perfectly classified dendrogram” gives λ = 0. (See Materials and methods for details of the

penalty).

Determination of the best parameters for the optimization

As mentioned above, the optimization problem we have to solve is to find ðM�
cut; p

�
GÞ that mini-

mizes the cost function λ(Mcut, pG). The schematic workflow in our algorithm is shown in

Fig 8.

Fig 3. How to calculate Hamming distance. Schema of the Hamming distance calculation from the peak locations with two samples c1; c2 2 S. Each

locus is converted to 1 or 0 based on the peak overlapping status.

https://doi.org/10.1371/journal.pcbi.1008422.g003

Fig 4. Binarizing the number of reads. (A) The number of reads Yx at each position x along chr 3 (γ = 3) and the peak region (αk, βk) as determined by the MACS2

algorithm with peak calling parameter pG = 10−2 (pink shaded regions). This figure shows representative data of NK cells obtained from SRA with accession number

SRR2920495. The peak regions and the associated p-values ((αk, βk), pk) in the left and right peaks are ((188271079, 188271985), 10−422.5872) and ((188286401,

188287077), 10−329.52139), respectively. Thus, the width of the peaks (βk − αk) in the left- and right-hand sides are 906 and 676, respectively. (B) Binary sequence (hx) as

determined by the peak regions seen in (A) when we chose Mcut satisfying pMcut
� 10� 329:52139.

https://doi.org/10.1371/journal.pcbi.1008422.g004
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Fig 5. Matrix of Hamming distances. Matrix of Hamming distances dij between samples i and j. This matrix is used for the downstream analysis.

https://doi.org/10.1371/journal.pcbi.1008422.g005

Fig 6. Examples of clustering dendrograms. Hierarchical clustering obtained by Ward’s method with parameters (Mcut, pG) = (2000, 10-2) (A) and (80000, 10−2) (B).

https://doi.org/10.1371/journal.pcbi.1008422.g006
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Fig 7. Schema of penalty score calculation. Note that this dendrogram is constructed by artificial data to explain how to calculate the penalty, though we use the same

labels such as HSC1. This dendrogram has six leaves, and three of them are classified to type HSC. To explain details of this dendrogram, we freely use the symbols and

definitions in Materials and methods in this caption. We can see that τ(HSC) = 10. The corresponding node is n10 (displayed by the blue dot), and the corresponding

clusterC10 is the set {HSC1, HSC2, HSC3, MPP} (surrounded by the blue dashed line). Among the elements of C10, one leaf, MPP, is not in type HSC, but the three

others are. Hence, the type penalty of HSC in this figure is computed as λHSC = 4 − 3 = 1.

https://doi.org/10.1371/journal.pcbi.1008422.g007

Fig 8. Schematic workflow of our algorithm. See Materials and methods for details.

https://doi.org/10.1371/journal.pcbi.1008422.g008

PLOS COMPUTATIONAL BIOLOGY Systematic clustering algorithm for chromatin accessibility data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008422 November 30, 2020 8 / 27

https://doi.org/10.1371/journal.pcbi.1008422.g007
https://doi.org/10.1371/journal.pcbi.1008422.g008
https://doi.org/10.1371/journal.pcbi.1008422


First we took into account all the peaks by setting Mcut =1 and checked how the dendro-

grams and λ(1, pG) depended on pG, as shown in Fig 9. Considering the tendency of the

parameter searching, we concluded that 1:5 � � log 10 p�G � 4.

We then sought the best parameters to optimize the dendrograms and found that ðM�
cut; p

�
GÞ

was close to (64000, 10−2), which gave the smallest penalty λ in our searching resolution, as

shown in Figs 10 and 11. Note that 64000 is the midpoint of (60000, 62000, 64000, 66000,

68000) which give the same minimum penalty in our searching resolution. Hereafter, to inves-

tigate the property of the best clustering, we set ðM�
cut; p

�
GÞ as (64000, 10−2). In our searching

resolution, the increment in terms of Mcut was 2000 near Mcut = 64000. Note that more-refined

resolutions might give better estimates of the optimized value ðM�
cut; p

�
GÞ, but naturally the

computational costs get higher. Even then, the following procedures are operationally

unchanged.

The value of the minimum penalty achieved at ðM�
cut; p

�
GÞ was 18. This minimum was

smaller than the penalty value of 27 for the clustering of the data from GSE74912_ATACse-

q_All_Counts.txt in [7]. The procedure of the latter clustering was as follows. First we per-

formed a quantile normalization of the reads count in the distal elements (> 1000 bp away

from a transcription start site (TSS)). Then we calculated the Pearson coefficients over all sam-

ples leading to a distance matrix where each entry is 1-(Pearson coefficient). By using Ward’s

method, we finally obtained the clustering dendrogram. Note that for this case, Ward’s method

gives penalty λ = 27 and UPGMA gives λ = 29.

Fig 9. Global penalty without cutoff of reads. Global penalty λ(Mcut =1, pG) obtained by Ward’s method.

https://doi.org/10.1371/journal.pcbi.1008422.g009
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Fig 11. Our best clustering dendrogram. Hierarchical clustering obtained by Ward’s method with (Mcut, pG) = (64000, 10−2).

https://doi.org/10.1371/journal.pcbi.1008422.g011

Fig 10. Penalty with cutoff of reads. The distribution of global penalty λ (A) and type penalty λν for each cell type ν (B) along with Mcut with parameter pG = 10−2

by Ward’s method.

https://doi.org/10.1371/journal.pcbi.1008422.g010
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Computational cost of the algorithm

As explained above, after obtaining data of the reads positions, we perform the MACS2 algo-

rithm to get peak regions, and then finally we produce a hierarchical clustering. Here we con-

sider the computational cost of our algorithm after acquiring the data of the reads positions

and until acquiring a distance matrix to produce the hierarchical clustering. Note that the

computational cost of the MACS2 algorithm is not more than O(Ns), where O() is the Landau

notation and Ns is the total number of samples. We consider two situations. (i) One is the case

where new samples to analyze are given. (ii) The other is the case where one new sample to

analyze is added to the already analyzed samples, for which peak regions and the distance

matrix are already calculated. For case (ii), we use the symbol Ns to write the total number of

already analyzed samples. We claim that the computational cost of our algorithm is signifi-

cantly lower than that of a previous method using target regions merged over samples [7] for

large values of Ns for case (ii) and, in our case with Ns = 77, that the computational cost of our

algorithm is practically lower for case (i).

Specifically, in case (i) for our algorithm, the corresponding computational cost is

K1McutN2
s , which comes solely from the calculation of the Hamming distance. In case (ii), the

corresponding computational cost is K2 Mcut Ns, which also comes solely from the calculation

of the Hamming distance. Note that K1 and K2 are constants that do not depend on Mcut or Ns.

In the context of estimating the best optimization parameter M�
cut, by using Mm different

values for Mcut, the computational cost becomes K1McutMmN2
s for case (i) and K2 Mcut MmNs

for case (ii), where Mm does not depend on Ns or genome size L and can be adjusted according

to the searching resolution of the optimization. Note that K1 and K2 do not depend on Mm. In

addition, we optimize pG by Mp different values for pG. Since this optimization can be done for

any algorithm, we do not take into account this cost for the comparison of different algo-

rithms. Typically, we set (Mm, Mp)’ (30, 10) in our optimization corresponding to case (i).

Note that in the section of “Application to leukemic cells” discussed later, corresponding to

case (ii), we use the optimized parameters ðMcut; pGÞ ¼ ðM�
cut; p

�
GÞ, leading to (Mm, Mp) = (1, 1).

The previous method using targeted regions merged over samples in [7] includes (a) the

merging of reads before peak calling and (b) calculating the distance matrix by the Pearson

coefficients which automatically depend on Ns. Thus, for a given number Nnew of unanalyzed

samples, the computational cost corresponding to the process of (a) and (b) is at least

KrNrNnew þ KLL1N2
s , where Nr is the minimum reads number over all samples, and L1 is the

number of target regions merged over all samples. The first term comes from counting the

reads and the second term comes from calculating the distance matrix. Note that Kr is a con-

stant that does not depend on Nr or Nnew, and KL is a constant that does not depend on L1 or

Ns. This form of the computational cost KrNrNnew þ KLL1N2
s is the same for case (i) with Nnew

= Ns and case (ii) with Nnew = 1, leading to the conclusion that the computational cost of our

algorithm is significantly lower than the previous method, especially for case (ii) with suffi-

ciently large Ns. We do not have the exact estimate of the coefficients K1, K2, Kr, KL, but

because Nr ¼ 3265006� M�
cut and L1 ¼ 590650� M�

cut in our case, then KrNrNnew þ

KLL1N2
s could be costly compared to K1McutN2

s . In practice, even in case (i) with Ns = 77, we

numerically found that the computational cost of our algorithm is lower due to our algorithm

not using the process of merging reads unlike [7].

How to relate the best parameters to genomic context

In order to understand why ATAC-seq data under the condition of (Mcut, pG) = (64000, 10−2)

was well classified, we analyzed the properties of the peaks with higher rankings.
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The result of the previous section suggested that peaks of fgkg
M�cut
k¼1 with M�

cut ¼ 64000

included key regions for characterizing cell types. Therefore, we investigated which functional

genomic regions such as promoters, enhancers, etc. are dominantly related to these top 64000

peaks.

Functional annotation of peaks depending on rank. In order to investigate functional

annotations on the genome overlap with ATAC-seq peaks data, we applied the top 80000

peaks in three cell types (HSC, B cells, and Mono) to the 15-state ChromHMMmodel data.

One can obtain data of the biological functions on the genome for HSC, B cells, and Mono

from an integrative analysis of 111 reference human epigenome datasets, where we used the

data of E032 for B cells, E035 for HSC, and E029 for Mono (https://egg2.wustl.edu/roadmap/

data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/)

[17].

ATAC-seq peaks were ranked according to p-values and divided into groups consisting of

1000 peaks. Then we calculated the average ratio and the standard deviation for each of the 15

states over all samples in each cell type. For an explicit description, let us introduce a set of

functional annotations,W :¼ fWyg
15

y¼1
, whereWy is the set of regions on the genome, each of

which corresponds to functional annotation y. We want to know how many peaks, k, of every

1000 peaks belong to each functional annotation y. For this purpose, we define

Ey
x :¼ fx � k < xþ 1000 j 9ðgk; ½s; ��Þ 2Wy such that s � ðak þ bkÞ=2 � �g;

where gk = (γk, αk, βk) is the peak position. We computed jEy
xj=1000 for

x 2 f1þ ðj � 1Þ � 1000g
80

j¼1
, as shown in Fig 12. Note that we used the position of the peak

center, (αk + βk)/2, to annotate biological function.

As shown in Fig 12, most of the peaks with higher rankings belonged to “Active TSS”,

which was related to the promoters of active genes, but as the rank went down, the ratio of

peaks from enhancer regions started to increase. As the rank went down further, the ratio of

peaks from “quiescent-low” regions started to increase. The ratio of peaks from promoters and

enhancers crossed at around peak rank 10000 and the ratio of peaks from enhancers and “qui-

escent-low” regions crossed at around peak rank 60000. Therefore, we concluded that the

number around the 64000th peak is strongly related to the point that the contribution of “qui-

escent-low” regions to the Hamming distances exceeds the contribution of enhancer regions

to the Hamming distances.

Fig 12. Functional annotations of peaks. Percentage (100� jEy
xj=1000) of functional annotations in every 1000 peaks for B cells (A), Mono (B), and HSC (C).

Only the functional annotations that have maximum percentages� 12%, y 2 {FlankingActiveTSS, ActiveTSS, Enhancers, Quiescent_Low}, are shown.

https://doi.org/10.1371/journal.pcbi.1008422.g012
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Note that the type penalty of HSC under the condition ðM�
cut; p

�
GÞ was not as good as that of

B cells or Mono, and the functional annotation result of HSC did not show clear behaviors

compared with B cells and Mono (Fig 12C), which may partially explain the worse type penalty

of HSC (Fig 10B).

Variations of hierarchical clustering methods

In general, when one performs data clustering, the effect of variations of the clustering algo-

rithms and the effect of loss of data on the clustering output should be considered.

First we considered the dependence of the clustering results on the variations of the cluster-

ing algorithms. Besides Ward’ method which we used until here, there are several hierarchical

clustering methods including UPGMA (Unweighted Pair Group Method with Arithmetic

mean), WPGMA (Weighted Pair Group Method with Arithmetic Mean), UPGMC (Centroid

Clustering or Unweighted Pair Group Method with Centroid Averaging), and WPGMC

(Median Clustering or Weighted Pair Group Method with Centroid Averaging). We per-

formed optimization also with UPGMA, as shown in Fig 13, and found that the minimum

value of the penalty is 36 with Mcut = 12000. The other methods give worse results in general.

Specifically, the minimum values of the penalty we found were 59 for WPGMA with Mcut =

20000, 127 for UPGMC with Mcut = 30000, and 149 for WPGMC with Mcut = 35000. These

results suggested that Ward’s method giving 18 as the minimum value of the penalty was a bet-

ter choice than that of the other methods for our purpose.

Robustness of our best clustering against the loss of data

Regarding the loss of data, let us consider making new reads data R̂ from original data R. Spe-

cifically, we set r with 0� r� 1 as the probability of randomly removing drNre reads from R

with the uniform distribution, where dχemeans the minimum integer larger than or equal to

χ. Thus we can obtain R̂ ¼ fR0ig
Nr � drNre
i¼1

, where R0i is one read in R. Using this procedure, we

computed λ for ðM�
cut; p

�
GÞ ¼ ð64000; 10� 2Þ. As shown in Fig 14B, when ratio r was increased,

the value of λ was constant until r = 0.007 and gradually increased thereafter. In the region

Fig 13. Penalty by UPGMA method. The distribution of global penalty λ (A) and type penalty λν for each cell type ν (B) along with Mcut with parameter pG =

10−2 by using UPGMA.

https://doi.org/10.1371/journal.pcbi.1008422.g013
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r� 0.7, λ increased dramatically. Note that r = 0 gave λ = 18 and the highest possible value of λ
for 77 samples is 924. Thus, we concluded that for small r, the average penalty tended to be sta-

bly close to that of r = 0.

Further, we investigated λ for different values of Mcut than 64000 to check the robustness of

M�
cut against random selections. Specifically, we investigated the behavior of λ by varying r for

Mcut = 30000 and 80000 with p�G ¼ 10� 2. The minimum value of λ as a function of r was 27 for

Mcut = 30000 and located at r = 0 (Fig 14A) and was 38 for Mcut = 80000 and again located at

r = 0 (Fig 14C). Note that in the region r� 0.08, λ for Mcut = 30000 was smaller than λ for Mcut

= 64000, which suggested that M�
cut becomes less than 64000 when the data size is decreased.

Thus, for the present data size, we concluded that our algorithm was stable against small

losses of the data and it could also work well by adjusting Mcut for losses of data up to 50 per-

cent. The obtained results imply that when the given data size is increased, our algorithm

becomes more stable or potentially achieves better clustering with a smaller penalty than our

current best clustering.

Application to leukemic cells

To evaluate the practicality of our algorithm with the optimized parameters ðM�
cut; p

�
GÞ on can-

cer research, we analyzed three types of leukemia: CLL, AML, and ATL, by calculating Ward’s

distance function, HWardðz;SnÞ, between a given leukemia sample z and all samples c 2 Sn of

cell type ν. (See Materials and methods for details of HWard).

To separate normal and leukemic cells effectively, information about the cell surface mark-

ers was used. CLL is a disease that is characterized by the clonal proliferation of malignant B

lymphocytes. Leukemic cells from CLL patients were purified by using the cell surface markers

CD5 and CD19, which are commonly used as markers for CLL (Table 2) [18].

The AML samples analyzed in this study were divided into three stages, preleukemic HSC

(pHSC), leukemia stem cells (LSC), and AML blasts by cell surface markers according to [7]

(Table 2). Briefly summarizing these three types, HSC that acquired founder mutations

become pHSC, which expand to generate preleukemic clones. The subsequent acquisition of

progressor mutations creates LSC, which can self-renew and produce AML blasts [19]. It has

been reported that mature LSC populations more closely resemble normal GMP, and imma-

ture LSC populations are functionally similar to LMPP [20]. A recent study has revealed that

CD99-positive cells are almost entirely composed of LMPP-like cells in the sense of Ref. [21].

Fig 14. Robustness of penalty against the loss of reads data. The effect of the loss of reads on the global penalty λ. Reads were removed randomly from the uniform

distribution with probability r. Then global penalty λ was calculated with parameter Mcut = 30000 (A), Mcut = 64000 (B) or Mcut = 80000 (C). Each circle indicates one

sample and each square indicates the average over samples at the same r value.

https://doi.org/10.1371/journal.pcbi.1008422.g014
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Thus, the LSC used in our study, which are CD99-positive, can be presumed to be LMPP-like

LSC.

Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of ATL and HTLV-

1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) [22]. ATL has been subclas-

sified into four clinical subtypes: acute, lymphoma, chronic, and smoldering. The chronic and

smoldering subtypes are considered indolent, while patients with the acute or lymphoma sub-

type generally have a poor prognosis. HTLV-1 can infect a variety of cell types, but more than

90% of infected cells are CD4+ memory T cells in vivo [23]. In order to specifically separate

HTLV-1-infected cells from other normal T-cells, Cell adhesion molecule 1 (CADM1/TSLC1)

is used because of its sensitivity and specificity [24, 25]. Thus, in this study, to purify leukemic

cells (HTLV-1 infected cells) from the peripheral blood mononuclear cells (PBMC) of ATL

patients, we used the cell surface markers shown in Table 2.

The objective of our analysis using leukemic samples was to evaluate which type of hemato-

poietic cell is closest to a given leukemic sample at the chromatin level. Specifically, we added

the ATAC-seq data of a leukemic sample to healthy hematopoietic ATAC-seq data and calcu-

lated the Hamming distances where ðM�
cut; p

�
GÞ ¼ ð64000; 10� 2Þ is used. We computed

HWardðz;SnÞ as the distance between cell type n 2 T and leukemic sample z; in this case, sample

z was extracted from one patient.

We define the q-th closest cell type of sample z as type n
ðqÞ
z 2 T to provide the qth minimum

of HWardðz;SnÞ in terms of ν. Using this quantity, we define the rank gap between a given refer-

ence type T0 2 T and sample z as

GT0 ;z
¼ q � 1;

such that T0 ¼ n
ðqÞ
z . In particular, we call n

ð1Þ

z the closest type of sample z. Note that rank gap

GT0 ;z
¼ 0 holds when T0 ¼ n

ð1Þ

z . Thus, we not only revealed the closest cell type, but also identi-

fied the second, third, and so on closest cell type, and quantified the difference between the

characterization results of our algorithm and a given type as the “rank gap”.

As shown in Table 3, by calculating the Hamming distance between each CLL sample and a

set of hematopoietic cells, we found that the closest cell type for all CLL samples was B cells,

which coincides well with the characteristics of CLL cell surface markers. This result led us to

conjecture that our method could infer the cell type of a given leukemic cell characterized by

immunophenotypes with using only its ATAC-seq data.

In order to assess the applicability of our method to leukemia whose cell of origin is not uni-

form and has high levels of heterogeneity between cases, we analyzed AML samples [7]. We

found that the results of our analysis for pHSC and Blast had substantial overlap with those of

Table 2. Immunophenotypes of leukemic samples. Immunophenotype of CLL [8]: Note that B cells are CD19+, as

shown in Table 1. Immunophenotype of AML [7]: SSC-high means that the intensity of side scatter in the flow cytome-

try is high. Note that HSC, MPP, and LMPP are Lin-, CD34+, CD38- as shown in Table 1. Immunophenotype of ATL

[24, 25]: Note that CD4+T cells are CD4+, as shown in Table 1.

Type of sample Marker expression

CLL CD19+, CD5+

AML pHSC Lin-, CD34+, CD38-, TIM3-, CD99-

AML LSC Lin-, CD34+, CD38-, TIM3+, CD99+

AML Blast Non-LSC; CD45-Intermediate, SSC-High

ATL CD4+, CADM1+

https://doi.org/10.1371/journal.pcbi.1008422.t002
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a previous study [7], where 12 out of 16 samples for pHSC and 13 out of 18 samples for Blast

are overlapped, as shown in Table 4. However, in the case of LSC, we found differences

between the results of our analysis and those from [7]. Most of the LSC samples were closest to

LMPP using our algorithm, but to GMP in [7]. As mentioned above, the LSC used in the pres-

ent study were CD99-positive and are presumed to be composed of LMPP-like cells, which

suggests that our characterization by using information of the Hamming distance infers the

cell type with high accuracy, though further investigation is required.

Finally we analyzed ATL samples (See Materials and methods for details of sample prepara-

tion). When we calculated the Hamming distance between each ATL sample and a set of

hematopoietic cells, we found that the closest cell type for two ATL samples was Mono (hereaf-

ter we term these samples “Mono-like ATL”), while that of the other samples was CD4+T, as

shown in Table 5. Surprisingly, the two Mono-like ATL samples were categorized into

chronic-type ATL. Since CD14 is the marker of Mono (Table 1), we investigated the CD14

gene expression pattern in CD4+T, Mono and ATL samples. Particularly, we calculated the

ratio of the CD14 reads count to the CD4 reads count from RNA-seq data and found that the

two Mono-like ATL samples exhibited higher values among all ATL samples (Fig 15). In this

way, the obtained results led us to conjecture that our algorithm could infer the cell phenotype,

potentially including clinical subtypes, only using ATAC-seq data. However, we need to ana-

lyze more samples to validate this conclusion.

Discussion

In this paper, we presented a new algorithm to systematically perform clustering of epige-

nomic data using the Hamming distance, which enabled us to find optimal parameters of the

data reduction toward cell-type classification. This algorithm has one clear advantage in terms

of computational cost compared to a previous method using targeted regions merged over

samples [7]. Especially, when adding new samples to the analysis, we only have to calculate the

distances between newly appearing pairs of samples and not between preexisting samples. The

computational cost of the presented systematic algorithm is significantly lower for this situa-

tion compared to the previous method with merging targeted regions. Furthermore, this algo-

rithm was found to effectively detect the closest cell type of a leukemic sample, with the results

being broadly consistent with the characterization of leukemic samples by cell surface markers

or RNA-seq. Thus, the developed algorithm potentially serves as a screening for the phenotype

of a leukemia sample by using the ATAC-seq data of the sample as input.

As a next step, we need to investigate if our constructed algorithm is robust for other exist-

ing methods and data. For example, for the same data of hematopoietic cells, we replaced the

Hamming distance with the Dice coefficient, which has been used in the CODEX project [26]

Table 3. Classification of ATAC-seq data of CLL samples. “Closest cell type” computed by our algorithm.

sample name (z) SRR number Type consistent to surface marker “closest cell type” calculated by our algorithm (n
ð1Þ

z )

CLL1 SRR6762820 B B

CLL2 SRR6762844 B B

CLL3 SRR6762861 B B

CLL4 SRR6762895 B B

CLL5 SRR6762925 B B

CLL6 SRR6762952 B B

CLL7 SRR6762968 B B

https://doi.org/10.1371/journal.pcbi.1008422.t003
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Table 4. Classification of ATAC-seq data of AML samples. Comparison between the “closest normal cell” in Fig 6i of [7] and “closest cell type” computed by our algo-

rithm. The second, the third, and . . .-th “closest type” were also identified by our algorithm. The “rank gap” represents the difference of the result between the two analyti-

cal methods. For example, the “closest normal cell” of sample SU351-pHSC is MPP in [7], but is LMPP by our algorithm. “MPP” was the second “closest cell type”. Thus,

the rank gap was calculated as 2-1 (= 1). If the results from the two analytical methods coincide with each other, the rank gap is 0.

sample name

(z)

SRR number “closest normal cell” (T0) calculated in Fig 6i from Ref. [7] “closest cell type” calculated by our algorithm (n
ð1Þ

z ) rank gap (GT0 ;z
)

SU654-pHSC SRR2920595 MPP MPP 0

SU353-pHSC SRR2920571 MPP MPP 0

SU351-pHSC SRR2920568 MPP LMPP 1

SU209-pHSC1 SRR2920564 GMP MPP 4

SU209-pHSC2 SRR2920562 GMP GMP 0

SU209-pHSC3 SRR2920561 GMP GMP 0

SU070-pHSC1 SRR2920557 HSC MPP 1

SU070-pHSC2 SRR2920556 HSC HSC 0

SU048-pHSC SRR2920552 MPP MPP 0

SU583-pHSC1 SRR2920588 GMP LMPP 2

SU583-pHSC2 SRR2920587 GMP GMP 0

SU575-pHSC SRR2920584 MPP MPP 0

SU501-pHSC SRR2920581 MPP MPP 0

SU496-pHSC SRR2920579 MPP MPP 0

SU484-pHSC SRR2920576 MPP MPP 0

SU444-pHSC SRR2920574 MPP MPP 0

SU654-LSC SRR2920594 LMPP LMPP 0

SU583-LSC SRR2920586 GMP LMPP 1

SU575-LSC SRR2920583 GMP LMPP 2

SU496-LSC SRR2920578 GMP GMP 0

SU444-LSC SRR2920573 GMP LMPP 1

SU353-LSC SRR2920570 GMP LMPP 1

SU209-LSC SRR2920559 GMP LMPP 1

SU070-LSC SRR2920555 GMP LMPP 1

SU654-Blast SRR2920593 GMP LMPP 1

SU444-Blast SRR2920572 Mono Mono 0

SU353-Blast SRR2920569 GMP GMP 0

SU351-Blast SRR2920567 Mono GMP 1

SU209-Blast SRR2920558 GMP GMP 0

SU070-Blast1 SRR2920554 Mono Mono 0

SU070-Blast2 SRR2920553 Mono Mono 0

SU048-Blast1 SRR2920551 GMP GMP 0

SU048-Blast2 SRR2920550 GMP Mono 1

SU048-Blast3 SRR2920549 GMP GMP 0

SU048-Blast4 SRR2920548 GMP Mono 1

SU048-Blast5 SRR2920547 GMP GMP 0

SU048-Blast6 SRR2920546 GMP GMP 0

SU583-Blast SRR2920585 GMP GMP 0

SU575-Blast SRR2920582 GMP LMPP 1

SU501-Blast SRR2920580 Mono Mono 0

SU496-Blast SRR2920577 GMP GMP 0

SU484-Blast SRR2920575 Mono Mono 0

https://doi.org/10.1371/journal.pcbi.1008422.t004
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to quantify the differences between two samples, but found the results with pG = 10−2 were not

improved in terms of the penalty. We also compared our algorithm with DiffBind [27], which

is commonly used as a ChIP-seq differential analysis tool, but again found that DiffBind with

its default setting did not give a better clustering result. Note that there are other existing meth-

ods and data to be checked in the future.

A unique point of our constructed algorithm is that we only used ATAC-seq data without

gene expression data. Our analysis suggests that ATAC-seq data itself contains enough infor-

mation to determine cell types even in the absence of regional annotation data such as promot-

ers or enhancers. This feature implies that our algorithm reveals elusive epigenomic properties

that significantly affect the phenotype of cell types. Another advantage of our algorithm is that

we do not assume a strong property for the statistics of the reads data, which is otherwise

implicitly assumed when quantile normalization is performed. Instead of using the strong

assumption, we took a data-driven approach for the normalization of the reads data, where we

pre-analyzed the statistics of the reads data before performing any normalization.

Finally, our algorithm could extend its application to leukemic samples whose properties are

uncertain. We also expect that our whole approach with slight modifications will be applicable

to other epigenetic sequencing data such as ChIP-seq and bisulfite sequencing available, for

example, from The International Human Epigenome Consortium (https://epigenomesportal.

ca/ihec/), ROADMAP Epigenomics (http://www.roadmapepigenomics.org/) and many other

resources, whose target regions for the analysis are not uniform between samples.

Materials and methods

Ethics statement

Experiments using clinical samples were conducted according to the principles expressed in

the Declaration of Helsinki and approved by the Institutional Review Board of Kyoto Univer-

sity (permit numbers G310 and G204). ATL patients provided written informed consent for

the collection of samples and subsequent analysis.

Sequencing sample preparation

ATL patient PBMCs were thawed and washed with PBS containing 0.1% BSA. To discriminate

dead cells, we used the LIVE/DEAD Fixable Dead Cell Stain Kit (Invitrogen). For cell surface

staining, cells were stained with APC anti-human CD4 (clone: RPA-T4) (BioLegend) and anti-

SynCAM (TSLC1/CADM1) mAb-FITC (MBL) antibodies for 30 minutes at 4˚C followed by a

wash with PBS. HTLV-1 infected cells (CADM1+ and CD4+) were sort-purified with FACS

Canto (Beckman Coulter) to reach 98–99% purity. Data was analyzed by FlowJo software

Table 5. Classification of ATAC-seq data of ATL samples. Clinical subtypes of ATL samples and “closest cell type”

computed by our algorithm.

sample name (z) DRR number clinical subtypes “closest cell type” calculated by our algorithm (n
ð1Þ

z )

ATL1 DRR250710 Acute CD4+T

ATL2 DRR250711 Acute CD4+T

ATL3 DRR250712 Acute CD4+T

ATL4 DRR250713 Acute CD4+T

ATL5 DRR250714 Acute CD4+T

ATL6 DRR250715 Chronic Mono

ATL7 DRR250716 Chronic Mono

https://doi.org/10.1371/journal.pcbi.1008422.t005
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(Treestar). Soon after the sorting, 10000-50000 HTLV-1 infected cells were centrifuged and

used for ATAC-seq as previously described [5]. Total RNA was isolated from the remaining

cells using the RNeasy Mini Kit (Qiagen). Library preparation and high-throughput sequenc-

ing were performed by Macrogen Inc. (Seoul, Korea). The diagnostic criteria and classification

of clinical subtypes of ATL were performed as previously described [28]. 77 ATAC-seq datasets

from 13 human primary blood cell types and datasets from 42 AML patients were obtained

from the Gene Expression Omnibus (GEO) with accession number GSE74912 [7]. ATAC-seq

datasets from 7 CLL patients were obtained from GSE111015 [18] and RNA-seq datasets of

CD4+T and Mono cells were obtained from GSE74246 [7].

Sequencing data analysis

ATAC-seq reads were aligned using BWA version 0.7.16a [29] with default parameters. SAM-

tools [30] was used to convert SAM files to compressed BAM files and sort the BAM files by

chromosome coordinates. PICARD software (v1.119) (http://broadinstitute.github.io/picard/)

was then used to remove PCR duplicates using the MarkDuplicates options. Reads with map-

ping quality scores less than 30 were removed from the BAM files. For peak calling, MACS2

Fig 15. Comparison of RNA-seq data among CD4+T, Mono and ATL samples. The reads count of CD14 over the reads count of CD4 from RNA-

seq data of CD4+T, Mono, and ATL samples.

https://doi.org/10.1371/journal.pcbi.1008422.g015
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(v2.1.2) software was used [15]. RNA-seq data were aligned to human reference genome hg19

using STAR 2.6.0c [31] with the - -quantMode GeneCounts function. Normalization was not

performed, and only raw reads count data of CD14 and CD4 were used in this study.

Principles of data reduction

When we analyze preprocessed ATAC-seq data with P̂, we have to care for biases caused by

the fact that the amount of reads, Nr, depends on the setting of the sample preparation and on

the sequencers used. (See S1 Appendix for the explicit construction of P̂.) Normalization is

done to remove such biases.

A conventional way to perform normalization is to use quantile normalization, where the

distribution of the reads number on certain regions in the DNA is assumed to be the same for

all samples [12, 13]. However, there is no strong reason to support this assumption, particu-

larly for sample sets of different cell types. Furthermore, under this assumption, there is a risk

that we overlook important differences between different cell types. Therefore, in this paper,

we do not assume this property.

An alternative way to perform normalization is to reduce the data into a simple binary

value hγ,x 2{0, 1} on each genomic position (γ, x), where hγ,x depends on the data size Nr as lit-

tle as possible. For example, one could determine the state of hγ,x = 1 and hγ,x = 0 as an “open”

and “closed” chromatin status, respectively, on genomic position (γ, x).

In this direction, our ultimate purpose is to look for the “best” principle that determines

two states for hγ,x, by which a set of samples including different cell types are completely classi-

fied into groups of the same cell type. We use no information about cell types when determin-

ing the value of hγ,x, because we would like to have an algorithm that can be applied without

knowing the cell types.

Peak-calling with ranking

Currently we do not have the best solution to properly determine two effective states for hγ,x.

As a candidate to approach the best solution, we use the MACS2 algorithm, which was origi-

nally invented to analyze ChIP-seq data [15] but is now widely used to estimate the location of

open chromatin regions from ATAC-seq data [32, 33].

We would like to find the set of position (γ, x) where the number of reads overlapping with

position (γ, x), Yg;xðP̂Þ, is relatively high in the neighborhood (γ, x). The MACS2 algorithm is

likely to detect those positions from the data of the reads described by P̂. In our calculation, we

use the MACS2 (v2.1.2) callpeak command with option “--nomodel --nolambda
--keep-dup all -p pG”, where we need to set parameter pG as a parameter of peak infer-

ence (for details, see [15]).

By applying MACS2 to the input ATAC-seq data, we obtain the following output data

structure:

• The label gk 2 X of the chromosome to which the k-th peak has a start position 1� αk� Lγ
and end position 1� βk� Lγ for 1� k�M (here M is the number of peaks). We call gk =

(γk, αk, βk) the k-th peak region.

• For each gk, p-value pk with pk� pG is associated to the k-th peak. Note that MACS2 outputs

log10(1/pk) = −log10 pk instead of pk.

PLOS COMPUTATIONAL BIOLOGY Systematic clustering algorithm for chromatin accessibility data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008422 November 30, 2020 20 / 27

https://doi.org/10.1371/journal.pcbi.1008422


X and Lγ are the set of all chromosomes and the length of chromosome γ, respectively (see

S1 Appendix for details of the notations). We define A as

A≔ðgk; pkÞ
M
k¼1
;

gk≔ðgk; ak; bkÞ:

By reordering the terms of k, we can set pk� pk0 for any k< k0 without loss of information.

In Fig 2, we show the distribution of the peak width |βk − αk| versus ranking k. Note that gk

with high pk could be affected significantly by the conditions of the experiments including

sequencing, because the data above rank value 40000 unnaturally touches the value of the

lower limit of width 200, which is predetermined by the MACS2 algorithm. Thus, there is a

possibility that peaks with higher p-values could strongly depend on both the inference algo-

rithm and the number of reads Nr. Those peaks would presumably not contribute to the detec-

tion of cell phenotypes. This observation suggests we should remove peaks with higher p-

values as mentioned in Results.

Parameterized binarization by cutting off low-ranked peaks

Next we reconsidered how to alleviate biases in the data by introducing threshold number

Mcut, such that

�AðMcutÞ≔fgkg
Mcut
k¼1
;

which leads to the removal of fgkg
M
k¼Mcutþ1

as a candidate for the normalization of the ATAC-

seq data. Note that �AðMcut ¼ 1Þ ¼ fgk j ðgk; pkÞ 2 Ag. Then, by using �A, we may introduce a

binary sequence

B≔fhg;xgg2X;1�x�Lg
;

such that hγ,x = 1 if there is k satisfying αk� x� βk with ðak; bkÞ 2
�A; otherwise hγ,x = 0 as

shown in Fig 4.

pG and Mcut can be regarded as parameters for determining the value of hγ,x within the

MACS2 algorithm and what part of the data is taken into account, respectively. Thus, our task

under the principle above turns out to be how to determine a proper set of (Mcut,pG) for the

cell-type classification.

Hamming distance

The Hamming distance is often used to compare two binary sequences in information theory

(see Section 13 in [14]) and is equal to the number of positions on which two symbols have dif-

ferent values. See Fig 3 for an illustrative explanation.

The Hamming distance between two binary sequences Bc1 and Bc2 with c1; c2 2 S is defined

as

HðBc1 ;Bc2Þ≔
X

g 2 X
1 � x � Lg

dðhc1
g;x; h

c2
g;xÞ;

where we define

dðhc1
g;x; h

c2
g;xÞ ¼

(
1 ðhc1

g;x 6¼ hc2
g;xÞ

0 ðhc1
g;x ¼ hc2

g;xÞ:
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Algorithm of hierarchical clustering

In this and the next subsection, we recall algorithms for agglomerative hierarchical clusterings

and drawing dendrograms. We use two methods, UPGMA and Ward’s. Though they are

described in many textbooks (for example, see Chapter 4 in [34]), we need the description in

order to define the global penalty and the type penalty. Our description of the algorithms fol-

lows [16].

To describe the algorithms, we define two distance functions between two subsets, C1;C2 �

S as follows (for inductive definitions and other distance functions, see Section 4.2 in [34]).

One distance function, HUPGMA comes from the UPGMA method and is defined as the average

of all the distances between samples in C1 and C2. Equivalently, we define

HUPGMAðC1;C2Þ≔
1

jC1jjC2j

X

c12C1

X

c22C2

HðBc1 ;Bc2Þ:

If C1 or C2 is empty, we set HUPGMAðC1;C2Þ ¼ 0.

Another choice of the distance function, HWard, comes from Ward’s method and is defined

as

HWardðC1;C2Þ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1;2

jC1j þ jC2j
�

jC2jD1

jC1jðjC1j þ jC2jÞ
�

jC1jD2

jC2jðjC1j þ jC2jÞ

s

where we define

D1 ≔
1

2

X

c12C1

X

c22C1

HðBc1 ;Bc2Þ
2
;

D2 ≔
1

2

X

c12C2

X

c22C2

HðBc1 ;Bc2Þ
2
;

D1;2 ≔
X

c12C1

X

c22C2

HðBc1 ;Bc2Þ
2
:

Again, if C1 or C2 is empty, we set HWardðC1;C2Þ ¼ 0.

In the following, we fix HðC1;C2Þ as HUPGMA or HWard. We sometimes identify sample c 2 S
and subset {c} of single element c. For example, we write HðC1; c2Þ for HðC1; fc2gÞ. Note that

Hðfc1g; fc2gÞ ¼ Hðc1; c2Þ ¼ KHðBc1 ;Bc2Þ where K = 1 for H ¼ HUPGMA and K = 2−1/2 for H ¼
HWard by definition.

We define a cluster as subset C of S with a specified order of elements. Hierarchical cluster-

ing is an algorithm that can construct setMNs
of clusters and order the elements in S to draw

dendrograms.

1. We set Ct≔ftg for 1� τ� Ns. We do not consider the order of the elements inCt because

they are sets of a single element.

2. We define the list of uncombined clusters as L1≔fC1;C2; . . . ;CNs
g and set the historical

list of clusters asM1 ¼ L1.

3. At the t-th step (1� t� Ns − 1), we define CtþNs
;Ltþ1 andMtþ1 inductively.
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(a) We look up the pair Ct0 and Ct00 with τ0 < τ@ in Lt such that their distance is a minimum;

that is,

HðCt0 ;Ct@Þ ¼ min
C0;C@ 2 Lt

C0 6¼ C@

HðC0;C@Þ:

Note that 1� τ0 < τ@< t + Ns by construction. We consider only the case when the pair

is uniquely determined.

(b) We define a new cluster CtþNs
¼ Ct0 [ Ct00 . If the elements of Ct0 are ordered as c1, c2, . . .,

cz and the elements of Ct00 are c0
1
; c0

2
; . . . ; c0z0 , then the elements of CtþNs

are ordered as

c1; c2; . . . ; cz; c01; c
0
2
; . . . ; c0z0 :

(c) We define

Ltþ1 ≔ðLtnfCt0 ;Ct00 gÞ [ fCtþNs
g;

Mtþ1 ≔Mt [ fCtþNs
g:

If t< Ns − 1, go to the (t + 1)-th step.

We can easily see that if we do not consider the ordering, then we have C2Ns � 1 ¼ S as a set.

Thus we finally obtain a list of 2Ns − 1 clustersMNs
¼ fC1;C2; . . . ;C2Ns � 1g and an ordering of

all elements of S from C2Ns � 1.

How to draw dendrograms

The (rooted) dendrogram displays how our clustering combines pairs of clusters and the dis-

tance of the pairs. In the following, we explain an algorithm that introduces new symbols. For

details, see [16].

1. If sample t 2 S appears in the ordering of C2Ns � 1 as the aτ-th element, then we associate

point nτ = (aτ, 0) in two-dimensional coordinate space to cluster Ct. We call point nτ the

leaf, which corresponds to Ct.

2. For 1� t� Ns − 1, we inductively associate point ntþNs
to cluster CtþNs

. If CtþNs
is con-

structed as the union ofCt0 and Ct00 with 1� τ0 < τ@< t + Ns, we associate toCtþNs
the node

ntþNs
¼ atþNs

¼
at0 þ at00

2
;HðCt0 ;Ct00 Þ

� �
:

Note thatCt0 and Ct00 are uniquely determined. We call ntþNs
the node associated to the

(t + Ns)-th cluster CtþNs
.

3. We connect ntþNs
with nτ0 and nτ@.

Since each node or leaf n corresponds to cluster C, we can define the offspring set Bn of n as

set C without ordering. Graphically, the offspring set of node n is the set of samples corre-

sponding to leaves branched from node n, as displayed in Fig 7. This intuitional explanation is

justified, since the y-coordinate of the “mother node” ntþNs
is larger than or equal to those of

the “child nodes” nτ0, nτ@ if we use Ward’s method or UPGMA. Note that there are many
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choices to draw dendrograms; for example, at any branching node, we can exchange two

branches without any essential change in the data structure.

Global penalty as a cost function

In this section, we discuss the global penalty, a quantity that measures how the obtained hierar-

chical clustering differs from our knowledge of cell type classifications. We also give examples

displaying the computation of the penalties and extreme situations that represent the theoreti-

cal bounds of the penalties. Note that these examples are just for explanation and not obtained

from actual data.

In our settings, each sample is previously classified by types. Explicitly, set T consists of thir-

teen types:

T ¼ fB;CD4þT;CD8þT;CLP;CMP;Ery;GMP;HSC; LMPP;MEP;Mono;MPP;NKg:

For each type n 2 T, we denote the set of samples classified to type ν as Sn. This set could be

empty, though it is not in our case. For every pair ν, ν0 of distinct types, there are no common

elements in Sn and Sn0 , and the union of Sn among all types n 2 T coincides with S. Equiva-

lently,

S ¼
[

n2T

Sn:

For a given hierarchical clustering constructed in the manner of the previous section, the

type penalty for type ν is the quantity λν defined as follows. If Sn is empty, we set λν = 0. Other-

wise, since the cluster grows step by step, there is the minimum τ for 1� τ� 2Ns − 1 such that

Sn � Ct. We denote the minimum τ by τ(ν). Then we define λν as the number of elements in

CtðnÞ that are not of type ν. In other words, we set

ln≔jCtðnÞj � jSnj:

Since Ct includes all elements of type ν, we find λν� 0. Also sinceCt is a subset of S, we find

ln � jSj � jSnj. Thus we have

0 � ln � jSj � jSnj:

(See Fig 7 for an explanation of type penalties).

For a given hierarchical clustering, the global penalty λ is defined to be the total sum of type

penalties,

l≔
X

n2T

ln:

λ is bounded as

0 � l �
X

n2T

ðjSj � jSnjÞ ¼ ðjTj � 1Þ � jSj: ð1Þ

In our case, since jTj ¼ 13 and jSj ¼ 77, we have 0� λ� (13 − 1) � 77 = 924. Note that for a

certain class of trees, these upper and lower bounds are not achieved. Fig 16 displays examples

of the upper and lower bounds.

Further, we write λ(Mcut, pG) as λ to point out that λ depends on (Mcut, pG). Note thatCtðnÞ
is equal to BntðnÞ

, which was defined in the previous section.
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