
ARTICLE

Non-stationary coherent quantum many-body
dynamics through dissipation
Berislav Buča 1, Joseph Tindall 1 & Dieter Jaksch 1,2

The assumption that quantum systems relax to a stationary state in the long-time limit

underpins statistical physics and much of our intuitive understanding of scientific phenom-

ena. For isolated systems this follows from the eigenstate thermalization hypothesis. When

an environment is present the expectation is that all of phase space is explored, eventually

leading to stationarity. Notable exceptions are decoherence-free subspaces that have

important implications for quantum technologies and have so far only been studied for

systems with a few degrees of freedom. Here we identify simple and generic conditions for

dissipation to prevent a quantum many-body system from ever reaching a stationary state.

We go beyond dissipative quantum state engineering approaches towards controllable long-

time non-stationarity typically associated with macroscopic complex systems. This coherent

and oscillatory evolution constitutes a dissipative version of a quantum time crystal. We

discuss the possibility of engineering such complex dynamics with fermionic ultracold atoms

in optical lattices.
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The eigenstate thermalization hypothesis1,2 (ETH) states
that an isolated many-body quantum system with non-
integrable Hamiltonian relaxes locally to a stationary

equilibrium ensemble. For generic initial states local observables
are given by thermal expectation values after a sufficiently long
evolution time t. A generalized ETH holds if the system is
integrable or under the influence of weak integrability breaking1,2

Equilibration occurs on relatively short timescales, typically
within a few characteristic periods.

Perfect isolation is impossible in experiments and interactions
with the environment will always provide additional relaxation
mechanisms. The widely used—but notoriously difficult to prove
—assumption of ergodicity states that even weak coupling to an
environment enables the system to explore the entire connected
nondecaying part of the system Hilbert space H as sketched in
Fig. 1a. The evolution thus induces relaxation to a unique sta-
tionary state ρ∞ in the long-time limit.

In quantum technology platforms3 a microscopic under-
standing of the environmental coupling allows control of the
open system dynamics _ρðtÞ ¼ LρðtÞ of the density operator ρ(t).
The super-operator L can be engineered to possess a small
number of controllable purely imaginary eigenvalues. The cor-
responding eigenstates are protected from the environment and
form a decoherence-free subspace4,5 where quantum information
can be processed without leaking into the environment. Con-
trolled dissipation can also lead to many-body pure states that are
stationary6–8.

The seemingly robust feature of relaxation to stationarity in
quantum many-body systems presents a puzzle when contrasted
with the emergence of nonstationary dynamics often observed in
macroscopic systems9,10. Nonstationarity plays an important role
in many areas ranging from microbiology11,12 and neurobiolo-
gical systems9,13 across climate science14,15 to financial time
series9,16. It remains almost unstudied in quantum statistical
physics where research of nonequilibrium setups mostly con-
centrates on currents of time-independent quantities. The ques-
tion thus arises whether generic insights into the microscopic
origins of nonstationary and complex long-time evolution may be
gleaned from the study of highly controlled and well understood
experiments in the quantum regime.

Here, we show that coupling to an environment can induce
nonstationarity in many-body quantum systems that would
otherwise relax, through mutual dephasing of its eigenstates,
according to the ETH. Symmetry-preserving dissipation elim-
inates a large class of eigenstates and ensures constructive

interference. It splits the nondecaying part of the Hilbert space
into disjoint sectors schematically shown in Fig. 1b. In the long-
time limit a dark Hamiltonian coherently drives the system
between these disjoint parts leading to nondecaying oscillations in
observables that are not entirely contained in one sector. We will
give general conditions guaranteeing this situation and study an
example realizable in current experiments with ultracold atoms.

Results
Conditions for nonstationarity in a many-body system. Speci-
fically, our starting point is the Lindblad master equation mod-
eling a quantum system weakly coupled to an environment that
acts as a source of noise. The main results presented here are also
valid for open quantum systems beyond the Lindblad framework
(see Supplementary Methods for details). The master equation is
given by (setting ħ= 1)

_ρ tð Þ ¼ Lρ ¼ �i H; ρ tð Þ½ � þP

μ
2LμρL

y
μ � LyμLμρ� ρLyμLμ

� �
;

ð1Þ
where the first term describes unitary evolution i _ρ ¼ H; ρ tð Þ½ � ¼
Hρ tð Þ � ρ tð ÞH of an isolated system with Hamiltonian H and
follows directly from the Schrödinger equation. The second term
contains the jump operators Lμ arising from decoherence pro-
cesses induced by the environment. Formally, the density
operator will be nonstationary if the Liouvillian L has purely
imaginary eigenvalues17–19 Lρn ¼ �iHρn ¼ �iλnρn for eigen-
operators ρn. Here, we have defined the dark Hamiltonian H as
the part of the evolution that is purely coherent.

The conceptually simplest situation where nonstationarity may
occur is well understood for systems with few degrees of
freedom18–20. All jump operators fulfill Lμjϕni ¼ 0 for a subset
of eigenstates |ϕn〉 with eigenvalues ωn of the Hamiltonian. These
so-called dark states are perfectly decoupled from the environ-
ment and span a decoherence-free subspace4. Coherences
between dark states evolve according to Ljϕni ϕm

� �� ¼
i ωm � ωnð Þjϕni ϕm

� �� and undergo continued oscillations induced
by the coherent part of the dynamics. The dark Hamiltonian H
may then be understood as a purge of unwanted eigenstates of the
original Hamiltonian H. We give an example of a many-body
dark Hamiltonian in the Supplementary Discussion.

A dark Hamiltonian is not required to be Hermitian and its
eigenstates need not be pure. We concentrate on this more
general and interesting case and show that it may lead to
nonstationary and complex long-time dynamics. This case is
realized if there exists an eigenoperator A such that (see Supple-
mentary Methods for details)

H;A½ � ¼ �λA and Lμ;A
h i

¼ Lyμ;A
h i

¼ 0 8μ; ð2Þ

with real valued λ. We find Lρnm ¼ i m� nð Þλρnm for operators
ρnm ¼ Anρ1 Ay� �m

and integer m, n > 0. Here, ρ∞ is a stationary
state with Lρ1 ¼ 0. The fact that A is an eigenoperator and not
just a symmetry with [H, A]= 0 is crucial and guarantees that the
operators ρnm are not stationary for n ≠m. We refer to these ρnm
as mixed coherences because they describe oscillations induced by
H between, usually mixed, stationary states ρnm [see Fig. 1b]. In
contrast to the coherences in a decoherence-free subspace they
are not decoupled from the environment and are affected by
dissipation LμρnmL

y
μ≠0. All initial states that contain mixed

coherences ρnm will continuously oscillate in the long-time limit.
If only one operator A exists then the spectrum of the dark
Hamiltonian is equidistant, like that of a harmonic oscillator. The
equidistance of the spectrum ensures the long-time dynamics is

HH
a b

Fig. 1 The Hilbert space H separated into a decaying part (black) and a
nondecaying part (white). a Ergodic time evolution, indicated by a blue
trajectory, explores the entire connected nondecaying space thus leading to
stationarity of observables after a transient period. b Dissipation may split
the nondecaying part into disjoint sectors. The dark Hamiltonian H drives
transitions between them. Observables that are not entirely contained in
one of these parts show continued oscillations and thus nonergodic
behavior after a transient period
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periodic, with period 2π/λ and the system does not relax to
stationarity.

Nonstationary dynamics in the open Hubbard Model. We
study the emergence of nonstationarity in D-dimensional fer-
mionic Hubbard models that possess spin and η-pairing sym-
metries (see Methods). This is a paradigmatic example that can be
accurately realized in highly controllable quantum systems, such
as optical lattices filled by ultracold spin 1/2 atoms21. The
Hamiltonian is

H ¼ �τ
P

hj;j′i;s
cyj;scj′;s þ cyj′;scj;s þ

P

j
Unj;"nj;# þ ϵjnj þ B

2 nj;" � nj;#
� �

;

ð3Þ
where j, j′ denotes nearest-neighbor sites of a bipartite lattice with
M sites and cj, s is the annihilation operator for a fermion with
spin s on site j. The particle number operator is nj;s ¼ cyj;scj;s and
nj ¼ nj;" þ nj;#. The hopping amplitude is τ, U denotes onsite
interactions and ϵj is a site dependent energy offset. In an optical
lattice, the term ϵj describes the trapping potential and/or spin-
agnostic disorder, e.g., created through speckle patterns3,22. A
constant external magnetic field splits different spin states by B
via the Zeeman effect. We assume the coupling of the Hubbard
lattice to the environment to take the form of local dephasing
Lindblad operators Lj ¼ γjnj. In optical lattices, this can be
achieved e.g., through immersion into a Bose–Einstein con-
densate23 (see Supplementary Discussion for details).

The strong symmetries17,19,24 of this model determine its
generalized grand-canonical-like equilibrium states as
ρ1 / exp β0N þ β1 SþS�ð Þ þ β2S

z
� �

, where N is the total number
of particles and S ¼ Sx; Sy; Szð Þ the total spin (note that the
stationary subspace is degenerate). The parameters βi play the
role of generalized chemical potentials determined by the initial
state. The operator S+ fulfills the criteria of the eigenoperator A
with λ= B and hence constructs a dark Hamiltonian H (see
Methods).

We study the system evolution starting from noncorrelated
polarized initial states. In Fig. 2a we show the bulk-averaged
fermion spin along the x-direction Sxi ðtÞ

� �� �
. The long-time

oscillation amplitude of spin–spin correlations hSxi ðtÞSxiþjðtÞi for
arbitrary i and j are shown in Fig. 2b. After a short-transient time
these observables start oscillating with an amplitude quickly
converging to a finite value with increasing M. Their spectrum is
then narrowly centered around multiples of B as shown in Fig. 2c.
This is in excellent agreement with the analytically expected
purely sinusoidal evolution in the long-time limit. In Fig. 2d we
compare traces of the spin dynamics in the xy-plane for different
initial spin polarizations. All realizations (see Methods) of the
stochastic dynamics are identical for the maximally polarized
state, which thus behaves similarly to an isolated collection of
noninteracting spins. However, realizations for nonmaximally
polarized states possess fluctuations that increase with system size
M. Only after averaging many realizations perfectly sinusoidal
oscillations emerge following the initial transient. This evolution
strongly violates ergodicity and is qualitatively different from the
precession of independent spins.

In Fig. 3a, we study a quench starting from the ground state of
the Hubbard model. In the absence of dephasing, the combina-
tion of disorder and many-body thermalization quickly dampens
out the dynamics, as shown in the inset of Fig. 3a. The closed
system exhibits small fluctuations following revivals due to finite-
size effects. Remarkably, in the presence of dephasing22,23

persistent spin oscillations with frequency B ensue after the
quench. The strength of the system environment coupling solely

determines the time for the transient dynamics to decay and
coherent, oscillatory behavior appear in the measured observa-
bles. In Fig. 3b, we show that fundamentally quantum off-
diagonal long-range order25 in the spin sector
limn!1hSþi S�j i≠0; 8i; j is constructed by the dephasing dynamics
even when starting from high-temperature thermal states of the
Hubbard model.

We emphasize that the eigenstates of the dark Hamiltonian H
driving these oscillations are mixed and cannot be realized in an
isolated system. Furthermore, the system admits no decoherence-
free subspaces as any state |ϕ〉 for which Ljjϕi ¼ 0; 8j cannot be
an eigenstate of H for finite hopping τ. Indeed, all coherences that
lead to dephasing in the isolated system get damped out by the
dissipation because the setup does not admit dark states
(see Supplementary Methods for a more detailed discussion).

We apply well-established complexity measures based on
entropy10 (see Methods) to the time evolution induced by H.
Figure 4a shows the mutual information between lattice sites as
a function of time. In the presence of dephasing we see that for
small times this is uniform and large which indicates that the
reduced quantum state of a single site contains a large amount
of information about the rest of the system. During the time
evolution the mutual information decreases while simulta-
neously the disparity, shown in Fig. 4b, increases. Even a
relatively small system reaches a complex state with little
mutual information and large disparity between different sites.
This is consistent with Fig. 2d showing large fluctuations in
individual realizations of the evolution. The experimental
characterization of such a state necessarily requires measuring
many sites. Figure 4 also shows that this complexity does not
emerge in the closed system.

Discussion
Starting from the Hubbard model, different couplings to the
environment can realize different classes of dark Hamiltonians
(see the Supplementary Discussion for the details). For instance,
when ϵj ¼ ϵ spin dephasing Lj ¼ γj S

z
j results in a dark Hamil-

tonian whose eigenstates all possess long-range off-diagonal η-
pairing order, i.e., limn!1hηþi η�j i≠0; 8i; j. Spin dephasing could
thus contribute to the formation of superconducting states by
inducing η-pairing26.

More generally, our results open up the possibility of studying
quantum statistical physics27 of non-Hermitian28 dark Hamilto-
nians. Linear response theory, behavior under periodic driving,
relaxation toward subspaces of the dark Hamiltonian, the for-
mulation of a semiclassical limit and metastability29 are also
interesting and open questions. The asymptotic coherent
dynamics induced by a dark Hamiltonian breaks time-translation
symmetry. It may thus be understood as the dissipative realiza-
tion of a fully quantum time crystal30,31 in the bulk that does not
require external time-dependent driving31 or collective dissipa-
tion of a noninteracting system32.

We have shown that relaxation to equilibrium and statio-
narity can be prevented by environmental dissipation. This
causes some degrees of freedom to dampen out and stops them
from dephasing. The underlying physics resembles classical
complex system dynamics where also not all available degrees
of freedom contribute to the formation of collective complex
behavior9.

Methods
Symmetries of the Hubbard model. The D-dimensional Hubbard Hamiltonian
on a bipartite lattice commutes with two sets of generators of the su(2) algebra. The
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first set consists of spin operators33

Sz ¼ P

j
Szj ; Szj ¼ 1

2 ðnj;" � nj;#Þ; ð4Þ

Sþ ¼ P

j
Sþj ; Sþj ¼ cyj;"cj;#; ð5Þ

S� ¼ P

j
S�j ; S�j ¼ cyj;#cj;"; ð6Þ

where cj;# ðcj;"Þ is the standard fermionic annihilation operator annihilating a down
(up) spin on site j. We have

H; Sz½ � ¼ 0; H; S±½ � ¼ ±B S± : ð7Þ

The other, hidden, SU(2) symmetry, called η-pairing, is given in terms of its
generators as

ηz ¼ 1
2

P

j
ðnj � 1Þ; ð8Þ

ηþ ¼ P

j
τ jð Þηþj ; ηþj ¼ cyj;" c

y
j;#; ð9Þ

η� ¼ P

j
τ jð Þη�j ; η�j ¼ cj;#cj;"; ð10Þ

where τ(j) follows an alternating checkerboard pattern of +1. With ϵj ¼ ϵ we have

H; ηz½ � ¼ 0; H; η ±½ � ¼ ± 2ϵη± : ð11Þ
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Fig. 2 Dynamics of spin observables in the number-dephased Hubbard model following a quench. a The bulk-averaged fermion spin Sxi ðtÞ
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for various
system sizes M. The evolution starts from the half-filled lattice state Sxi

� �� �
1=3 without double-occupancies where every third fermion is polarized along −x

while all others are polarized along x. A long-time amplitude of 1/6 independent of M is obtained analytically. b Amplitude of the oscillations of
hSxi ðtÞSxiþjðtÞi in the long-time limit for different M and arbitrary i, j. The starting state is the maximally polarized quarter filled state with a fermion put on
every second site. The magenta dashed curve shows the analytical result converging to 1/16 in the limit M ! 1. c The spectra obtained from the
dynamical evolution in a and b for times t 2 ½20; 100�=τ are strongly peaked around multiples of B as expected in the long-time limit. d Traces of the
polarization in the xy-plane starting from the maximally polarized starting state Sxi

� �� �
1 (blue curve) and from the state Sxi
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1=3 (magenta curve) and M

= 9. The solid lines are averages over 2000 trajectories (see Methods). The markers show values from a single realization and the shaded area indicates
the range of typical fluctuations of a realization. All calculations were carried out for B = 0.8τ, U= τ and γ ¼ 0:4
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and the magenta dashed lines represent analytical values in the long-time limit
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Crucially, we also have Sαj ; η
β
k

h i
¼ 0; 8α; β; j; k. This fact allows us to construct

Lindblad operators in terms of either spin or η -pairing operators and get dark
Hamiltonians in the long-time limit. In the main text we study the example Lj = γj
nj. Explicitly, the local transverse magnetizations are given by Sxj ¼ ðSþj þ S�j Þ=2
and Syj ¼ iðSþj � S�j Þ=2.

Quantum mutual information and disparity. Taking a complex network measure
applied to quantum systems from ref. 10 we study the complexity of the coherent
dynamics using quantum mutual information

Iij ¼ 1
2 Si þ Sj � Sij

� �
; ð12Þ

where Si ¼ trðρi log ρiÞ and Sij ¼ trðρij log ρijÞ are the one- and two-point reduced
von Neumann entropies of subsystems ρi ¼ trk≠iρ and ρi;j ¼ trk≠i;jρ. Using this we
also define the disparity Yi

Yi ¼
PM

j¼1
ðIijÞ2

PM

j¼1
Iij

� �2 ; ð13Þ

which may intuitively be understood by observing that it is small when the
quantum mutual information between site i and the other sites takes on a constant
value and large when one particular Iij takes on a dominant value. More specifi-
cally, we study the average disparity across the sites Y ¼ 1

M

PM
j¼1 Yj .

Simulation of the master equation. The numerical calculations shown in Figs. 2
and 3a were performed by a stochastic unraveling of the master equation into
individual realizations by the quantum trajectories method34. The trajectories were
calculated using the Tensor Network Theory Library35. In Figs. 3b and 4, we
numerically integrated the full matrix representation of the master equation
directly.

Data availability
The data that supports the plots within this paper and other findings of this study are
available from the authors upon reasonable request. The figures were produced with
Python and processed with Inkscape.

Code availability
The Tensor Network Theory Library35, which can be used to perform the simulations in
the article, is available at http://www.tensornetworktheory.org/. The programming scripts
used to obtain the data in this manuscript are available from the authors upon reasonable
request.
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