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In Brief

The proteomes and phosphopro-
teomes of radiosensitive and
radioresistant PDAC cell lines
were analyzed. Irrespective of
the sensitivity of the cells, the
phosphorylation-based radiation-
responsive signaling network fea-
tured known DDR proteins and
novel ATM substrates. Radiore-
sistant cells displayed significant
expression levels of apoptotic
proteins, including NQO1, and
elevated phosphorylation levels
of proteins involved in actin dy-
namics and FAK activity. Sensiti-
zation of former resistant PDAC
cells toward radiation was real-
ized by pharmacological inhibi-
tion of FAK and CHEK by Defac-
tinib and Rabusettib.
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e Proteomes and phosphoproteomes of radiosensitive and radioresistant PDAC cell lines.

e Common activation of DDR is proven by ATM activity on known and novel substrates.

¢ Resistant cells bear raised NQO1 expression, actin dynamics including FAK activity.

e Inhibitors of CHEK Rabusertib and FAK Defactinib radiosensitize PDAC cells.
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Pancreatic ductal adenocarcinoma (PDAC) is one of the
most aggressive cancers and known for its extensive
genetic heterogeneity, high therapeutic resistance, and
strong variation in intrinsic radiosensitivity. To under-
stand the molecular mechanisms underlying radiore-
sistance, we screened the phenotypic response of 38
PDAC cell lines to ionizing radiation. Subsequent phos-
phoproteomic analysis of two representative sensi-
tive and resistant lines led to the reproducible identifica-
tion of 7,800 proteins and 13,000 phosphorylation sites
(p-sites). Approximately 700 p-sites on 400 proteins
showed abundance changes after radiation in all cell
lines regardless of their phenotypic sensitivity. Apart
from recapitulating known radiation response phospho-
rylation markers such as on proteins involved in DNA
damage repair, the analysis uncovered many novel
members of a radiation-responsive signaling network
that was apparent only at the level of protein phospho-
rylation. These regulated p-sites were enriched in
potential ATM substrates and in vitro kinase assays cor-
roborated 10 of these. Comparing the proteomes and
phosphoproteomes of radiosensitive and -resistant cells
pointed to additional tractable radioresistance mecha-
nisms involving apoptotic proteins. For instance, elevated
NADPH quinine oxidoreductase 1 (NQO1) expression in
radioresistant cells may aid in clearing harmful reactive ox-
ygen species. Resistant cells also showed elevated phos-
phorylation levels of proteins involved in cytoskeleton
organization including actin dynamics and focal adhesion
kinase (FAK) activity and one resistant cell line showed a
strong migration phenotype. Pharmacological inhibition of
the kinases FAK by Defactinib and of CHEK1 by Rabusertib
showed a statistically significant sensitization to radiation
in radioresistant PDAC cells. Together, the presented data
map a comprehensive molecular network of radiation-

induced signaling, improves the understanding of radiore-
sistance and provides avenues for developing radiothera-
peutic strategies.

Pancreatic ductal adenocarcinoma (PDAC) is one of the
most aggressive and lethal cancers. Despite intense efforts in
research and clinical care, the overall 5-year survival rate of
patients with PDAC has only modestly improved in recent
years and remains below 10% (1). Moreover, PDAC is pro-
jected to become the second leading cause of cancer-related
deaths in the United States by 2030 (2). Among other factors,
the poor survival of PDAC patients can be attributed to the
generally late detection of the disease, high genetic hetero-
geneity, and strong therapeutic resistance. Therefore, pan-
creatic cancer continues to be challenging to treat and devel-
oping early detection as well as effective treatment regimens
is an urgent need (3). Previous clinical trials have shown effi-
cacy of radiation therapy (RT) in a subgroup of PDAC
patients, and a positive impact of RT in the multimodal treat-
ment of PDAC patients was observed. Patients with primary
nonresectable, locally advanced PDAC can undergo neoadju-
vant combined chemoradiation or RT for tumor downsizing
with the aim of enabling a secondary resection and, there-
fore, achieving an improved long-term prognosis (4). In addi-
tion, a phase 2 study employing a neoadjuvant approach
including systemic chemotherapy followed by individualized
chemoradiotherapy for the treatment of borderline pancreatic
cancer resulted in high rates of RO resections and prolonged
survival (5). The LAPO7 phase 3 randomized trial showed a
significantly decreased local progression and low toxicity
rates in patients with locally advanced PDAC treated with
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Phosphoproteomics of Radiation Resistant Cancer Cell Lines

chemoradiotherapy after induction chemotherapy when com-
pared with chemotherapy alone (5). Still, the role of RT as a
treatment option for PDAC patients is controversially dis-
cussed in the literature (6). Standardized guidelines are lack-
ing as RT fails in about 70% of all cases because of the high
genetic diversity and the heterogeneous intrinsic radiosensi-
tivity of tumors, the presence of pancreatic cancer stem cells,
the tumor microenvironment and nonconsideration of molec-
ular profiles for therapy decisions (7, 8). Therefore, there is a
clear clinical need to better characterize the radiation
response of PDAC in order to be able to select the approxi-
mately 30% of patients who benefit from RT and to further
increase the efficacy of RT (9).

Gamma radiation produces DNA lesions, particularly dou-
ble strand breaks (DSB). Irradiated cells subsequently initiate
a molecular process termed DNA damage response (DDR),
which is tightly regulated by the activity of several kinases
feeding into signaling cascades. Failure to repair DNA effi-
ciently leads to cell death, the desired outcome of radiation
therapy. Mechanisms by which tumors evade the lethal effect
of radiation are manifold. One molecular hallmark of PDAC is
desmoplasia, which is characterized by a dense extracellular
matrix and may contribute to both radiation- and chemore-
sistance (10, 11). Hypoxia is another feature of PDAC (12),
which may contribute to the low response to RT (13). In addi-
tion, the onset and progression of PDAC is driven by a large
number of genetic mutations including alterations in the
KRAS, TP53, SMAD4, and CDKN2A genes that often activate
oncogenic or inhibit tumor suppressing signaling pathways
and also impact the response to radiation (14).

As DNA damage repair and the aforementioned pathways
are critically controlled in their activities by kinases and phos-
phatases, a better understanding of the similarities and differ-
ences in the phosphoproteomes of radiosensitive and radio-
resistant PDAC cells may identify opportunities to sensitize
PDACs to RT. Toward this goal, we screened a panel of 38
PDAC cell lines for response to radiation and analyzed resist-
ant and sensitive models by a combined proteomic and
phosphoproteomic approach. These data constitute a com-
prehensive map of radiation induced signaling, identified
novel substrates for the kinase ATM and defined Rabusertib
and Defactinib, inhibitors of CHEK1 and FAK respectively, as
radiosensitizers.

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale—The overall ex-
perimental design comprised an initial screening step to determine
the radiation response of 38 PDAC cell lines. From the screen, two
representative sensitive and two representative resistant cell lines
were chosen as examples for subsequent proteomic and phospho-
proteomic characterization as well as for further follow-up experi-
ments targeting radioresistance. All experiments were replicated and
the number of replicates performed for each type of experiment is
provided in the respective sections.

All cell line in vitro radiation and inhibitor treatment data of all inde-
pendent experiments were calculated as mean = S.D. Statistical
analysis was performed using GraphPad Prism software (version
8.0.2, GraphPad software Inc., San Diego, CA). Statistical signifi-
cance between treated groups (kinase inhibitor and or irradiation)
and an untreated control group was determined by multiple t-tests
using the Holm-Sidak method. An adjusted p-value of <0.05 was
statistically significant (p <0.05, *p <0.01, **p <0.001, **p <
0.0001).

Cell Lines and Cell Culture—In this study, we took advantage of
the availability of a previously described primary murine PDAC
cell line panel (15). Briefly, these cell lines were derived from geneti-
cally engineered Ptf1a/p48ex1Cre/+;LSL-KRASG12D/+ or Ptfla/
p48ex1Cre/+;LSL-KRASG12D/+;TP53lox/lox mice. From this panel,
38 low-passaged lines with various genetic backgrounds were
selected for this study (supplemental Table S1A). Cells were cultured
in Dulbecco’s Modified Eagle’s Medium - high glucose medium
(Sigma-Aldrich, St. Louis, MO) supplemented with 10% fetal calf se-
rum (FCS), 100 U/ml penicillin and 100 ug/ml streptomycin (Invitro-
gen GmbH, Karlsruhe, Germany) at 37 °C in a humidified 5% CO,
atmosphere. Cells were routinely checked for mycoplasma contami-
nation using the MycoAlert™ Mycoplasma Detection Kit (Lonza
Group, Basel, Switzerland).

Irradiation Experiments—Radiation was delivered at 220kV and
15mA with a dose rate of 0.90 Gy/min using the RS225A irradiation
device (Gulmay/Xstrahl, Camberley, UK).

Screening for Radioresistance—The aforementioned 38 PDAC
cell lines were screened for radiation response using the AlamarBlue
proliferation assay. Cells were either irradiated with 0 Gy, 2 Gy, 4 Gy,
8Gy or 16 Gy 24 h after seeding. The AlamarBlue reagent (Thermo
Fisher Scientific, Waltham, MA) was added 72 h after irradiation. Af-
ter an incubation time of four hours at 37 °C in a humidified 5% CO,
atmosphere, proliferation of cells was measured by absorbance at
570nm and 630nm using a microplate reader (ELx808™, BioTek,
Winooski, VT). Data were captured by the Gen5 Software (BioTek,
Winooski, VT) and analyzed in Microsoft Excel (supplemental Table
S1A). The proliferation rate after irradiation with 8 Gy from at least
two independent experiments was used to evaluate the response to
radiation. Two representative cell lines with a high (53704PPT,
F5461PPT2) and low (53578PPT, 5748PPT) radioresponse were cho-
sen for further analyses.

Clonogenic Survival after Radiation Treatment— Colony forma-
tion assays (CFA) were performed to determine the radiosensitivity
and confirm the data from the AlamarBlue proliferation screening
assay. Cells were plated into 12-well plates and irradiated with differ-
ent doses (0 Gy, 2 Gy, 4Gy, 6 Gy, and 8 Gy) 48 h after seeding. Seven
to 9 days (depending on the cell line) after plating, the colonies were
fixed with ice-cold methanol, stained with 0.1% crystal violet and
counted with the GelCount™ apparatus (Oxford Optronics, Abing-
don, UK). Colonies of more than 50 single cells were defined as one
colony. Survival curves were fitted according to the following linear-
quadratic model with the equation “In SF = —a X D — B X D2” by
the GraphPad Prism Software. Each experiment was at least per-
formed thrice (supplemental Table S1B).

Migration Assay—To determine the migration behavior of the two
representative radioresistant and radiosensitive cell lines, Corning
Control Chambers were used according to manufacturer’s instruc-
tions. Control inserts for the investigation of migration contain an
uncoated 8 um pore size membrane (24-well, Catalog #354578,
Corning, New York). Medium containing 10% FCS was used as an
attractant in the lower chamber. 10 x 10° cells in medium containing
0.5% FCS (serum starvation) per insert were seeded in the upper
compartment of the insert and were incubated for 20 h in a humidi-
fied incubator at 37 °C and 5% CO, atmosphere. Nonmigrated cells
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were then removed from the upper surface of the membrane and
migrated cells were fixed with ice-cold methanol and stained with
0.1% crystal violet. Cells from five independent fields of each mem-
brane were counted using an Axiolmager Z1 microscope (Zeiss,
Oberkochen, Germany) at 10 X magnification. All invasion assays
were performed at least in duplicate in at least 5 independent experi-
ments. Migration was quantified by calculating the mean number of
cells migrating through the uncoated membrane. Statistical signifi-
cance between the migration capacities of the different cell lines was
determined by unpaired t-tests (supplemental Table S6C).

Sample Preparation for (Phospho)Proteomic Experiments in

Response to Radiation—F5461PPT2, 53704PPT, 53578PPT and
5748PPT cells were seeded and 24 h later irradiated with either 0 Gy
or 8 Gy. Each experiment was performed three times.1 h after irradia-
tion, cells were washed twice with PBS and lysed in 40 mm Tris-HCI
pH 7.6, 8 M urea, EDTA-free protease inhibitor (Roche) and phospha-
tase inhibitors (Roche). Lysates were centrifuged for 1 h at 21,000 X g
und the supernatant was subjected to sample preparation. The protein
concentration in cell lysate was determined using the Coomassie Plus
Bradford (Thermo Fisher Scientific) assay according to the protocol of
the manufacturer. Lysate of either 0Gy (mix1) or 8 Gy (mix2) treated
cells was in part pooled in a 1:1:1:1 ratio and processed along with the
individual lysates.

Two hundred micrograms protein of cell lysate was reduced with
10mm DTT for 40 min at 56 °C and alkylated with 55 mm chloroaceta-
mide (CAA) at room temperature in the dark for 20 min. After dilution
of the urea concentration from 6 M to 1.5 M with 40mm Tris-HCI pH
7.6, the proteins were digested in a 1:50 trypsin/substrate weight ra-
tio overnight at 37 °C and 700rpm. Desalting of the tryptic peptides
was performed on Sep-Pak C18 50mg columns (Waters) as
described elsewhere in 0.07% TFA in 50% acetonitrile (ACN). After-
ward labeling of the desalted peptides was performed with tandem
mass tags 10 (TMT10)-plex (Thermo Fisher Scientific) at a final
concentration of 6.67mm TMT according to instructions provided
by the manufacturer except for a 1:2 TMT/peptide ratio. One TMT
channel was used for each cell line and treatment condition (126 =
53578PPT-0Gy, 127N = 53578PPT-8 Gy, 127C = 53704PPT-0 Gy,
128N = 53704PPT-8 Gy, 128C = F5461-0 Gy, 129N = F5461-8
Gy, 129C = 5748PPT-0 Gy, 130N = 5748PPT-8 Gy, 13 °C = mix-0
Gy, 131 = mix-8 Gy). Pooled phosphopeptides were enriched using
Fe-immobilized metal ion affinity chromatography (IMAC) as previ-
ously described (16). Subsequently, phosphopeptides were sepa-
rated into six fractions using basic reversed-phase (bRP) chromatog-
raphy in micro-column format (five disks, @ 1.5mm, C18 material,
3M Empore per micro-column were used) in 25mm NH4,COOH (pH
10). Peptides were fractionated with increasing ACN concentrations
(5%, 7.5%, 10%, 12.5%, 15%, 17.5, and 50% ACN). The desalted
flow-through was combined with the 17.5% fraction and the 50%
fraction with the 5% fraction to give a total of six fractions. Nonphos-
phorylated peptides (flow through of the Fe-IMAC) were fractionated
into 32 fractions by trimodal mixed mode chromatography, which
uses reversed phase, weak anion exchange, and strong cation
exchange, as published (17). After drying in a centrifugal evaporator,
the samples were stored at —20 °C until LC-MSn analysis.

LC-MSn Analysis of the (Phospho)Proteome in Response to

Radiation—Nano-flow LC-MSn measurement of TMT-labeled non-
phosphorylated and phosphorylated peptides was performed using a
Dionex Ultimate3000 nano HPLC (Thermo Fisher Scientific) coupled
to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Sci-
entific). The fractions of phosphorylated peptides were injected
twice. Peptides were desalted on a trap column (100 um X 2cm,
packed in-house with Reprosil-Pur C18-AQ 5 um resin; Dr. Maisch)
in 0.1% formic acid (FA) at 5pl/min and separated on an analytical
column (75 um X 40 cm, packed in-house with Reprosil-Pur C18-AQ,

3 um resin; Dr. Maisch) using a 50 min linear gradient from 8-34%
(full proteome) or 80min linear gradient from 4-32% (phosphopro-
teome) solvent B (0.1% FA, 5% DMSO in ACN) in solvent A (0. 1%
FA, 5% DMSO in water) at a flow rate of 300 nL/min. The Fusion
Lumos was operated in data dependent acquisition and positive ioni-
zation mode. Full scan MS1 spectra were acquired over a range of
360-1300 m/z at a resolution of 60,000 (automatic gain control (AGC)
target value 4e5, maximal injection time 10 ms). For LC-MS2 analysis
of the full proteome, up to 20 peptide precursors were selected for
fragmentation by higher energy collision-induced dissociation (HCD;
1.2 m/z isolation window, AGC value of 2e5, maximum injection time
of 50 ms) using 38% normalized collision energy (NCE) and analyzed
at a resolution of 30,000 in the Orbitrap. For LC-MS3 analysis of the
phosphoproteome, up to 10 peptide precursors were selected for
fragmentation by collision-induced dissociation (CID; 0.7 m/z isola-
tion window, AGC value of 5e4, maximum injection time of 60 ms)
using 35% collision energy and analyzed at a resolution of 30,000 in
the Orbitrap. An additional MS3 spectrum was acquired in the orbi-
trap over a m/z range of 100-1000 at 50,000 resolution for each pep-
tide precursor. For this, fragment ions were selected by multi-notch
isolation, allowing a maximum of 10 notches and an ion trap isolation
width of 2Da, and subsequently fragmented by HCD at 55% NCE
(AGC target value 1.2e5, maximal injection time 120 ms).

Peptide and Protein Identification and Quantification— Protein
and peptide identification and quantification was performed using
MaxQuant (18) (version 1.5.6.5) by searching the tandem MS data
against all mouse canonical sequences as annotated in the Swis-
sprot reference database (16,889 entries, downloaded 27.06.2017)
using the search engine Andromeda (19). Carbamidomethylated cys-
teine was set as fixed modification and oxidation of methionine and
N-terminal protein acetylation as variable modification. In addition,
phosphorylation of serine, threonine and tyrosine was set as variable
modification for the phosphoproteome. Trypsin/P was specified as
the proteolytic enzyme and up to two missed cleavage sites were
allowed. Precursor tolerance was set to 4.5ppm and fragment ion
tolerance to 20 ppm. The minimum peptide length was set to seven
and all data were adjusted to 1% peptide-spectrum match (PSM)
and 1% protein false discovery rate (FDR). A minimum score for
modified peptides was set to 40. MS2- (full proteome) and MS3-
based (phosphoproteome) TMT quantification was enabled, taking
TMT correction factors as supplied by the manufacturer into account.
Subsequent data analysis was performed on identified and quantified
protein groups (full proteome; as provided in the proteinGroups.txt;
supplemental Table S2A) and phosphorylation sites (phosphopro-
teome; as provided in the Phospho (STY)Sites.txt; supplemental Ta-
ble S2B).

In-Vitro ATM Kinase Assays— Synthetic peptides were designed
as 15-mers (if not stated otherwise) with serine or alanine in the cen-
tral position for WT or mutant p-sites, respectively, in two peptide
pools (supplemental Table S4B). Peptides were supplied by JPT
Peptide Technologies GmbH (Germany) in two pools. Each peptide
pool was subjected to separate kinase assays. Peptides were added
at a concentration of 3 um (pool 1) and 4.6 um (pool 2) to 50 mm
HEPES-KOH pH 7.4, 150mm NaCl, 6 mm MgCl,, 4 mm MnCI2, 1 mm
DTT and 2mm ATP. The assay was started by adding 300ng
recombinant active ATM (Sigma-Aldrich, #14-933-M; ATM samples)
or vehicle (control samples) and the reaction could proceed at 30°C
for 1 h. Each kinase assay was performed in triplicate (if not stated
otherwise). The reaction was quenched by adding an equal volume
of 1% FA in ACN. After drying in a centrifugal evaporator, samples
were stored at —20 °C until LC-MS/MS analysis.

Proteome Data Analysis—The Perseus software suite (20) (ver-
sion 1.5.5.3) was used to filter out contaminants and reverse hits. For
the full proteome data set, protein groups that were only identified
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by a modified peptide were also removed. Furthermore, only phos-
phorylation sites and protein groups that were detected in at least
two out of the three replicates were considered for further analysis.
Log2 fold changes for 8 Gy against 0Gy control and resistance
against sensitivity samples were calculated per phosphorylation
site and protein group and tested for significance using a t test
(FDR=1% or 5%, s0=0.1). Protein-protein interactions were
analyzed using the String database (21) (version 11.0) (com-
bined score>0.4) and visualized in Cytoscape (version 3.4.0). The
PANTHER Classification System was used for gene ontology (GO)
enrichment analysis (22) (supplemental Tables S3C, S5C). Identified
and quantified p-sites of the synthetic peptides from the in vitro ki-
nase assays were only considered as ATM substrates if they (1) were
not detected in the control samples in more than one replicate and
(2) not detected in the kinase reaction of the mutant peptide.

LC-MS/MS Analysis of the Kinase Assay—Nano-flow LC-MS/
MS of peptides from the in vitro kinase assay was performed using a
Dionex Ultimate3000 nano HPLC (Thermo Fisher Scientific) coupled
to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Sci-
entific). Peptides were desalted on a trap column (100 um X 2cm,
packed in-house with Reprosil-Pur C18-AQ 5 um resin; Dr. Maisch)
in 0.1% FA and separated on an analytical column (75 um X 40cm,
packed in-house with Reprosil-Pur C18-AQ, 3 um resin; Dr. Maisch)
using a 51 min two-step gradient from 4-15-27% B (0.1% FA, 5%
DMSO in 100% ACN) in solution A (0.1% FA, 5% DMSO in water).
The Fusion Lumos was operated in data dependent acquisition and
positive ionization mode. Full scan MS1 spectra were acquired over
a range of 360-1300 m/z at a resolution of 60,000 (AGC target value
4 x 10°, maximal injection time 50ms). Fragmentation was per-
formed using HCD at 30% NCE (AGC target value 5 x 10%, maximal
injection time 120 ms) in the orbitrap at 30,000 resolution.

Peptide and Protein Identification and Quantification of the Ki-

nase Assay—Peptide identification and quantification was per-
formed by searching the MS data using MaxQuant (18) (version
1.6.0.1) against a database containing only sequences of the
screened peptides. Phosphorylation of serine and threonine, oxida-
tion of methionine, and N-terminal protein acetylation were set as
variable modifications. Precursor and fragment ion tolerances were
4.5ppm and 20ppm, respectively. Subsequent data analysis was
performed on identified and quantified protein groups phosphoryla-
tion sites (provided in the Phospho(STY)Sites.txt; supplemental Table
S4D).

Western Blotting— Protein lysates were generated by harvesting
cells in 0.8% Nonidet P-40, 50mm Tris-HCI pH 7.5, 5% glycerol,
1.5mm MgCly, 150mm NaCl, 1 mm NagVO,, 25mm NaF, 1 mm DTT,
protease inhibitors (SigmaFast, Sigma) and phosphatase inhibitors.
Proteins were separated by SDS-PAGE and electro-transferred onto
PVDF membranes. Blots were stored in TBS (TBS), supplemented
with 0.05% Tween (TBS-T) and 2% BSA (BSA) for 1 h at room tem-
perature and then incubated with primary antibody (diluted in TBS-T,
5% BSA) overnight at 4°C. The following primary antibodies were
used: alpha-tubulin (1:1000, Santa Cruz Biotechnology, # sc-5286),
Phospho-FAK (Tyr576/577) (1:500, Cell Signaling Technology,
#3281), FAK (1:1000, Cell Signaling Technology, #3285). Subse-
quently, blots were washed in TBS-T and probed with the corre-
sponding fluorophore-conjugated secondary antibody for 30 min at
room temperature. The immunoreactive signals were detected
directly by excitation of the respective fluorophore. Acquisition and
quantification of the band intensities were carried out with the Odys-
sey (Licor) imaging system and Imaged. Intensities of proteins were
normalized to input housekeeping proteins and phosphorylated pro-
teins were normalized to the intensity of the respective total protein.

Small Molecule Kinase Inhibitors—The potent and selective FAK
inhibitor Defactinib (#S7654, Selleckchem, Houston, TX) as well as

the potent and highly selective Chek-1 inhibitor Rabusertib (#S2626,
Selleckchem, Houston, TX) were used to target radioresistance. The
kinase selectivity data for these compounds are provided in (23) and
ProteomicsDB (24, 25). Both inhibitors were dissolved in DMSO to
prepare a stock solution of 5 mm. All inhibitor treatments resulted in a
maximal final DMSO concentration of 0.5% in the cell culture me-
dium to avoid poisoning the cells. Initially, PDAC cells were treated
with Defactinib in a concentration range from 500nm to 10 um or
with Rabusertib from to 125nm to 1 um for 24 h to identify appropri-
ate inhibitor concentrations for further experiments. In addition, CFAs
including a DMSO control (0.5% DMSO) and an untreated control
with PBS (PBS) were performed. Clonogenic cell survival in response
to the drugs, 0.5% DMSO or PBS was determined after 7 days (sup-
plemental Table S7A). Each experiment was at least performed three
times. The survival curves were fitted according to the equation
“Dose-response - Inhibition; log[inhibitor] versus normalized response
— variable slope” with the bottom fit constrained to values between 0
and 1 using the GraphPad Prism software. Corresponding EC50 val-
ues were determined by this method.

Clonogenic Survival after Combination Treatment—A CFA was
performed to evaluate the clonogenic cell survival after a combina-
tion treatment of kinase inhibitors and irradiation. Cells were treated
with concentrations of 0 um, 1 um, 2 um and 5 um Defactinib or 0 nm,
125nm, 250nm and 375nm Rabusertib 24 h after seeding and irradi-
ated with 0 Gy, 2 Gy, 4 Gy, 6 Gy and 8 Gy another 24 h later. Immedi-
ately after radiation treatment, Defactinib or Rabusertib was removed
from cells by changing the culture medium. Colonies were allowed to
grow under normal cell culture conditions for 5 days after completion
of the combined treatment. Seven days after plating, the colonies
were fixed with ice-cold methanol, stained with 0.1% crystal violet,
counted with the GelCount™ and survival curves were fitted by the
linear-quadratic model. Each experiment was at least performed
three times.

All cell survival data post-treatment were normalized to the unirra-
diated control sample at the respective inhibitor concentration (sup-
plemental Table S7B).

Radiobiological Analysis after Combination Treatment— Radio-
biological parameters including Dsy (dose [Gy] to reduce survival
fraction to 50%), the sensitizing enhancement ratio (SER) as well as
the « and B values were derived from the linear quadratic equation
SF = exp [-a X D — B X D2] mentioned above and were determined
to confirm the radiosensitizing effect of Defactinib and Rabusertib.
The SER was calculated as the ratio between Dsq (irradiation) and
Dsg (irradiation and inhibitor). A SER greater than 1.20 was defined to
be indicative for radiosensitization. The results of the radiobiological
analysis are summarized in supplemental Table S7C.

RESULTS

Heterogeneous Radiosensitivity in Murine Cell Lines with Differ-
ent Genetic Backgrounds—To identify molecular factors under-
lying radiosensitivity and -resistance in PDAC, an extensive
primary murine PDAC cell line panel was used. Many of the
molecular principles underlying PDAC evolution and pheno-
typic diversification have been shown to be represented within
this panel. The panel also mimics several aspects of human
PDAC, such as subtypes with KRAS amplification, different
routes of tumor development, such as chromothripsis, and a
wide spectrum of genetic, morphological, and clinical hetero-
geneity (26).

First, we screened 38 murine PDAC cell lines with diverse
genetic backgrounds (supplemental Table S1A) for their
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response to radiation using an AlamarBlue cell proliferation
assay. The results show that the cell lines differ >10-fold in
their radioresponse (Fig. 1A). Based on the median prolifera-
tion rate after irradiation with 8 Gy, we selected two radiore-
sistant (F5461 PPT2, 53704 PPT) and two radiosensitive
(53578 PPT, 5748 PPT) cell lines for further characterization
and analysis. The radiation response data above were con-
firmed by colony formation assays (CFA) for these four cell
lines (Fig. 1B, supplemental Table S1B). The fraction of sur-
viving cells (survival fraction; SF) of the different PDAC cell
lines statistically significantly differed at 4 Gy, 6 Gy, and 8
Gy radiation dose. The radioresistant cell line 53704 PPT
showed a significantly higher SF compared with both radio-
sensitive cell lines. A significantly higher level of clonal sur-
vival after irradiation was observed for the radioresistant cell
line F5461PPT2 compared with both radiosensitive cell lines
5748PPT and 53578 PPT. Consequently, the doses [Gy]
required to reduce the survival fraction to 50% (Dso) were
significantly higher in the radioresistant 53704 PPT (7.89 Gy)
and F5461 PPT2 (9.97 Gy) cells than in the radiosensitive cell
lines 5748 PPT (5.48Gy) and 53578 PPT (5.57Gy). The
results of the radiosensitivity as well as the radiobiological
parameters are summarized in supplemental Table S1A-S1B.

Phosphoproteomic Analysis Reveals Common Radiation-
Induced Signaling Changes in Sensitive and Resistant Cell Lines
—To identify molecular factors underlying the observed radi-
ation-induced phenotypic effects, the changes in the phos-
phoproteomes of two representative radiosensitive (53578
PPT and 5748 PPT) and two radioresistant (F5461 PPT2 and
53704 PPT) PDAC cell lines in response to radiation with X-
rays (8Gy; cells were collected 1 h after irradiation) were
characterized. The use of tandem mass tags (TMT-10plex)
(27) enabled the parallel analysis of the four cell lines and two
treatment conditions along with a mixture of the untreated
and treated cells in a single experiment (performed in tripli-
cate; Fig. 2A; supplemental Fig. S1A). The analysis led to the
identification of a total of ~8,500 proteins, ~3,600 phospho-

proteins (p-proteins), ~19,800 phosphopeptides (p-peptides)
and ~17,500 phosphorylation sites (p-sites; Fig. 2B; supple-
mental Tables S2A-S2C) in all ten samples making it the
most comprehensive proteomic study of radiation-induced
effects in cancer cells to date (28-32) (supplemental Fig.
S1B). Replicates of proteomic experiments showed high cor-
relation (median Pearson correlation coefficient for p-pro-
teomes of r=0.966 and for proteomes of r=0.998) and low
coefficients of variation between replicates (CV; median of
12% for p-sites and 2% for proteins) indicating generally
high data consistency (supplemental Fig. S1C-S1D, supple-
mental Tables S2D-S2E). For all subsequent data analysis,
only those p-sites and proteins were considered, which were
identified in at least two of three replicates.

A global comparison of irradiated versus nonirradiated cell
lines (irrespective of their sensitivity to radiation) showed
statistically significant quantitative changes of 747 p-sites on
409 proteins (Fig. 3A; supplemental Table S3A; 1% false
discovery rate, FDR)), which took effect mostly irrespective
of their sensitivity to radiation (supplemental Table S3B).
These included several well-known DDR markers, such as
increased phosphorylation at ATM-Ser'®®” (an autophospho-
rylation event, which is suspected to increase ATM activity in
response to DNA DSB (33, 34)), the direct ATM substrate
H2AFX-Ser'*® (35), the recruitment and phosphorylation of
MDC1-Ser'®® (reader protein of H2AFX-Ser'4?) (36), the indi-
rect ATM substrate CHEK2-Ser?®® and the ATR substrate
CHEK1-Ser®'” (37) (Fig. 3B). Conversely, phosphorylation
at HISTIH1E-Thr'®, a renowned ATM-dependent histone
marker (38), was significantly decreased upon radiation. GO
analysis of proteins with regulated p-sites showed a strong
enrichment for GO-terms related to DNA damage check-
points (supplemental Fig. S2A; supplemental Table S3C). We
note that these functional responses could not be observed
at the protein expression level (supplemental Fig. S2B; sup-
plemental Table S2A), illustrating the value of phosphopro-
teomics for characterizing the immediate response of cells to
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radiation. These data clearly show that all cell lines were able
to launch a robust DDR in response to radiation.

In Vitro Kinase Assays Validate Novel ATM Substrates —Among
the radiation-regulated p-sites was a striking enrichment of
pSQ/pTQ sites, the consensus motif of the DDR initiating ki-
nases ATM and ATR (39). Specifically, 136 SQ/TQ p-sites on
105 proteins were found among the 747 regulated p-sites
(18%; Fig. 4A). The representation of SQ/TQ in the total p-
proteome was only 3% (supplemental Table S4A) and almost
all these SQ/TQ p-sites showed increased abundance follow-
ing irradiation, consistent with the presumed activation of
ATM (and ATR). Among these sites is the well-established
ATM autophosphorylation site ATM-Ser'®®” and the ATM
substrate CHEK1-Ser®'” as well as many potential novel
substrates. Protein-protein interaction analysis using STRING
showed that many of the regulated SQ/TQ p-sites may repre-
sent new members of an ATM signaling network with func-

tional relevance for DDR (supplemental Fig. S3). In order to
validate candidate substrates biochemically, an in vitro ATM
assay was performed for all ATM motif-containing p-sites
using synthetic peptides, recombinant ATM and LC-MS/MS
for p-site identification and quantification. Motif-specificity
was assessed by the inability of ATM to phosphorylate Ser/
Thr to Ala-mutants of the respective peptides and this crite-
rion was also used to designate a p-site as an ATM sub-
strate. The experiment included five known ATM targets
BID-Ser’® (40) Mcm3-Ser”2 (41), RSF1-Ser®®* (42), SF3B2-
Ser?”? (43), and SMC3-Ser'%5 (44) and all showed specific
phosphorylation by ATM (Fig. 4B; supplemental Table S4B-
S4D). The assay also validated 10 novel ATM substrates
including FAM175A-Ser*® (also known as ABRAXAS1-Ser*8).
ATM has previously been shown to phosphorylate FAM175A
at Ser**¥4% and the novel p-site further underlines the pro-
teins’ role in DNA damage resistance, DNA repair, and cell
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FiG. 4. Validation of known and novel ATM kinase substrates. A, Sequence logo plots of radiation-mediated differentially regulated p-sites. The
left plot shows all regulated p-sites, the right plot shows only those regulated p-sites that were filtered for the ATM/ATR phosphorylation motif SQ/
TQ. B, Results of kinase assays using recombinant ATM and synthetic peptides representing the regulated SQ/TQ-containing p-sites from panel
A. The top panel shows the mass spectrometric signal intensities (left y axis) of 15 p-peptides (separated by known and novel ATM substrates)
bearing a putative ATM site after incubation with ATP and recombinant ATM. For reference, blue circles (right y axis) indicate the difference in p-
site intensities observed in the phosphoproteomic experiment with and without irradiation (shown in Fig. 3A). The middle panel shows the p-site
intensities of the same peptides in which the p-site was mutated to Ala. The bottom panel shows the p-site intensities of the WT peptides without
incubation with recombinant ATM. # denotes the two p-peptides that showed some (but lower) intensity even in the absence of kinase.

cycle checkpoint control (45). ATM-mediated phosphorylation
of ATF7IP (MCAF1) at Ser°® may provide insights into
how its dual function as a transcriptional activator and
repressor can be modulated (46). More generally, the novel
ATM substrates NOL4L-Ser’®®, SCAF11-Ser’®, SLTM-
Ser'®®  SRRM2-Ser'?®, TATDN2-Ser’™®, UBXN7-Ser*®®,
WBSCR22-Ser*® and ZC3H11A-Ser'®® illustrate that the
phosphoproteomic data reported here can help to functional-
ize these proteins, specifically in the context of radiation-
induced DNA damage response. The authors note that fur-
ther experiments would be necessary to show that the afore-
mentioned p-sites are also ATM substrates in cells.
Radiosensitive and Resistant PDAC Cells Show Strong Abun-
dance Differences in Apoptosis Related Proteins—The above
section focused on the characterization of radiation-mediated
molecular events irrespective of whether cells respond to
radiation. Here, the analysis was extended to ask the ques-
tion which proteins are differentially abundant between radio-
sensitive and resistant cell lines. The analysis showed that
491 proteins were differentially abundant between the groups
of cell lines (t test FDR=0.05, s0=0.1; supplemental Table

S5A). Nonhomologous end joining (NHEJ) and homologous
recombination (HR) are major elements of DSB DNA repair
following irradiation of cells but only very few proteins with
respective GO-terms were among the differentially expressed
proteins suggesting that neither NHEJ nor HR are major con-
tributors to radioresistance. Instead, 66 proteins involved in
apoptotic processes were strongly differentially expressed
between sensitive and resistant cell lines (Fig. 5A; highlighted
in green in supplemental Table S5A) providing a hypothesis
that may explain the observed differences in phenotypic
response to radiation. To consolidate this list further, results
from a recent study correlating RNA expression data of 533
tumor cell lines (including 31 PDAC lines) and their response
to radiation (47) were integrated with the proteomic data
acquired in the present study. Even though RNA and protein
levels are difficult to compare directly, it is interesting to note
that some proteins that showed differential abundance also
(albeit relatively weakly) correlated with response to radiation
(Fig. 5B; supplemental Table S5B). Among the proteins with
the strongest effects is NQO1 (Fig. 5C). This protein is inti-
mately involved in clearing reactive oxygen species (ROS)
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Fic. 5. Proteome expression differences between radiosensitive and radioresistant cell lines. A, Heat map illustrating protein expression differ-
ences (z-scored fold changes) for apoptosis related proteins between radiosensitive and radioresistant cells. B, Volcano plot of the difference in
protein expression between radioresistant and radiosensitive cell lines versus the Spearman correlation coefficient of RNA expression data of 31
PDAC lines and their response to radiation for the same proteins. Proteins of interest are highlighted in orange. C, Normalized TMT reporter ion in-
tensity for the protein NQO1 showing higher NQO1 expression in radioresistant cells compared with radiosensitive cells.

from cells, particularly upon stress stimuli (48). This may be
noteworthy as it has been reported that increased ROS scav-
enger activity results in low ROS levels and, therefore, to
radioresistance (49). One may, therefore, speculate that
increased NQO1 expression in PDAC cell lines may contrib-
ute to their ability to withstand radiation-induced ROS pro-
duction. Future work along these lines may include testing if
NQO1 inhibitors such as the anticoagulant dicoumarol (50)
that has shown growth inhibitory effects in human pancreatic
cell lines (51) can sensitize PDAC cells for radiation.

Phosphoproteome Differences between Radiosensitive and
Resistant PDAC Cells Highlight Increased Actin Dynamics
and FAK Activity—Returning to the phosphoproteomic data,
abundance differences in 361 p-sites on 192 proteins
were observed between radiosensitive and resistant cells
(FDR=5%, s0=0.1; supplemental Table S6A). GO term anal-
ysis of the underlying proteins revealed a strong enrichment
for proteins with functions in cytoskeleton organization, par-
ticularly in actin dynamics (supplemental Fig. S4A; supple-
mental Table S5C). For example, significant differences of
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phosphorylation intensity were observed on Ser®®° of the
actin filament bundler LIMA1 (52) and on Ser'®® of the actin
nucleation factor SPIRE1 (53), both of which were also differ-
entially abundant at the protein level (Fig. 6A; see supple-
mental Tables S6A for p-sites and S2A for proteins). Signifi-
cantly increased phosphorylation levels but not protein levels
were observed for focal adhesion kinase (FAK; Fig. 6B). FAK
is a nonreceptor tyrosine kinase and controls several cellular
processes such as cell invasion (54), epithelial-mesenchymal
transition (565) and cell survival (56, 57) by kinase-dependent
and kinase-independent mechanisms, further highlighting the
involvement of the cytoskeleton in radioresistant cells. Ele-
vated FAK activity in radioresistant cells was evident from an
increase in phosphorylation on (1) the kinase domain activa-
tion loop Tyr’’®, which indicates formation of an activated
FAK-SRC complex (58), (2) on Tyr®®', another activating FAK-
p-site (59) and (3) on paxilin (PXN)-Tyr''8, a direct substrate of
FAK (Fig. 6C; supplemental Fig. S4B and S4C, supplemental
Table S6B). This increase in FAK activity may lead to improved
cell survival in radioresistant cells and contrasts the large-scale
radiation screen of cancer cells where FAK (MRNA) expression
did not correlate with radiation response (47).

Consistent with the above observation that the cytoskele-
ton may be involved in radioresistance, migration assays
showed that the mean number of migrating cells was signifi-
cantly increased in the radioresistant cell line 53704PPT (p
< 0.0001) compared with the other three cell lines (supple-
mental Fig. S5A and S5B; supplemental Table S6C). How-

ever, it remains to be tested if elevated FAK activity is a gen-
eral characteristic of radioresistant PDAC cells or merely a
feature of the cell lines tested here.

Kinase Inhibitors Sensitize PDAC Cells to Radiation—Moti-
vated by the above findings, we tested if pharmacological in-
hibition of FAK or CHEK1 activity may lead to improved
response to radiation. Defactinib is a highly potent desig-
nated FAK inhibitor that shows good selectivity assessed by
results of an extensive screen of kinase inhibitor selectivity
conducted by the authors (23). Similarly, Rabusertib is an
exquisitely selective CHEK1 inhibitor and, therefore, pheno-
typic effects of this drug on cells can most likely be attributed
to CHEK1 inhibition. First, the four cell lines were treated
with the kinase inhibitors alone for 24 h to establish their
pharmacological response. Both drugs reduced the SF in a
concentration-dependent fashion compared with PBS control
(supplemental Fig. S6A-S6B; supplemental Table S7A).
Defactinib decreased the SF with EC50 values of 1.6 um
(53704 PPT), 1.2 um (F5461 PPT2), 1.0 um (5748 PPT) and
1.1 um (53578 PPT). Rabusertib showed EC50 values of
0.34 um (53704 PPT), 0.23 um (F5461 PPT2), 0.14 um (5748
PPT) and 0.26 um (53578 PPT), respectively. No cell growth
was observed for cells treated with >7.5 um Defactinib or
>500nm Rabusertib. Therefore, Defactinib and Rabusertib
concentrations were limited up to 5 um and 375nm respec-
tively for further experiments. No differences in the SF of
both control groups (cells treated with PBS or 0.5% DMSO)
were observed. Therefore, all statistical analysis of data from
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**p <0.01, **p < 0.001, ***p < 0.0001).

Survival fraction
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the combination of kinase inhibitor and irradiation (see below)
were related to the survival data of cells treated with PBS
control.

Incubating the four cell lines with Defactinib or Rabusertib
for 24 h in combination with irradiation increased the efficacy
of radiation (Fig. 7A-7B; supplemental Table S7B). For the
radioresistant cells, the SF significantly decreased at concen-
trations of 2 um Defactinib and 5 um Defactinib (Fig. 7A). An
even stronger radiosensitizing effect was observed for Rabu-
sertib (Fig. 7B) that resulted in significantly decreased SF at
125nm, 250nm and 375nm Rabusertib. The radiosensitizing
effects of Defactinib and Rabusertib were confirmed by the
determination of radiobiological parameters (supplemental
Table S7C). For cells treated with Defactinib, the SER for Dsq
increased to 1.4 (2 um) and 1.3 (5 um) in 53704 PPT cells and
to 1.5 (2 wm) and 1.7 (5 um) in F5461 PPT2 cells. Combining
irradiation and Rabusertib also significantly enhanced radio-
sensitivity with SER values of 1.3 (250nm) and 1.3 (375nwm)
for 53704 PPT cells and 1.3 (250nm) and 1.4 (375nwm) for
F5461 PPT2 cells. In contrast, neither Defactinib nor Rabu-
sertib showed a significant radiosensitizing effect in the ra-
diosensitive PDAC cell line 5748 PPT at any inhibitor concen-
tration or radiation dose. The SF after combined treatment
with Defactinib or Rabusertib and irradiation was also not
statistically significantly reduced in 53578 PPT cells with the
exception of the 5 um Defactinib dose at 4, 6 and 8Gy. In
contrast to the radioresistant cell lines, a significantly
enhanced radiosensitivity was only observed after combined
treatment with irradiation and 5 uwm Defactinib or 250 nm
Rabusertib in both radiosensitive cell lines determined by
SER > 1.2 (supplemental Table S7C).

In summary, single treatment with kinase inhibitors Defacti-
nib and Rabusertib resulted in a concentration-dependent

4
Dose [Gy]
® Resl: F5461 PPT2

4 6
Dose [Gy]
Sen2:5748 PPT

4
Dose [Gy]

® Res2: 53704 PPT Senl: 53578 PPT

decreased SF especially in radiosensitive cell lines, a statisti-
cally significant radiosensitization was mainly achieved in the
radioresistant cell lines after irradiation in combination with
kinase inhibition (see Fig. 8 for a schematic overview).

DISCUSSSION

A better understanding of cancer biology in combination
with the development of novel treatment modalities has gen-
erally led to improved cancer therapy and patient survival.
However, the prognosis of patients with PDAC remains poor
and no significant improvements in overall survival have been
achieved over the past decades. The main reasons are a lack
of appropriate treatment modalities and methods for detect-
ing pancreatic cancer at an early stage resulting in a primary
surgical resection in less than 20% of the cases and leaving
chemotherapy and RT as major alternative treatment options
(60).

Main mechanisms of ionizing radiation are the induction of
DNA damage, apoptosis, changes of cell cycle distribution,
autophagy, and highly reactive free radical species such as
ROS leading to cell damage and cell death (61). Our data
confirmed the involvement of radiation-induced DNA damage
by statistically significant changes in the phosphoproteomes
of several well-known DDR markers in PDAC cell lines after
8Gy irradiation compared with unirradiated cells. Multiple
factors are implicated in the development of radioresistance,
including deregulated signaling pathways, oncogenic miRNA
overproduction, enhanced DNA damage responses, the
presence of cancer stem cells, epithelial-to-mesenchymal
transition and alterations in cancer metabolism, as well as tu-
mor microenvironment (62). Dysregulation of the mechanisms
of ionizing radiation might be a major contributor both to
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signaling pathways, including selected
p-proteins, which are activated in
radioresistant cells and inhibited by
Defactinib and Rabusertib leading to
radiosensitization.
Radiation

radiation resistance and radiation sensitizing (61) and are dis-
cussed in the following.

Genetic dysregulations occurring in apoptotic signaling
pathways are observed in aggressive cancer cells that limit
the effects of anticancer therapies, including radiation (63). In
line our own data show strong abundance differences in apo-
ptosis related proteins in the radioresistant and radiosensitive
cell lines. The tumor suppressor gene SMAD4 is mutated or
deleted in 55% of PDAC and promotes pancreatic tumor
progression and increases metastasis. SMAD4 depletion also
induces radioresistance in pancreatic cancer both in vitro
and in vivo. Mechanistically, SMAD4 depletion induces ele-
vated levels of autophagy and ROS contributing to radiore-
sistance, whereas autophagy and ROS inhibitors sensitized
pancreatic cancer cells to radiation (9). In context of reactive
free radical species, NQO1 serves as an important protective
mechanism against ROS. Previous studies have demon-
strated overexpression of NQO1 in various cancers including
PDAC (64) and a radiation tolerance group showed an up-
regulated NQO1 expression in patients with head and neck
squamous cell carcinoma (65). Consistent with these find-
ings, we demonstrated an elevated NQO1 expression in the
radioresistant PDAC cell lines. Another aspect is the migra-
tory and invasive capacity of cells, which is further increased
by irradiation in some cell lines and affects radiation
response (66). In line with Gray et al., who demonstrated an
increased invasion and migration potential of radioresistant
breast cancer cell lines (67), we revealed elevated phospho-
rylation levels of proteins involved in cytoskeleton organiza-
tion including actin dynamics and FAK activity in the radiore-
sistant PDAC cell lines as well a strong migration phenotype
in one resistant cell line.

CHEKIi
Rabusertib

X-ray
activated

As RT alone also often leads to unsatisfactory results
because of the above discussed mechanisms of radioresist-
ance, innovative approaches combining RT with molecularly
targeted drugs may overcome the high RT resistance of
PDAC. Toward this goal, we first measured the phenotypic
response of a panel of 38 PDAC lines to radiation to charac-
terize the panel. We then characterized the (phospho-) pro-
teomes of two RT sensitive and insensitive lines in response
to radiation to identify a large molecular network of known
and novel DNA damage response factors centered on the ki-
nases ATM, CHEK1 and their substrates. This analysis sub-
stantially extended the range of proteins involved in the
response of cells to radiation, validated 10 new ATM sub-
strates and suggested CHEK1 as a potential target in PDAC.
In addition, the comparison of the molecular differences in
the phospho-proteome between radioresistant and radiosen-
sitive cell lines uncovered increased activity of the kinase
FAK in radioresistant PDAC cells, thus offering a further way
to target RT resistant PDAC.

Subsequent experiments showed that radioresistant (but
not radiosensitive) PDAC cells could be sensitized by treat-
ment with the CHEK1 inhibitor Rabusertib or the FAK inhibi-
tor Defactinib. FAK has been implicated in regulating cancer
cell migration, proliferation, cell survival and progression in
PDAC (56, 57, 68). Previous studies have identified hyperacti-
vated FAK in neoplastic PDAC cells and demonstrated
enhanced tumor malignancy and correlation with poor prog-
nosis by elevated FAK expression (68, 69). Our results
of FAK inhibition using Defactinib are consistent with a
described inhibition of cell proliferation and clonogenicity as
well as apoptosis-induction by Defactinib in pancreatic neu-
roendocrine tumors (70). Single-agent FAK inhibition limited
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tumor progression and resulted in a doubling of survival in
genetically engineered mouse models of human PDAC by
inducing prolonged tumor stasis and disease stabilization
(69). The observed radiosensitization is also in line with previ-
ous reports showing that siRNA silenced FAK expression
radiosensitized human PDAC cell lines (71). The good selec-
tivity of Defactinib for FAK as previously determined by Kino-
bead screening (23) diminishes the risk that the observed
effect may be because of an off-target. Defactinib is under-
going clinical trials (phase ll) including as a combination ther-
apy with immune checkpoint inhibitors in PDAC patients (68,
69) (reviewed in (72)). This suggests that Defactinib is reason-
ably safe to use in humans and the results provided in this
study may pave the way for testing Defactinib for targeting
radioresistance in PDAC to improve the efficacy of radiation
treatment in PDAC patients.

A similar approach may be envisaged for combining
CHEK1 inhibition and radiation. Rabusertib has been investi-
gated in phase Il trials in combination with chemotherapy in
solid tumors but the compound is not approved for use in
humans and there are no current clinical trials indicating that
the clinical program may have been terminated. Still, the data
on Rabusertib make the point that CHEK1 inhibition may be
an avenue to follow. The drug has been shown to radiosensi-
tize HPV/p16-positive head and neck cancer cell lines (73)
and other CHEK1 inhibitors showed the same in KRAS mu-
tant rectal cancer cell lines (74). A different CHEK1 inhibitor,
MK8776, has shown radiosensitizing effects in PDAC cell
lines at relatively high compound concentrations (75). How-
ever, given that MK8776 is also a CDK inhibitor, it is difficult
to attribute its radiosensitizing effect to the inhibition of
CHEK1. In contrast, no targets other than CHEK1 have been
reported for Rabusertib, which indicates that the radiosensi-
tizing effects we observed in this study are indeed owing to
the inhibition of CHEK1.

Together, the data provided in this study constitute a rich
molecular resource for mechanistic studies regarding the bio-
logical response of PDAC to ionizing radiation. The study
also exemplifies how phosphorylation events measured at
a global scale can be used to design novel therapies. In
particular, the data provide evidence to advance therapeu-
tic concepts of FAK and CHEK1 inhibition in combination
with RT in PDAC.
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