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Abstract

Background: Genome-wide association studies in Japanese populations recently identified common variants in the KCNQ1
gene to be associated with type 2 diabetes. We examined the association of these variants within KCNQ1 with type 2
diabetes in a Dutch population, investigated their effects on insulin secretion and metabolic traits and on the risk of
developing complications in type 2 diabetes patients.

Methodology: The KCNQ1 variants rs151290, rs2237892, and rs2237895 were genotyped in a total of 4620 type 2 diabetes
patients and 5285 healthy controls from the Netherlands. Data on macrovascular complications, nephropathy and
retinopathy were available in a subset of diabetic patients. Association between genotype and insulin secretion/action was
assessed in the additional sample of 335 individuals who underwent a hyperglycaemic clamp.

Principal Findings: We found that all the genotyped KCNQ1 variants were significantly associated with type 2 diabetes in
our Dutch population, and the association of rs151290 was the strongest (OR 1.20, 95% CI 1.07–1.35, p = 0.002). The risk C-
allele of rs151290 was nominally associated with reduced first-phase glucose-stimulated insulin secretion, while the non-risk
T-allele of rs2237892 was significantly correlated with increased second-phase glucose-stimulated insulin secretion
(p = 0.025 and 0.0016, respectively). In addition, the risk C-allele of rs2237892 was associated with higher LDL and total
cholesterol levels (p = 0.015 and 0.003, respectively). We found no evidence for an association of KCNQ1 with diabetic
complications.

Conclusions: Common variants in the KCNQ1 gene are associated with type 2 diabetes in a Dutch population, which can be
explained at least in part by an effect on insulin secretion. Furthermore, our data suggest that KCNQ1 is also associated with
lipid metabolism.
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Introduction

Recent genome-wide association (GWA) studies have provided

a first significant insight into the genetic architecture of type 2

diabetes, and to date, around 40 loci have been identified to be

robustly associated with the disease [1]. So far, the majority of

GWA scans have been performed in populations of European

descent [1], The first GWA studies in East Asians have recently

identified single nucleotide polymorphisms (SNPs) in a previously

unreported gene, KCNQ1, which were associated with type 2

diabetes susceptibility [2,3]. The original studies also confirmed

this finding in populations of European descent [2,3].

It is recognized, that in the pathophysiology of type 2 diabetes

both disturbances in insulin action (liver and muscle) and in insulin

secretion are early events [4] with additional factors such as age

itself [5]. Therefore, it is important to examine the association

between the KCNQ1 variants and metabolic traits to elucidate the

underlying diabetes-causing mechanisms.

In this study we aimed to investigate (1) the relationship of

specific KCNQ1 gene SNPs in the pathophysiology of type 2

diabetes by examining their association with metabolic traits and

insulin secretion during hyperglycemic clamps, and (2) whether

these SNPs relate to the risk of developing diabetes complications

and to the risk of mortality among type 2 diabetes patients of

Dutch origin.

Materials and Methods

Type 2 diabetes case-control sample description
We included 4,620 type 2 diabetes patients and 5,285 healthy

controls of Dutch Caucasian origin ascertained from various study

populations in the Netherlands: 1) the New Hoorn and Diabetes

Care System (DCS) West-Friesland studies: 1,969 patients with

type 2 diabetes and 1,951 controls with a normal glucose tolerance

[6,7,8]; 2) the Breda study: 569 type 2 diabetes patients and 920

healthy blood bank donors [9]; 3) the Zwolle Outpatient Diabetes

project Integrating Available Care (ZODIAC) study: 914 primary

care patients with type 2 diabetes [10]; 4) the European

Prospective Investigation Into Cancer and Nutrition-the Nether-

lands (EPIC-NL): 976 type 2 diabetes patients and 1,646 controls

[11,12]; 5) the Vlagtwedde/Vlaardingen cohort: 768 controls from

the general population [13]; 6) the Utrecht Diabetes Epidemiology

Study (UDES) study: 192 Dutch white individuals with type 2

diabetes. The ancestry in all studies except the EPIC-NL sample

was determined based on self-reported information. Detailed

characteristics are shown in Table S1.

The UDES population has not been described before: it was

collected from the population-based Pharmaco-Morbidity Record

Linkage System (PHARMO, www.pharmo.nl) linking drug-

dispensing histories from a representative sample of Dutch

community pharmacies to the national register of hospital

discharges (Landelijke Medische Registratie (LMR)) from 1985

onwards. A retrospective cohort study of new users of blood

glucose - lowering drugs (either oral hypoglycaemic agents or

insulin), who were 18 years or older was designed, and 1,609

patients were recruited through community pharmacies partici-

pating in PHARMO. Diagnosis of type 2 diabetes was confirmed

by self-reported information from the participants. We have

checked a small sample of 24 type 2 diabetes cases and 92% of

these could be confirmed according to the World Health

Organisation (WHO) criteria for diagnosing type 2 diabetes.

From these 1,609 patients, 255 took part in the study, returned the

questionnaire that had been sent to them, and donated blood for

various assessments and DNA retrieval. Laboratory measurements

included plasma total cholesterol, low-density lipoprotein (LDL)

cholesterol, high-density lipoprotein (HDL) cholesterol, triglycer-

ides, fasting blood glucose, non-fasting blood glucose, and HbA1c.

Only Dutch white individuals were included in the present study

(n = 192).

All patients from studies 1–4 were diagnosed according to the

WHO criteria (2-hour plasma glucose levels .11.1 mmol l21 or

fasting plasma glucose levels $7.0 mmol l21).

Data on diabetic complications and on mortality in type
2 diabetes patients

The presence of macrovascular complications (n = 284), ne-

phropathy (n = 442), neuropathy (n = 333), and diabetic retinop-

athy (n = 465) was available in a subset of type 2 diabetes patients

from DCS West-Friesland, the ZODIAC and the EPIC-NL

studies (Table S2). [8,10,12]. A diagnosis of diabetic retinopathy

in the DCS West-Friesland was based on the examination of

fundus photography graded by an ophthalmologist according to

the EURODIAB Study grading system as described elsewhere [8].

A diagnosis of diabetic retinopathy in the ZODIAC cohort was

based on an ophthalmologist’s examination that demonstrated

microaneurysms, macular edema, or (pre-) proliferative retinop-

athy. In the EPIC-NL study data on diabetic complications was

collected during the ascertainment and verification of prevalent

and incident diabetes cases in the Dutch contributor to the EPIC

cohort. Diabetes was ascertained via self-report, linkage to registers

of hospital discharge diagnoses and a urinary glucose strip test.

Ascertained diabetes cases were verified against general practi-

tioner (GP) or pharmacist information using mailed questionnaires

[12]. The GP questionnaire contained 12 questions on diabetes.

The questions on in what year and which type of diabetes had

been diagnosed, on how the diagnosis was established, on

treatment during the first year after diagnosis and current

treatment (diet, oral glucose lowering medication, insulin), and

whether the patient suffered from long-term complications were

asked. When the GP was unknown, pharmacist information was

used to verify the diagnosis of diabetes. The pharmacist

questionnaire contained eight questions concerning use of diabetes

medication [12].

Data from the ZODIAC study on mortality were collected after

a follow-up period of 10 years in a prospective Zwolle cohort of
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type 2 diabetes patients by retrieving life status and cause of death

from records maintained by the hospital and the GPs [10].

Hyperglycaemic clamp study
Participants from three independent studies from the Nether-

lands were used: 138 impaired glucose tolerance (IGT) subjects

from the Hoorn study, 74 subjects (63 normal glucose tolerance

(NGT)/11 IGT) from the Utrecht clamp cohort and 123 twins and

sibs (116 NGT/7 IGT) from the Netherlands Twin Register

(NTR) [14,15]. The latter cohort is a family based twin study,

which includes 66 monozygotic, and 28 dizygotic twins as well as

29 of their nontwin sibs recruited from 50 families [15]. The

clinical characteristics of the study groups are given in Table S3.

Details of these study groups and the clamp procedure have

previously been described elsewhere [14,15].

All participants (n = 335) underwent a hyperglycaemic clamp at

10 mmol/l glucose for at least 2 h. First-phase insulin secretion

was determined as the sum of the insulin levels during the first

10 min of the clamp. Second-phase insulin secretion was

determined as the mean of the insulin levels during the last

40 min of the second hour of the clamp (80–120 min). The insulin

sensitivity index (ISI) was calculated by relating the glucose

infusion rate (M) to the plasma insulin concentration (I) during the

last 40 min of the second hour of the clamp (M/I). The disposition

index (DI) was calculated by multiplication of first-phase insulin

secretion and ISI in order to quantify insulin secretion in relation

to the ambient insulin sensitivity [15].

All study protocols were approved by local institutional review

boards or hospital medical ethics committees (the New Hoorn and

DCS West-Friesland studies were approved by the medical ethics

committee of the VU University Medical Center Amsterdam; the

Breda, EPIC-NL, and UDES studies were approved by the

Medical Ethics Committee of the University Medical Center

Utrecht; the ZODIAC study was approved by the local Medical

Ethical Committee of the Isala Clinics; the Vlagtwedde/Vlaardin-

gen study was approved by the Medical Ethics Committee of the

University Medical Center Groningen, the ‘clamp studies’ were

approved by the medical ethics committees of the VU University

Medical Center Amsterdam and the University Medical Center

Utrecht). All participants gave their written informed consent.

Genotyping
Based on the original GWA scans and the replication studies in

Europeans, we selected gene variants with a minor allele frequency

(MAF) .5% - rs151290, rs2237892, and rs2237895 in the KCNQ1,

which were reported to be strongly associated with type 2 diabetes

in European population [2,3,16,17,18]. The two SNPs rs2237895

and rs2237892 showed the strongest association with T2D and

were replicated in European population in the original studies by

Unoki et al. and Yasuda et al., respectively [2,3]. The variant

rs151290 showed strong association in the third screening in the

original study by Yasuda et al. [3], and was also reported to be

associated with insulin secretion in a German population by

Mussig et al. [18].

These variants were genotyped in all the samples except the

EPIC-NL study samples using Taqman assays (Applied Biosys-

tems, Applied Biosystems, Nieuwerkerk a/d IJssel, The Nether-

lands) and were analyzed using a TaqMan 7900HT (Applied

Biosystems). The DNA samples were processed in 384-well plates.

Each plate contained 16 genotyping controls (4 duplicates of 4

different Centre d’Etude du Polymorphisme Humain (CEPH)

samples). There were no discordances in the genotypes of any of

the CEPH samples and the CEU data available from HapMap.

The genotype success rate was 95.6%, 97.6% and 98.2% for

rs151290, rs2237892, and rs2237895, respectively. For the

individuals from the EPIC-NL study, the genotypes data for the

two SNPs - rs2237892 and rs2237895, were available. The EPIC-

NL samples were genotyped using the Illumina IBC v.3 array (also

referred to as the CardioChip or the Human Cardiovascular

Disease [HumanCVD] BeadChip [Illumina] [19]). The genotyp-

ing information was not available for rs151290 because this SNP

was not included on the CardioChip. The rs2237892 and

rs2237895 SNPs were clustered into genotypes with the use of

the Illumina Beadstudio software and were subjected to quality

control filters at the sample (i.e. only samples with call rate .95%

and only not related and individuals of European ancestry were

included) and SNP levels (i.e. SNPs with a call rate ,95% or

HWE p,1026 were removed).

Statistical analysis
The genotype frequencies were tested for Hardy-Weinberg

equilibrium (HWE) by x2 analysis. In the genotyped samples from

the EPIC-NL study, pi-hat, a measure of identity by descent, was

calculated to exclude cryptic relatedness and duplicate samples (pi-

hat.0.2) via the method implemented in PLINK [20]; EIGEN-

STRAT method was used to compute principal component with

HapMap panels as reference standards to exclude the population

outliers [21].

To test for association of genotypes and type 2 diabetes and its

complications, genotype-based odds ratios (OR) with 95%

confidence intervals (CI) were calculated in the combined sample

of type 2 diabetes patients and controls using a logistic regression

model, with individuals homozygous for the non-risk allele as the

reference group. The risk and non-risk alleles were defined based

on the previous reports [2,3,16,17,18]. The association between

genotypes and metabolic traits (BMI, HbA1c, fasting glucose,

HDL- and LDL cholesterol, total cholesterol, triglyceride) was

determined using linear regression analysis. This analysis was

restricted to control individuals to avoid diabetes status or

treatment masking potential effects of the variants on these

phenotypic traits. All analyses were done under the additive model

and the presented p-values are adjusted for age, sex and study

center, with the continuous traits log-transformed prior to

statistical comparisons. The effect of the risk alleles on the

responses during hyperglycaemic clamping was examined by

calculating the b values for the risk allele with linear generalized

estimating equations, which takes into account the family

relatedness when computing the standard errors (i.e., in the twin

sample from the Netherlands Twin Register study). Only for

rs2237892 the non-risk allele was used for the latter calculations

since our sample did not have any homozygotes for the risk allele.

All outcome variables were log-transformed prior to analysis.

Analyses of hyperglycaemic clamp data were also adjusted for age,

sex, BMI, study center and glucose tolerance status. A Cox

proportional hazard model was used to assess association between

the SNPs and total mortality with correction for age and sex.

To account for the number of independent tests, a p-value of

,0.0033 (a= 0.05/15) was considered statistically significant,

given independent tests for 15 outcomes (type 2 diabetes status, its

complications (i.e. retinopathy, nephropathy, neuropathy), meta-

bolic traits (i.e. (BMI, HbA1c, fasting glucose, HDL, LDL, total

cholesterol, triglyceride) and the parameters related with insulin

secretion). However, as this level is probably too stringent as a

Bonferroni correction assumes independency of the tests, which is

clearly not the case in this study, p-values between 0.05 and 0.0033

were considered nominally significant. All statistical analyses were

performed using the SPSS program, version 14.0 for Windows

(SPSS, Chicago, IL, USA).

KCNQ1 and Altered Insulin Secretion
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Power calculation was performed using Quanto software

(http://hydra.usc.edu/gxe/). Assuming a disease prevalence in

the Dutch population of 0.04 [6], our study had more than 95%

power to detect the ORs of 1.30, 1.29 and 1.24 reported by Unoki

et al. and Yasuda et al. for rs151290, rs2237892, and rs2237895,

respectively, with a significance level of 0.05 for the allele

frequencies of the risk allele of 0.79, 0.93, and 0.40, and assuming

a log-additive model [2,3].

Results

Effect of the KCNQ1 polymorphisms on type 2 diabetes
risk in Dutch population

We genotyped the KCNQ1 variants rs151290, rs2237892, and

rs2237895 in a total of 4,620 type 2 diabetes patients and 5,285

healthy controls. Baseline characteristics of the study population

are shown in Table 1. The controls were in Hardy-Weinberg

equilibrium (HWE) (x2 = 0.33, p = 0.57 for rs151290, x2 = 3.21,

p = 0.07 for rs2237892, and x2 = 0.09, p = 0.77 for rs2237895).

Genotype and allele frequencies in both controls and type 2

diabetes cases are summarised in Table 2. In the control group

the observed MAF were 24%, 5%, and 41%, for rs151290,

rs2237892, and rs2237895, respectively, which are similar to the

MAF in the European population reported previously [2,3,18]. In

our sample, all three variants were associated with type 2 diabetes.

The risk alleles were identical to those in previous studies: the

major C-allele for rs151290 and for rs2237892, the minor C-allele

for rs2237895 [2,3,16,17,18]. The variant rs151290 showed the

strongest association with the disease (OR 1.20, 95% CI 1.07–

1.35, p = 0.002, adjusted for age, sex and study center).

Effect of KCNQ1 polymorphisms on insulin secretion as
assessed with hyperglycaemic glucose clamps

To investigate potential mechanisms by which the variants in

KCNQ1 may contribute to type 2 diabetes susceptibility, we used

regression analysis to examine the effects of KCNQ1 genotypes on

first- and second-phase of glucose stimulated insulin secretion,

insulin sensitivity index (ISI) and disposition index (DI) in a sample

of non-diabetic individuals in whom hyperglycaemic clamp was

performed (Table 3). We found nominal association between the

C-allele of rs151290 and decreased insulin secretion during first-

phase and increased ISI (p = 0.025 and p = 0.006, adjusted for age,

sex, study center, BMI and glucose tolerance status, respectively)

as well as nominal relationship between the C-allele of rs2237895

and higher ISI values (p = 0.034, adjusted for age, sex, study

center, BMI and glucose tolerance status). In addition, we

observed that carriers of the non-risk allele for rs2237892 had

significantly higher second phase insulin secretion and nominally

significant lower ISI compared to the homozygotes for the C-risk

allele (p = 0.0016 and p = 0.036, adjusted for age, sex, study center,

BMI and glucose tolerance status, respectively). None of the

KCNQ1 variants had an effect on the DI in our study.

Relationship of KCNQ1 polymorphisms with metabolic
parameters

Next, we investigated whether the KCNQ1 polymorphisms

influenced relevant clinical parameters, such as BMI, HbA1c,

fasting glucose, HDL, LDL, total cholesterol and triglycerides, in

Table 1. Clinical characteristics of the study participants.

Trait

T2D patients
(n = 4620) Controls (n = 5285)

n Mean ± SD n Mean ± SD

Male (%) 4616 1999 (43.3) 5272 2209 (41.9

Age-at-study (years) 4617 64.3610.6 5266 51.1610.1

Age at diagnosis (years) 3497 58.7611.6 - -

BMI (kg/m2) 4550 29.464.9 4349 26.063.8

HbA1c (%) 4370 7.161.3 3565 5.460.4

Fasting glucose 2496 8.362.3 1951 5.360.4

HDL-cholesterol (mmol/l) 4187 1.260.3 3553 1.460.4

LDL-cholesterol (mmol/l) 2746 2.860.9 3545 3.260.9

Total cholesterol (mmol/l) 4226 5.161.2 3571 5.461.0

Triglyceride (mmol/l) 4232 2.061.3 3564 1.460.9

The data are presented as mean 6 SD. BMI: Body Mass Index. HbA1c:
haemoglobin A1c. HDL: high density lipoprotein. LDL: low density lipoprotein.
T2D: type 2 diabetes.
doi:10.1371/journal.pone.0032148.t001

Table 2. Association of the KCNQ1 variants with type 2 diabetes in the Dutch population.

SNP Allele data Genotype distribution (%) p-valuea,b

Group
Major/minor
allele RAF OR (95% CI) p-valuea 11 12 22

rs151290

T2D C/A 0.78 1.20 (1.07–1.35) 0.002 2081 (60.2) 1220 (35.3) 153 (4.4) 0.003

Control 0.76 2045 (58.3) 1258 (35.9) 204 (5.8)

rs2237892

T2D C/T 0.96 1.16 (0.97–1.40) 0.11 4149 (92.0) 348 (7.7) 14 (0.3) 0.002

Control 0.95 4638 (90.0) 507 (9.8) 7 (0.1)

rs2237895

T2D A/C 0.43 1.09 (1.00–1.17) 0.035 1522 (33.5) 2158 (47.4) 869 (19.1) 0.006

Control 0.41 1803 (34.8) 2516 (48.6) 863 (16.7)

aAdjusted for age, sex and study center.
bp-value for the additive model.
For each variant the C-allele is the risk allele for type 2 diabetes as identified by previous studies. RAF: risk allele frequency. T2D: type 2 diabetes.
doi:10.1371/journal.pone.0032148.t002
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non-diabetic individuals (Table 4). Under an additive genetic

model, the diabetes risk allele of rs2237892 was nominally

associated with increased LDL level and significantly associated

with a higher level of total cholesterol (p = 0.015 and p = 0.003,

adjusted for age, sex and study center, respectively). In addition,

carriers of the C-risk allele of rs2237895 had nominally

significantly higher HbA1c levels (p = 0.036, adjusted for age, sex

and study center).

Relationship of KCNQ1 polymorphisms with diabetes
complications and mortality

We further investigated whether there was an association

between the KCNQ1 gene SNPs and various type 2 diabetes

complications and mortality. We did not observe any association

of KCNQ1 SNPs with diabetic complications, although there was a

trend of the homozygous carriers of the risk C-allele of rs2237895

being more frequent among the diabetic patients with retinopathy

compared to the patients without it (22.5 vs. 19.2%, p = 0.06,

adjusted for age, sex, study and duration of type 2 diabetes).

Data on mortality were collected after a follow-up period of 10

years in the ZODIAC study; the characteristics of the study

population are shown in Table S4. After a median follow-up

period of 9.5 years, a total of 358 (39%) patients had died, of these

146 (41%) had died from cardiovascular disease and 82 (23%)

deaths were cancer-related. The cause of death was known for 336

(97.6%) patients. All the baseline characteristics - age at baseline,

gender, duration of diabetes, smoking status, BMI, systolic blood

pressure, HbA1c, serum creatinine, total cholesterol to HDL-

cholesterol ratio, and albuminuria creatinine ratio – were not

significantly different in the groups according to the KCNQ1 SNPs.

In our study, there was no evidence of association for the KCNQ1

SNPs with mortality. The age and sex adjusted HR for patients

carrying one or both risk alleles compared to non-carriers were

HR 0.97 (95% CI 0.56–1.66, p -value 0.91) and HR 0.94 (95% CI

0.75–1.18, p –value 0.56); HR 0.98 (95% CI 0.14–7.03, p -value

0.97) and HR 1.10 (95% CI 0.74–1.64, p -value 0.64); HR 1.10

(95% CI 0.81–1.49, p -value 0.32) and HR 0.92 (95% CI 0.68–

1.23, p -value 0.56) for rs151290, rs2237892, rs2237895,

respectively.

Discussion

Two independent GWA studies recently performed in Japanese

populations identified KCNQ1 as a type 2 diabetes susceptibility

gene [2,3]. We here confirm the association of the KCNQ1

common variants with an increased risk of type 2 diabetes in a

Dutch population. The individuals carrying the same at-risk alleles

C, as reported in the Japanese studies [2,3], had a modestly

increased risk of developing type 2 diabetes, with a population

attributable risk from 0.6% to 4.3%. These results are also

consistent with previous studies performed in Caucasian popula-

tions [2,3,16,17,22,23]. In the present study, we demonstrate in a

large cohort of subjects having undergone hyperglycaemic glucose

clamps that the risk allele of the KCNQ1 SNP is significantly

associated with reduced glucose-stimulated second-phase insulin

secretion. In addition, we report a significant association of KCNQ1

variants with impaired lipid parameters. We could not find any

significant relationship of the risk alleles of the KCNQ1 gene with

type 2 diabetes complications or mortality.

The variants rs151290, rs2237892, and rs2237895 are located

in intron 15 of the KCNQ1 gene on chromosome 11p15, encoding

the pore-forming alpha subunit of the I(Ks) channel, a voltage-

gated potassium channel that is expressed in a number of tissues,

notably, the heart, pancreas, kidneys and intestine [2,3]. The

encoded protein plays a role in the electrical depolarisation of the

cell membrane in the heart and presumably in pancreas beta cells.

It is likely to be involved in insulin secretion, although there are

other possibilities, such as secretory processes in incretin (GLP-1

and/or GIP) -producing cells [2,3]. Our results provide compel-

ling evidence that the KCNQ1 rs2237892 variant is associated with

impaired second-phase insulin secretion. Moreover, these data

confirm the observations from the previous studies in which the

relationship between the type 2 diabetes risk alleles in KCNQ1 and

reduced levels of various measures of insulin secretion have been

reported [17,18,22,24], and hence, supports the hypothesis on a

Table 3. Effect of KCNQ1 variants rs151290, rs2237892 and rs2237895 on beta-cell function as assessed with hyperglycaemic
clamp.

SNP Genotype (N)
1st phase insulin
response (pmol/l)

2nd phase insulin
response (pmol/l)

ISI (mmol N min21 N kg21 N
pmol/l21) DI (mmol N min21 N kg21)

rs151290

AA (19)

CA (90) b (sem)a 20.046 (0.020) 20.029 (0.021) +0.059 (0.021) +0.011 (0.022)

CC (226) p-valuea 0.025 0.16 0.0061 0.63

rs2237892

TT (0)

CT (28) b (sem)a +0.052 (0.036) +0.126 (0.040) 20.091 (0.044) 20.028 (0.039)

CC (301) p-valuea 0.15 0.0016 0.036 0.47

rs2237895

AA (86)

AC (180) b (sem)a 20.024 (0.021) 20.029 (0.022) +0.047 (0.022) +0.026 (0.019)

CC (63) p-valuea 0.26 0.19 0.034 0.18

aAdjusted for glucose tolerance status (NGT/IGT), study center, age, gender and BMI.
All variables were log-transformed before analysis. p-values were computed for different additive models using linear generalized estimating equations (GEE) which
takes into account the family relatedness when computing the standard errors. Alleles in bold are the risk alleles for type 2 diabetes identified by previous studies.
DI, disposition index; IGT, impaired glucose tolerance; ISI, insulin sensitivity index; ND, not determined; NGT, normal glucose tolerance.
doi:10.1371/journal.pone.0032148.t003
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potential link between KCNQ1 and impaired beta-cell function

[2,3,17,18,22,23,24,25,26].

The importance of the investigation of the various aspects of

insulin secretion was highlighted previously [27]. It is thought that

first phase insulin secretion is reflecting the rapid recruitment and

release of insulin granules from the readily releasable pool, while

second phase is due to the release of granules located further away

from release site (reserve pool) and due to (new) insulin synthesis

[28]. In the present study, we used the hyperglycaemic clamp

technique, generally considered to be the gold standard for

quantification of first- and second-phase insulin secretion to

measure beta-cell function [29]. We show, for the first time, an

association between a variant in the KCNQ1 gene (rs2237892) and

second-phase insulin secretion. This observation indicates that

KCNQ1 might play a role in second-phase insulin secretion

suggesting a novel potential link between KCNQ1 and impaired

beta-cell function via the decreased release of newly formed insulin

following glucose stimulation. It is worth noting, that it appears

from previous studies from others and ourselves that the majority

of the known beta-cell loci influence mainly the first-phase insulin

secretion [17,18,30,31,32]. Although we did not detect a

significant effect of KCNQ1 on first-phase insulin secretion, we

observed decreased insulin secretion among the C-allele carriers of

rs151290, which is in agreement with the recent study by Mussing

et al. [18]. Also, Holmkvist et al. reported the association between

the KCNQ1 gene and reduced estimates of first-phase insulin

release [17]. Both above-mentioned studies used data obtained

during oral glucose tolerance test [17,18]. Our data derived from

the hyperglycaemic clamp extends these finding and suggests that

KCNQ1 may have an effect regarding second phase secretion and

therefore may have additional effects apart from early, rapid

recruitment and exocytosis of insulin granules after glucose

stimulation. In addition, there was a surprising trend of the

association between all three risk alleles and higher ISI values.

Interestingly, Boini et al. have recently shown that insulin

sensitivity is strikingly increased in the KCNQ1 knockout mouse,

which agrees with our results [33]. Thus, although the KCNQ1

gene is primarily a candidate gene for impaired insulin secretion,

its effect on tissue-specific insulin-sensitivity independent of

changes in insulin secretion is plausible.

In addition, we found a significant association between the type

2 diabetes risk allele of rs2237892 and higher level of total

cholesterol and a trend towards increased level of LDL among the

carriers of the same allele. Also, we observed a lower level of HDL

Table 4. Effect of KCNQ1 variants rs151290, rs2237892 and rs2237895 on quantitative metabolic traits in non-diabetic individuals.

rs151290 p-valuea,b

Genotype (N) AA (204) AC (1252) CC (2035)

BMI (kg/m2) 26.563.6 26.063.8 26.363.9 0.20

HbA1c (%) 5.3060.23 5.3360.26 5.3360.27 0.52

Fasting glucose (mmol/l) 5.3160.36 5.3160.38 5.3060.38 0.82

HDL cholesterol (mmol/l) 1.6260.40 1.5660.44 1.5560.41 0.07

LDL cholesterol (mmol/l) 3.2460.83 3.3160.87 3.3160.87 0.65

Total cholesterol (mmol/l) 5.4460.93 5.4660.95 5.4460.98 0.76

Triglyceride (mmol/l) 1.2960.60 1.3060.69 1.3160.73 0.85

rs2237892

Genotype (N) TT (7) CT (507) CC (4623)

BMI (kg/m2) 23.563.2 26.163.9 26.063.9 0.46

HbA1c (%) 5.1860.14 5.4060.51 5.3960.39 0.71

Fasting glucose (mmol/l) 5.0760.06 5.2760.40 5.3160.37 0.29

HDL cholesterol (mmol/l) 1.3360.29 1.4160.40 1.4360.41 0.24

LDL cholesterol (mmol/l) 3.0060.84 3.0860.80 3.2360.89 0.015

Total cholesterol (mmol/l) 5.1160.92 5.2260.96 5.4061.02 0.003

Triglyceride (mmol/l) 1.5760.70 1.3960.81 1.4260.86 0.79

rs2237895

Genotype (N) AA (1797) AC (2509) CC (857)

BMI (kg/m2) 26.063.8 25.963.9 26.163.8 0.99

HbA1c (%) 5.3760.40 5.4060.40 5.4160.41 0.036

Fasting glucose (mmol/l) 5.3060.37 5.3160.38 5.2960.36 0.90

HDL cholesterol (mmol/l) 1.4460.41 1.4260.42 1.4260.40 0.82

LDL cholesterol (mmol/l) 3.2060.87 3.2160.87 3.2560.91 0.21

Total cholesterol (mmol/l) 5.3661.00 5.3861.00 5.4561.07 0.14

Triglyceride (mmol/l) 1.3960.86 1.4160.81 1.4860.96 0.17

aAdjusted for age, sex and study center.
bp-value for the additive model.
The data are presented as mean6SD. All variables were log-transformed before analysis. Alleles in bold are the risk alleles for type 2 diabetes identified by previous
studies. BMI: Body Mass Index. HbA1c: haemoglobin A1c (glucose bound to haemoglobin). HDL: high density lipoprotein. LDL: low density lipoprotein.
doi:10.1371/journal.pone.0032148.t004
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in the carriers of the type 2 diabetes risk allele of rs151290 variant

than in non-carriers. Interestingly, Chen et al. have recently

reported the relationship of KCNQ1 variants with higher level of

triglycerides (i.e. also rs2237892) and lower levels of HDL [34].

Although the mechanisms behind the observed associations are

not clear, taken together, these data suggest that KCNQ1 may have

an effect on lipid metabolism. Further studies are needed to

elucidate the underlying molecular mechanisms.

In the present study, we found no significant evidence for an

association of KCNQ1 with diabetic complications or mortality in

type 2 diabetes patients. Recently, Ohshige et al. reported that

KCNQ1 might be a potential susceptibility gene for diabetic

nephropathy in a Japanese population [35]. In our sample, we

could not confirm that finding. These results could be due to the

relatively small sample of the patients with nephropathy in our

study (there were 442 patients in our study versus 1545 diabetic

patients with overt nephropathy in the study by Ohshige et al.

[35]). Next, the association with nephropathy was not easy to

detect due to differences in risk-allele frequency (33% in Japanese

versus 5% in European) of the rs2237897 variant associated with

nephropathy (r2 = 0.6 with rs2237892) [35]. Our study had 20%

power at p = 0.05 to detect the OR of 1.22 reported by Ohshige et

al. [35] assuming prevalence of nephropathy of 0.40 among type 2

diabetes patients [36] and an additive model. In addition, we

cannot exclude a proportion of patients with diabetic nephropathy

in the reference sample. Therefore, additional replication attempts

in larger studies with detailed information on the complications

status are warranted.

It needs to be noted that in the current study we used control

subjects younger than the patients. Thus, we cannot exclude that

some of these individuals may develop diabetes in later life.

However, this would result in slight reduction in statistical power

and also in the ORs and would lead to the underestimation of the

‘‘true’’ effects of the KCNQ1 variants on susceptibility to T2D in our

study. Next, the individuals in the hyperglycaemic clamp study were

younger than the type 2 diabetes patients used in the association

analysis. Also, the mean age of the participants in the groups of the

clamp study was different. To test the effect of age on the

relationship between the KCNQ1 variants and insulin secretion, we

performed an additional analysis in the different clamp study

groups. The results of these analyses were similar to the observations

in the whole clamp sample (Table S5). Another limitation of the

current study that needs to be taken into account is the lack of

correction for population stratification. Since the ethnicity was

determined based on self-reported information (except for the

EPIC-NL study), we cannot rule out presence of the participants of

non-Dutch Caucasian origin in our study. However, as the same

alleles are the risk alleles for type 2 diabetes in populations of

different ancestries (the minor allele for rs2237895, the major allele

for both rs151290 and rs2237892) [2,3], and the non-Caucasian

participants are very likely to be present in both control and patients

groups, that will have had only a minor effect on the results in our

study. In addition, the MAFs in our study were similar to the MAFs

reported in European populations [2,3,16,17,18].

Finally, it is still unclear whether the variants rs151290,

rs2237892, and rs2237895 located in intron 15 of the KCNQ1

gene directly affect the gene expression or are in strong linkage

disequilibrium with a causal polymorphism in KCNQ1 or a

neighbouring gene. Also, it was recently shown that one of the type

2 diabetes association signals maps to a part of the KCNQ1

sequence which also encodes a different transcript (KCNQ1OT1)

which is known to be an key regulator of other genes in the region,

including KCNQ1 itself, but also CDKN1C, a gene already heavily

implicated in islet development [23].

In conclusion, we here show that common variation in the

KCNQ1 gene affect second-phase insulin secretion and confirm the

association of the gene with type 2 diabetes in a Dutch population.

We also found that the variants in the KCNQ1 gene may have an

effect on lipid metabolism. These results provide new insight into

the complex pathogenesis of diabetes.
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