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Cell motility varies according to intrinsic features and microenvironmental stimuli, being

a signature of underlying biological phenomena. The heterogeneity in cell response, due

to multilevel cell diversity especially relevant in cancer, poses a challenge in identifying

the biological scenario from cell trajectories. We propose here a novel peer prediction

strategy among cell trajectories, deciphering cell state (tumor vs. nontumor), tumor stage,

and response to the anticancer drug etoposide, based on morphology and motility

features, solving the strong heterogeneity of individual cell properties. The proposed

approach first barcodes cell trajectories, then automatically selects the good ones for

optimal model construction (good teacher and test sample selection), and finally extracts

a collective response from the heterogeneous populations via cooperative learning

approaches, discriminating with high accuracy prostate noncancer vs. cancer cells of

high vs. low malignancy. Comparison with standard classification methods validates our

approach, which therefore represents a promising tool for addressing clinically relevant

issues in cancer diagnosis and therapy, e.g., detection of potentially metastatic cells and

anticancer drug screening.

Keywords: machine learning, cell motility, peer prediction, dynamic feature selection, cancer heterogeneity,

metastatic cancer cell detection, drug screening

INTRODUCTION

The ability of cells to coordinately move is indispensable in many biological processes, such as
tissue morphogenesis and repair, cancer progression, and invasion (i.e., metastasis spreading) (1).
Cell movements vary according to intrinsic features and microenvironmental conditions, possibly
being a signature of underlying biological phenomena. A straightforward simplification is that,
for instance, healthy cells move differently from tumor cells, especially when they undergo the
epigenetic changes leading to epithelial-to-mesenchymal transition, a phenomenon that provides
new motility ability to cancer cells allowing metastatic spreading (2). Motility is hardly described
by mere molecular markers, and therefore this important issue requires different approaches to be
properly addressed.
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Classifying cells according to their behavior in terms
of coordinated motility needs facing the problem of cell
heterogeneity; cells apparently identical bymorphological criteria
may behave differently because of fundamental differences
in genetic or epigenetic asset, the stage of cell cycle or
differentiation, in cell–cell or cell–environment interaction,
etc., parameters that, although assessable by single molecular
labeling, continuously change in time and combinations, being
thus impossible to describe in classical molecular terms.
Heterogeneity in cell response thus represents a big limitation
to identify the underlying biological scenario from cell motility;
nevertheless, such heterogeneity allows extracting behavioral
rules to finalize the automatic understanding, for example, of cell
state (e.g., tumor vs. nontumor), tumor stage (e.g., metastatic
vs. nonmetastatic), response to anticancer drugs, etc. To
this purpose, label-free (3) fluorescence time-lapse microscopy
(TLM) and special purpose video data analysis tools (4–7) are
providing promising novel, nonmolecular, dynamic approaches.

We present here a novel methodology to conduct massive
analysis of cell motility in different in vitro–controlled conditions
that combines TLM and label-free imaging, with cell tracking,
quantitative representation of trajectories, and novel machine
learning (ML) strategies within peer prediction framework.
Peer prediction strategies acquired much interest in many
contexts such as assignments in massive open online courses
and in collecting feedback about a new service (8). Such
algorithms use reports from multiple participants to score their
contributions in settings in which there is no way to verify the
quality of response (9). Cell systems, where a unique correct
response for cell behavior is not expected, represent therefore an
unconventional and challenging environment for peer prediction
paradigm extension.

Optimization of ML strategies and adaptation to cell motility
investigation need the identification of the correct learning
examples. Differently from other social contexts (10, 11), none
of the cells and related trajectories can be judged by experts,
both because it cannot be practically done and because the
heterogeneity of cell behavior and the massive number of cells
make it impossible to extract the “truth” at sight. Because
the acquired samples (cells) are not labeled by experts, cell
trajectories would directly inherit the same label assigned to
the entire experiment, i.e., cells moving in a control experiment
would be assumed to behave in a unique, similar way.
However, this assumption is generally invalid. The intrinsic data
heterogeneity forbids the direct assignment of a unique label to
all the cells, impeding to represent a cell population as a unique
behavioral entity. Hence, the selection of samples for model
construction becomes the core of the ML problem.

In the present work, we address the problem of learning a
classification model from cell trajectories and related descriptors
(peers) using a novel strategy. First, inspired by a previous
approach (12), all cell trajectories are “barcoded” during model
construction; however, only some of the barcoded trajectories
are assigned the role of trainers (hereafter denoted as “the good
teachers”) because only a certain number of cell trajectories
can be used to construct the good model. Second, not all cell
trajectories in the test set are used for testing because not all

of them represent the global target (e.g., a unique behavior for
the same cell line or the same reaction to a given stimulus).
The presence of a collective response phenomenon forces the
approach to automatically identify peers in the test set, with
high agreement in terms of the same descriptors selected in the
training step.

Regarding the descriptors selection, only some features
extracted from each cell trajectory can be assigned a
“discriminatory role” because not all features are likely to
be simultaneously relevant for all groups of cells. As an example,
in a group of cells moving toward a target cell, e.g., immune–
cancer cross-talk (13, 14), speed and directional persistence are
needed to model their collective motion; on the other hand,
in a group of cells interacting with a target cell, e.g., immune
cells killing a cancer cell (15, 16), mean interaction time and
track curvature have proved to be specifically tailored for
the phenomenon quantification. In particular, in this work,
we extended and applied a dynamic feature selection (DFS)
procedure (17, 18), selecting, in an unsupervised way, the
optimal feature set extracted from the training set for each new
test sample; this will be used to build a classifier for the test
label prediction.

Of importance, in addition to the model construction, in
our approach the novelty includes the decision-making step.
In in vitro experiments, cells naturally cluster before reaching
the confluence; consensus strategies can be exploited to acquire
a unique decision for the cluster. In this regard, we applied
two distinct cooperative learning criteria, inspired by collective
phenomena and peer influence studies (11); on the one hand, we
applied a majority voting procedure to all the labels assigned by
the classifier to the cell trajectories selected for that cluster; on the
other, we summed up all the scores assigned to each category of
the cells belonging to the same cluster and assigned the class with
the largest total score to the cluster. We refer to the two criteria
as majority voting criterion (maj-vot) and maximum trustiness
criterion (max-trust).

MATERIALS AND METHODS

Video Acquisition Details
The videos were acquired with a custom small-scale inverted
microscope (19). In order to have control on acquisition
methods and light exposure, a custom firmware was developed in
MATLAB 2017a R©. We acquired images at one frame per minute
with 6 h of total experimental time (12 h in the LNCaP case). The
images have a field of view of 1.2-mm width by 1.0-mm height
and a theoretical spatial resolution of 0.33 µm/px.

We recorded two videos per treatment condition in RWPE-
1 and PC-3 prostate cell experiments and four videos for the
control case in the LNCaP cells.

Cell Culture Details
Human prostate cancer cells, PC-3 and LNCaP cell lines
(ATCC, Rockville, MD), were grown in RPMI 1640
medium, supplemented with 10% fetal bovine serum, 1%
L-glutamine (2 mg/mL), and 1% penicillin/streptomycin (100
IU/mL) (Euroclone).
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Nonneoplastic, immortalized human prostatic epithelial
cells, RWPE-1 (ATCC, Rockville, MD) were grown in
keratinocyte serum-free medium (K-SFM), supplemented
with 1% penicillin/streptomycin (100 IU/mL), 50µg/mL bovine
pituitary extract, and 5 ng/mL epidermal growth factor (Life
Technologies, Barcelona, Spain).

Cells were grown at 37◦C in a humidified atmosphere of 5%
CO2 in air. In each experiment 40,000 cells/mLwere seeded in 35-
mm Petri dishes (Jetbiofil). Seventy-two hours postseeding, cells
were treated with the chemotherapeutic drug etoposide (Sigma-
Aldrich), a topoisomerase II inhibitor, at the final concentrations
of 0.5, 1, or 5µM and immediately analyzed with TLM.

Method for Automatic Cell Behavior
Classification
Step 1. Cell Localization and Tracking
The method is focused on the use of a previously validated cell
tracking tool, Cell-Hunter, which has been tested in prostate
cancer cell automatic tracking (12, 19), immune–cancer cell
crosstalk studies (16), and recently in red blood cell plasticity
analysis (20). The software automatically locates cells with a
radius within a given range provided by the user and tracks them
providing a predetermined maximum displacement allowed.

Step 2. Automatic Cell Clustering Identification
Cells naturally cluster when they are put in in vitro culture, a
primitive status before moving toward confluence. Cells move
according to the cluster they belong, promoting different roles
according to the cell stage, age, drug absorption, etc. The
automatic identification of the clusters each cell belongs to is
performed through image analysis algorithms involving image
binarization and morphological operators (12). The technique
is based on the localization of individual cells by performing
the segmentation of circular objects using the Circular Hough
Transform (CHT) (21) set according to the mean estimated
radius of cells involved. Each detected cell is represented as
a white circular object. By using an accumulation criterion,
consisting of the overlapping of the cell nuclei detected along
all the frames and normalizing by the maximum value, a gray-
scale map is obtained, in which higher intensity values locate cells
with limited motility frame by frame and thus higher probability
to stay in that position during movement. By applying pixel
intensity thresholding using the Otsu criterion (21) and then
morphological operators refining (21), a rough binary (black
and white) image representation of each cluster is obtained.
The boundary extraction of the detected regions represents
cluster contours.

Step 3. Feature Extraction
Each cell is characterized in terms of its kinematics and
shape dynamics. To do this, we identified some quantitative
descriptors to characterize the dynamics of cell movement. In
addition, shape descriptors are also considered to characterize
the morphodynamics during movement. Further mathematical
details of the two sets of descriptors can be found in the
following subparagraph.

Cell morphology feature extraction
The shape extraction process is described in
Supplementary Figure 1. We used the position of the cell
trajectory to correctly focus the window containing the cell
under study for every frame (Supplementary Figure 1A). We
obtained an initial contour applying a CHT (22, 23) with a
high sensitivity and a maximum radius smaller than the radius
expected from the first object found (Supplementary Figure 1B).
We took the perimeter of the smallest convex polygon
(convex hull) containing the union of all the found circles
(Supplementary Figure 1C) as starting contour for an
active contours algorithm (24) that gave us the final result
(Supplementary Figure 1D).

Looking at time-lapse videos, we observed that cells in
their motion change eccentricity, perimeter, and area. They
also change solidity when making pseudopodia. Furthermore,
nonneoplastic cells (RWPE-1) are smaller than the others, and
the milder neoplastic cells (LNCaP) have a higher eccentricity
on average. These considerations led us to consider as significant
features eccentricity, area, perimeter, and solidity (25).
(a) Eccentricity is defined as

eccentricity =
df

DM
(1)

where df is the distance between the foci, and DM is the major
axis length;
(b) Area is defined as

area =
∑

i

∑

j

f
(

i, j
)

(2)

where f
(

i, j
)

is 1 for
(

i, j
)

in the region of interest and
zero elsewhere;
(c) Perimeter

perimeter =
∑

i

∑

j

g
(

i, j
)

(3)

where g
(

i, j
)

is 1 over the pixels that have at least one neighbor
(in 8-connection) with zero value and zero elsewhere;
(d) Solidity (26) is defined as

solidity =
area

area convex hull
(4)

where the convex hull is the smallest convex polygon that contain
the region.

To exploit the dynamic of these descriptors for each
cell over time, we performed the following statistics: mean,
standard deviation, skewness, kurtosis, Shannon entropy, and
signal entropy.

Cell motility feature extraction
In order to have statistical significance of the extracted features,
we discarded all the trajectories, which lasted <50min (50 time
points). Cell position at each time point is affected by errors:
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discretization error, which is linked to the dimension of each pixel
(0.66 µm/px) and the optical resolution (R ∼= 0.8 µm). Another
source of error occurs when the algorithm does not find the
cell, assigning the previous position to the cell, thus resulting in
jumps in the trajectories. We reduced this error with a smoothing
spline approximation (27). On the new set of coordinates,
(xs (tk) , ys (tk)), we computed the following parameters for their
already proven informative content (19):
(i) Tangential speed norm

v (tk) =

√

√

√

√

(

xs
(

tk+1
)

− xs (tk)
(

tk+1 − tk
)

)2

+

(

ys
(

tk+1
)

− ys (tk)
(

tk+1 − tk
)

)2

(5)

(ii) Track curvature χ (tk )

χ (tk) =

∣

∣xs
′ys

′′ − ys
′xs

′′
∣

∣

[

(xs′)
2 +

(

ys′
)2
]
3
2

(6)

(iii) Turning angle ϑ (tk )

ϑ (tk) = tan−1
(

vx

vy

)

(7)

(iv) Angular velocity, computed as the ratio between the
magnitude of the velocity and the distance from the center of
the trajectory.

ω (tk) =
v (tk)

R (tk)
(8)

where R (tk) =
2
√

(xs (tk) − xc)
2 +

(

ys (tk) − yc
)2
,

xc = 1
N

∑N
k=1 xs (tk) and yc =

1
N

∑N
k=1 ys (tk ).

(v) Diffusion coefficient

D = 4−1 · ey0 (9)

where y0 is the y-axis intercept estimated form a linear fit in log
space of the mean square displacement (28).
(vi) Directional persistence, defined as the ratio between the
initial and the final point and the real length of the track.

p =

∥

∥xs
(

tf
)

− xs (ti)
∥

∥

L
(10)

where L =
∑

k

∥

∥xs (tk) − xs
(

tk−1
) ∥

∥.
From each time-varying feature, we extracted the following

high-level statistical descriptors: mean, standard deviation,
skewness, kurtosis, and signal Shannon entropy. In conclusion,
we collected 24 shape descriptors and 39 motility features.

Kinematics and shape features allow excluding some
trajectories from the whole analysis through unsupervised
outlier detection. Such step is required because of some false
tracks extracted by the cell tracking software. Misdetected
trajectories may be related to false cells localization (for example,
out-of-focus cells) or to tracks that exit the field of view and are
linked to new cells entering the scene.

It is straightforward to note that optimal descriptors depend
not only on the task, but also on the training and testing
samples. For this reason, we selected a wide set of descriptors
commonly used for evaluating cell behavior from motility and
shape analysis. The assumption underlying the selection needs to
be able to monitor different aspects of cell motility, such as speed,
curvature, turning angle, persistence, etc., as well as synthetic
descriptors of shape dynamics along time.

Step 4. Good Teacher Selection

Let us consider a set of training samples, F =

∣

∣

∣

∣

∣

∣

∣

f1
...
fT

∣

∣

∣

∣

∣

∣

∣

, with T as

the number of training samples, and f jk =
{

f
j

k1, f
j

k2, . . . , f
j

kM

}

the

subarray of descriptors for the kth cell in the jth cluster Cj, j =
1, . . .NC withNC being the number of clusters in the training set.

First, the algorithm automatically selects a subset of
descriptors, F̃ ⊂ F, with T rows and M

′
< M columns

(descriptors) such that a maximum value is obtained for a given
criterion 91 applied to the set F̃. The suboptimal criterion 91

used here is the maximum area under the curve (AUC) values
(29) obtained in all the associated binary problems in a multiclass
context (in an all-vs.-all classification strategy validated on the
training set). The AUC is a metric of separability for a given
descriptor with respect to the output label of different classes.
The higher the AUC value (bounded in [0,1]), the higher the
discrimination capability of the descriptor.

Then, a subset of training samples, namely, F′ ⊂ F̃ with
T

′
< T rows and M

′
columns, is extracted by taking the

training samples whose descriptors fall within a tuned range
(i.e., percentile [th1, th2]) independently calculated in each video.
Formally, [th1, th2] allows keeping all the observations whose
cumulative distribution function is between th1 and th2.

The threshold values set in each experiment are listed in
Table 1, rows 1 and 2.

Step 5. Test Sample Selection
By using the same descriptors selected in Step 4, a similar refining
procedure is applied to the test cell trajectories, by using an
independent range of elimination, namely [th3, th4], leading
to test samples indicated with H. Table 1, rows 3 and 4, lists
the values for percentiles th3 and th4. Good teacher and test
sample selection procedures represent the forerunner of the peer
prediction paradigm.

Step 6. Dynamic Feature Selection
After training and test data have been collected, namely, G and
H, descriptors are finely selected by using a DFS procedure.
DFS applies three distinct criteria. The first supervised criterion,
Fisher criterion in Figure 1, selects features that correlate with
the output in training set, according to a limit value th1dfs. The
second and third criteria are unsupervised and use two distinct
approaches. In the second, the Mahalanobis criterion (Figure 1),
features in the test set whose Mahalanobis distance from features
in the training set is under a given limit threshold th2dfs are
selected. In the third criterion (Figure 1), themaximumposterior
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TABLE 1 | List of algorithm parameters setting used in the experiments for

performance assessment.

Algorithm parameters setting

Symbol Description Shape

features

Motility

features

th1 Lower bound percentile good teacher selection 0.2 0.2

th2 Upper bound percentile good teacher selection 0.8 0.8

th3 Lower bound percentile test sample selection 0.1 0.1

th4 Upper bound percentile test sample selection 0.9 0.9

th1dfs DFS Fisher criterion threshold 1.0 0.9

th2dfs DFS minimum Mahalanobis criterion threshold 0.1 0.1

th3dfs DFS maximum probability criterion threshold 1.0 0.2

p Confidence value for stepwise feature selection 0.3 0.3

A brief description of each parameter is also included.

probability of feature values in test to belong to the distribution
of values in training set over all the classes is calculated; features
with probability values higher than a given threshold th3dfs are
kept. Further mathematical details can be found in Mosciano
et al. (18). Features that satisfied all the three criteria are then
selected. The extension we propose here with respect to the
standard DFS (18, 30) is the inclusion of a preliminary supervised
selection performed at the beginning of the model construction
based on stepwise feature selection procedure (31) applied on the
training samples. The fact that motion models may vary within
the same experiment (12) implies the necessity to extract many
kinematics descriptors. The modification to standard DFS allows
limiting the initial set of descriptors to a maximum effective
set. The p-value of the F test (32) used for the acceptation of a
feature in the selection process, indicated with p, is an algorithm
parameter. Values of th1dfs, th2dfs, th3dfs, and p are listed in
Table 1, rows 5–8.

Finally, we may indicate with G and H the refined sets for
model construction and automatic classification.

Step 7. Classification Model
Model construction is performed considering three distinct
classification models: linear discriminant analysis (LDA) (33),
support vector machine (SVM) (34), and K-nearest neighbor
(KNN) (35).

LDA finds a linear combination of features (input data) to
separate two or more classes of objects or events. In this work,
LDA naturally produces as an outcome not only the class label
but also an associated posterior probability to belong to the class.
According to this, given a test set H, the LDA model provides
for each class cH a score value yH . Such values are used in the
cooperative strategies as shown below.

SVM presents one of the most robust prediction methods,
based on the statistical learning framework. An SVM model is
a representation of the examples as points in new prediction
space, mapped so that the examples of the separate categories
are divided by a clear gap that is as wide as possible.
New examples are then mapped into that same space and

predicted to belong to a category based on the side of
the gap on which they fall. The SVM algorithm may be
turned into nonlinear classification model by using a nonlinear
kernel, commonly radial basis function. In this work, we used
SVM with linear kernel for harmonization with the LDA
competitive method.

KNN is a nonparametric method in which the input consists
of the K-closest training examples (K = 5 in this work) in
the feature space (input data), whereas the output is a class
membership. An object is assigned to the class most common
among that of its KNN training samples. A standard metric for
representing neighborhood is the Euclidean distance, which is
used in our work.

Step 8. Cooperative Learning
In the test set, all the cell trajectories associated to a cluster are
individually scored through yH and labeled through cH . Under
the need to provide a unique decision, i.e., a unique proof of
concept to the underlying biological hypothesis, the approach
allows aggregating the labels and the scores of the trajectories
belonging to the same cluster, using cooperative decision-making
strategies. In details, we considered two distinct independent
criteria that are used as alternatives. On the one hand, counting
of labels cH assigned to each class in the cluster is applied, and
the class with the majority of labels is finally assigned to the
cluster, the majority voting criterion. On the other hand, the sum
of scores yH assigned to each class computed over the cluster
is used to assign the class with the highest score, the maximum
trustiness criterion.

The two criteria are inspired by two different considerations.
First, maj-vot represents the logic of consensus based on the
agreement among artificial labelers (cell trajectories in test). This
is in line with the assumption of a unique collective underlying
phenomenon in a given experiment. On the other hand, the
max-trust criterion considers all the scores assigned to the
entire cluster giving strength not only to artificial labelers in
agreement (majority voting paradigm) but rather to all labelers
in the cluster, even those not in agreement. In other words,
the latter criterion applied a more democratic principle, giving
voice also to minority cell behavior with high scores. Cooperative
learning approaches represent the final step of the peer prediction
paradigm, in which final decision is taken among peers,
after the elimination of abnormal or deviated responders (test
samples rejected).

Experimental Setup
Three prostate cell lines were chosen to test the validity
of the proposed methodology: RWPE-1 (nonneoplastic cells),
LNCaP (neoplastic cells), and PC3 (metastatic neoplastic cells),
representing healthy, tumor, and highly aggressive tumor cell
phenotypes, respectively. RWPE-1 and PC3 were treated with
the chemotherapy agent etoposide at different concentrations
(0.5 and 5µM for RWPE-1, 1 and 5µM for PC3). RWPE-
1 and PC3 were also acquired in control conditions (i.e., no
drug). Therefore, for RWPE-1 and PC3, we collected six videos
(two ones for each condition), and for LNCaP, we collected four
replicated experiments in control condition (globally 16 videos).
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FIGURE 1 | A sketch of the whole approach. (1) Cell localization and tracking, (2) cluster identification, (3) features extraction, (4) good teachers selection, (5) test

samples selection, (6) dynamic feature selection, (7) classification model, and (8) cooperative learning.

In order to demonstrate the effectiveness and the general
validity of the approach, we ran a leave-one-experiment-out
validation procedure, holding out an experiment at a time
for testing and using the remaining for training the method.
Despite the low number of available experiments, results are very
promising, in relation to the challenging identified setup. On the
other hand, under the assumption of the intrinsic heterogeneity
of the cell behavior in a given group of nominally identical cells,
we performed cooperative learning by maj-vot and max-trust
criteria applied at cluster level.

An example of clustered cells for the three cell lines is
shown in Supplementary Figure 2. The color bar indicates the
time varying cross the trajectory. Four distinct cell shapes
and positions along the corresponding trajectories are also
shown. As immediately observed, cell appearance is very
heterogeneous, both among the same cell line and along
the trajectory of the same cell. This fact demonstrates the
difficulty to extract synthetic descriptors from trajectories and

construct a model on them for recognizing changes in the
cell behavior.

Quantification and Statistical Analysis
To evaluate the performances of all the classification models, a
cross validation procedure has been applied.

RESULTS

Setting of the Proposed Approach
In this work, we present a general method to analyze and
discriminate cell behavior in controlled in vitro–cultured
environments. The proposed approach can be divided into eight
key steps: (1) cell localization and tracking, (2) automatic cell
clustering identification, (3) cell morphology andmotility feature
extraction, (4) good teacher selection, (5) test samples selection,
(6) DFS, (7) classification model, and finally (8) cooperative
learning. A schematic representation of the whole approach is
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reported in Figure 1. Briefly, the method exploited a previously
validated cell tracking tool (Cell-Hunter) to automatically locate
and track cells. Each cell is then identified as a member of a
cell cluster by image analysis algorithms (12) and characterized
in terms of kinematics and shape descriptors. To this aim,
quantitative descriptors to characterize cell morphology and
motility over time were extracted. Good teacher and test
sample selection procedures were then applied to retain only
those cell trajectories considered as good trainers and good
samples, respectively, to construct the model. After training
and data collection, DFS further finely selected only those
features satisfying the Fisher criterion, Mahalanobis criterion,
and the maximum posterior probability, excluding all abnormal
behaviors. Model construction was then performed, and two
cooperative learning techniques, i.e., the maj-vot and the max-
trust, were implemented to ultimately extract a unique collective
cell response. Further details on the proposed method for
automatic cell behavior classification are reported in Materials
and Methods.

Three prostate cell lines were chosen to test the validity
of the proposed methodology: RWPE-1 (nonneoplastic cells),
LNCaP (neoplastic cells), and PC3 (metastatic neoplastic cells),
representing healthy, tumor, and highly aggressive tumor
cell phenotypes, respectively, treated with increasing doses of
the chemotherapy agent etoposide. Among chemotherapeutics,
etoposide was selected because of its well-known effect on both
cell shape (Figure 2) and motility (19); i.e., it affects the features
extracted for the classification method.

Setting of Algorithm Parameters
Quantitative results of the test have been assessed using different
indices; balanced accuracy and unbalanced accuracy (ACCb and
ACC, respectively) were computed over the confusion matrix
related to the classification results. We reported the results
computed over each single-cell trajectory tested (single-cell
result) and the results achieved using the cooperative learning
strategies. In particular, we show results referred to the maj-
vot and to the max-trust criteria. Furthermore, the results
were compared with those obtained using standard classification
strategies or with the elimination of specific algorithms blocks,
such as data test and good teacher (training and/or test)
selection. In this way, we demonstrated the validity not only of
the whole approach, but also the improvement introduced by
each sub-block.

Table 1 lists the parameters values for each test performed for
system performance assessment. The values have been estimated
by an optimization procedure run on a repeated subsampling of
the training set.

Classification Results: The Proposed
Method Reached Accuracy Values of 95%
We validated the approach on the automatic recognition of the
three different prostate cell lines tested (RWPE-1, LNCaP, and
PC3). We separated the results obtained using only shape or
motility features, in order to appreciate the relevance of the two
groups of descriptors for the task.

FIGURE 2 | Variation over time of PC3 cell morphology after treatment with

etoposide assessed by flow cytometry. Overlays of the forward scatter (FSC)

and the side scatter (SSC) of PC3 cells, before and after treatment with

etoposide (1 or 5µM) for 12 h, are reported; the two parameters relate to cell

size and granularity, respectively.

In Figure 3, we included the confusion matrices using the
SVM classifier related to (A, D) single-cell result, (B, E) maj-
vot result performed at cluster level, and (C, F) max-trust result
performed at cluster level, for shape (A–C) and motility (D–F)
features, respectively.

In detail, by using shape descriptors, we obtained accuracy
values, ACC (ACCb), equal to 94.4% (91.8%) for the single-cell
result, 95.1% (93.4%) for the maj-vot result, and 94.6% (92.6%)
for max-trust result. The highest accuracy values are obtained for
RWPE-1 and LNCaP cells. PC3 cells, instead, are misclassified
in more than 10% of cases. Nevertheless, the classification error
always occurs in the LNCaP class and never in that of the
RWPE-1, underlying the great validity of the novel approach that
when it fails, it misclassifies only between the two tumor classes
(metastatic vs. nonmetastatic tumor cells), in accordance with the
heterogeneity-characterizing tumors.

By using only motility features, instead, we obtained lower
(although still very promising) accuracy values, ACC (ACCb),
equal to 86.7% (83.5%) for the single-cell result, 91.6% (89.0%)
for the maj-vot result, and 91.4% (88.8%) for max-trust result.

The use of shape descriptors therefore improves the global
recognition accuracy with respect to motility features. This is a
further demonstration of the potential of video analysis in TLM
toward the possibility to combine spatiotemporal properties in
morphokinetic studies.
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FIGURE 3 | Classification results: RWPE1, LNCaP, and PC3 cell lines. Shape features in (A–C) and motility features (D–F). (A,D) Single-cell result, (B,E) maj-vot

cluster-level result, (C,F) max-trust cluster-level result. In (A,D), numbers indicate the cells tested, whereas in (B,C,E,F), numbers indicate the number of clusters.

Green accuracy values represent the true-positive results for each class, whereas the values in the pink boxes indicate the number of false positives (upper triangular

part of the confusion matrix) and false negatives (the lower triangular part of the matrix). The values in the gray box represent the total accuracy.

The Crucial Role of the Good Teacher and
Test Sample Selection to Maximize the
Classification Performance
In this section, we evaluated the results of the proposed approach
based on the three distinct classification models: LDA, SVM,
and KNN.

Classification results are shown in Table 2. As it can be noted,
the three classifiers produced similar results (above all LDA and
SVM); cell classification according to the phenotype is effectively
solved by the proposed synergic approach. In light of this,
LDA remains the simplest model achieving almost the highest
performance, to the advantage of an increased architecture and
easier interpretation of the results.

In order to demonstrate the crucial role of the good teacher
and test sample selection, we conducted two specific tests. First,
we totally removed the good teacher selection procedure (Step
4) from the strategies and reported the results of a model
constructed on the entire training dataset and the test conducted

on all the samples in each cluster. Second, we removed the test
sample selection (Step 5); namely, we only selected good trainers
but not good samples for testing the results. Numerical results are
shown in Table 2, columns D and E.

First, we observed that using shape descriptors, performance
is higher. This is due to the fact that although cell shape changes
during movement, as observed from Supplementary Figure 2,
and that etoposide administration deeply affects cell shape, this
variation is smaller than that existing among distinct cell lines.
Therefore, the impact of data selection is strong, but not crucial
(we obtained even accuracy values of 88 and 92% without
the application of the novel strategies). Data selection, instead,
acquires a primary role in the case of motility descriptors; indeed,
it increases the accuracy values even by more than 10%.

To classify cell types based on motility features, selection
of appropriate cell trajectories results pivotal; indeed, some
aspects of cell behavior can be relevant for identifying a certain
phenomenon, but less important for a different task. In light
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TABLE 2 | Comparative results in terms of balanced accuracy (ACCb) and accuracy (ACC) of classification.

(A) (B) (C) (D) (E)

Shape features Proposed approach SVM KNN No good teacher selection No data test selection

ACCb Single-cell 91.94% 92.19% 88.51% 77.19% 85.15%

ACC 94.31% 93.63% 90.10% 79.84% 87.43%

ACCb Maj-vote 93.36% 93.15% 92.53% 84.29% 89.95%

ACC 95.09% 95.09% 94.64% 87.53% 91.40%

ACCb Max-trust 93.52% 92.55% 92.57% 86.02% 90.26%

ACC 95.31% 94.64% 94.64% 88.36% 91.61%

Motility features Proposed approach SVM KNN No good teacher selection No data test selection

ACCb Single-cell 83.51% 85.84% 80.20% 70.15% 69.70%

ACC 86.69% 88.74% 86.06% 74.62% 74.30%

ACCb Maj-vote 89.04% 90.54% 86.21% 77.91% 76.56%

ACC 91.61% 92.52% 89.57% 83.43% 81.21%

ACCb Max-trust 88.74% 90.10% 88.47% 80.61% 80.20%

ACC 91.38% 92.06% 91.16% 85.25% 83.64%

Top part shows shape features, and bottom part shows motility features. The results of the proposed approach using LDA (A) are compared with the use of (B) support vector machine

(SVM) with linear kernel, (C) K-nearest neighbor (KNN) with K = 5, and the cases (D) with no data selection and (E) that in which the good data selection was not applied to the test set.

of this, Figure 4 shows some examples of clusters and related
trajectories for the three cell lines. Using different colors for
cell candidates, we could discriminate among cell trajectories
extracted through the Cell-Hunter software (cyan) and tracks
extracted using the test sample selection approach (green). As can
be observed, in most cases, cell trajectories selected for the scope
of classification as good test samples lie at the boundary of the
cluster (this is particularly evident for RWPE-1 and PC3 cells),
suggesting that the behavior of cells within the cluster has a less
discriminative role in this case study.

DISCUSSION

In this work, we present a novel methodology combining TLM
with cell tracking, providing a quantitative representation of
trajectories and novel ML strategies, within peer prediction
paradigm. This allows classifying cells in the categories of
nontumor, tumor with no metastatic power, and tumor with
high metastatic power, on the basis of cell behavior in terms of
variations over time of cell morphology and motility.

As any methodology based on ML, we had to consider
that such investigations need the identification of the correct
learning examples (8). This is a hard task because of the dramatic
heterogeneity of cell response, even among apparently similar
cells, because of intrinsic different genetic and/or epigenetic
assets and extrinsic environmental conditionings. Peer prediction
protocol was implemented here to solve the strong heterogeneity
of individual cell properties and activity, which renders difficult
to represent a cell population as a unique behavioral entity.

To this purpose, during model construction, good teacher
selection (12) was applied to cell trajectories; i.e., only those
cell trajectories considered as good trainers were selected to
construct the good model. The good teacher selection strategy

acts therefore as a sort of candidate selection and can be used
to visually investigate the role of each selected cell within
any cell cluster. Selection was performed again in the testing
phase: the test sample selection, indeed, allows excluding cell
trajectories not complying with the representative behavior of the
examined population, excluding the “noncanonical” behaviors
to maximize the classification performances. Importantly, this
methodology paves the way to future studies including those
cells that behave differently, which could, nonetheless, represent
second, third, etc., subpopulations in a heterogeneous mixture.
The analysis of the currently labeled but excluded peers,
in fact, would be crucial, for example, to investigate the
heterogeneous genetic and epigenetic nature of cells within real
biological systems, distinguishing between subpopulations. This
is especially important in tumors, known to be composed of
different cancer cell subpopulations. This is a paramount issue,
because cancer cell heterogeneity is a main reason why therapies
fail. Importantly, there are presently no straightforward ways to
point out diversity. Therefore, the development and validation of
the present tool, providing a mean to “barcoding” the different
cancer populations, would find immediate application in clinics,
with important diagnostic improvements.

To build the classifier for the test label prediction, we then
combined the good teacher–good test sample selection strategies
to a novel use of the DFS approach (17, 18); extracted features are
dynamically selected according to the testing set characteristics.
This is allowed by the novel paradigm of autonomy, in which
good test samples suggest the optimal descriptors to teachers for
optimal working. In line with a social peer prediction paradigm,
it is the responders, and not the masters of service, who decide
which aspects to judge in service quality assessment.

Through the combination of a novel good teacher–good
test sample selection strategies and dynamic features selection
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FIGURE 4 | Visual example of selected cell trajectories. RWPE1 (A,B), LNCaP (C,D), PC3 at drug concentration of 1µM (E,F). The cyan trajectories are those

extracted by the cell-tracking software for all the cells in the experiment. The green trajectories are those selected in the good sample selection.

approach for optimal model construction, we were thus able
to automatically select cell trajectories for both learning and
testing, by excluding cells with noncanonical behavior. The
implementation of two cooperative learning techniques based
on distinct peer agreement rules ultimately demonstrated the
existence of a collective response rather than a collection of
individual responses, finally allowing our classifier to get accuracy
values of even 95% for shape descriptors.

In this regard, the use of shape together with kinematic
descriptors represents a further novelty of the proposed
approach. Investigation of cell morphology lost importance over
time because of its impossibility of being quantifiable, therefore
being not objective and not objectified. In the present work,
instead, we demonstrated that the use of shape descriptors
improves the global recognition accuracy of the model with
respect to only motility features, thus combining spatiotemporal
properties in morphokinetics studies.

The promising results achieved strongly suggest that after
implementation, for example, extending the study on a larger
sample of tumor cell lines, the proposed model could represent a
novel tool in understanding cancer, thereby facilitating diagnosis
and therapy. Indeed, the proposed predictive system may be
employed in diagnostics as a fast method to identify cancer
cells possessing a potential metastatic behavior and classify
the type, stage, and aggressiveness of a tumor, in addition
to the traditional diagnostic biomarkers screened after biopsy.
To this purpose, several chemotherapeutics may be rapidly
tested on patients’ tumor cells, to gain information from the
therapy-promoted behavioral changes; this may allow classifying
patients’ cells according to their aggressiveness, i.e., identifying
cells metastatic potential. Noteworthy, our approach accurately
correlating cell physical aspects (such as morphology and
motility) to cell phenotypes may also be employed to associate
different cell motilities to corresponding diverse cancer driver

mutations, thus not only predicting cancer cell predisposition to
therapies, but also inferring information on oncogenes and/or
tumor suppressors role in cancer genesis and progression.

As far as therapy is concerned, instead, the predictive model
may be used as an innovative drug screening platform, to identify
effective anticancer biomodulating agents (36). Indeed, sets of
chemotherapeutics may be tested on aggressive tumor cells,
allowing selecting those able to remodulate cell behavior, e.g.,
shifting cancer cells in a less malignant or even in the nontumor
category (phenotypic reversion). The proposed model would
therefore allow identifying those drugs able to matter-of-factually
“normalize” cancer cell behavior, even allowing case-by-case
analyses for personalized therapy.
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