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Abstract Asthma is a heterogeneous and chronic inflamma-
tory family of disorders of the airways with increasing
prevalence that results in recurrent and reversible bronchial
obstruction and expiratory airflow limitation. These diseases
arise from the interaction between environmental and genetic
factors, which collaborate to cause increased susceptibility
and severity. Many asthma susceptibility genes are linked to
the immune system or encode enzymes like metalloproteases
(e.g., ADAM-33) or serine proteases. The S9 family of serine
proteases (prolyl oligopeptidases) is capable to process
peptide bonds adjacent to proline, a kind of cleavage-
resistant peptide bonds present in many growth factors,
chemokines or cytokines that are important for asthma.
Curiously, two serine proteases within the S9 family encoded
by genes located on chromosome 2 appear to have a role in
asthma: CD26/dipeptidyl peptidase 4 (DPP4) and DPP10. The
aim of this review is to summarize the current knowledge
about CD26 and to provide a structured overview of the
numerous functions and implications that this versatile en-
zyme could have in this disease, especially after the detection
of some secondary effects (e.g., viral nasopharyngitis) in type
II diabetes mellitus patients (a subset with a certain risk of

developing obesity-related asthma) upon CD26 inhibitory
therapy.
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Definition andGenetic Factors Implicated inAsthma

Asthma is a heterogeneous and chronic disease characterized
by reversible expiratory airflow limitation, bronchial
hyperresponsiveness, mucous cell hyperplasia, higher vascu-
lature permeability, airway remodelling with fibrosis and in-
flammatory cell infiltration [1, 2]. Asthma is a major concern,
with 334 million people worldwide affected, increasing
prevalence [3] and a high economic charge [4]. It is
more frequent and severe in boys until the age of 13
years, but both prevalence and severity of asthma rise in
women after puberty, becoming even more prevalent in
females [3, 5, 6]. Five to 10 % of cases display a
highly severe and treatment-refractory disease, suffering
from recurrent exacerbations that threaten a patient’s life
and increase the healthcare costs. This is a complex
pathology, with both genetic and environmental factors
causing increased susceptibility and severity. Great ef-
forts have been made to discover the genetic bases
(mostly genome-wide association studies in asthma
(GWAS)), revealing the influence of several genes
encoding proteins with an important role in the immune
system (HLA-DQ, HLA-G, IL1RL1, IL18R, TSLP,
PDE, IL-33, LRRC32, SMAD3, IL2RB, IL6R, IL-13)
and also proteases (ADAM33 and dipeptidyl peptidase
10 (DPP10)) [7–9].
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Asthma and the Prolyl Oligopeptidase Family
of Proteases: Dipeptidyl Peptidase 10
and CD26/DPP4

As commented above, proteases are involved in many phys-
iological and pathological processes, including chronic respi-
ratory conditions like asthma. Amongst all proteases, there are
only a few proline-specific enzymes, as peptide bonds adja-
cent to proline (present in some growth factors, chemokines
or cytokines) are resistant to cleavage [10]. These enzymes
include serine proteases, with a serine residue in their catalytic
region (sequence consensus Gly-Xaa-Ser-Xaa-Gly) [11] and
covering different families (S1–S81) and subfamilies. Thus,
the S9 family (prolyl oligopeptidases) includes from S9A to
S9D, all with the catalytic triad Ser, Asp, His but with slightly
different sequence consensus around the catalytic Ser. For
example, most of the members of the S9B subfamily (EC
3.4.14.5; CD26/DPP4, DPP8, DPP9 and fibroblast activation
protein/FAP/Seprase) (http://merops.sanger.ac.uk/) present the
sequence Gly-Trp-Ser-Tyr-Gly-Gly, while the other additional
two members, DPP6 (DPPX; Gly-Lys-Asp-Tyr-Gly-Gly) and
DPP10 (Gly-Lys-Gly-Tyr-Gly-Gly), do not possess the
catalytic serine and, therefore, DPP4 activity [12]. Curiously,
four of these peptidases (CD26, FAP, DPP6, and DPP10) are
type II membrane proteins released to the extracellular
medium, three are encoded by genes located on
chromosome 2 (CD26, FAP and DPP10) and only two
(CD26, DPP10) appear to have a role in asthma [13–16].
For example, DPP10 has been linked to asthma
susceptibility in different populations [7, 13, 15], and this
protein (as well as DPP8 and DPP9) has been primarily
located in the trachea and the bronchi of the airways in rats
[17]. For its part, the protease CD26 is the major member of
the S9B family and also a receptor for the Middle East
respiratory syndrome coronavirus (MERS-CoV) [18, 19], a
new coronavirus that causes severe lower respiratory tract
infections that could lead to asthma exacerbations. CD26
has been found elevated in both plasma samples (soluble
CD26 or sCD26) and the surface of peripheral CD4+ T cells
from adult patients with allergic asthma [20, 21], and different
animal models [14, 16, 22] suggest a role of this peptidase in
the pathogenesis of this disease.

Structure and Distribution of CD26

Structure of the CD26 Molecule

CD26 is a single-pass type II integral membrane glycoprotein
of 105–110 kDa [23]. Only the homodimeric form of CD26 is
biologically active [24–27]. Homodimerization takes place in
both the Golgi apparatus [28] and the endoplasmic reticulum
[29]. Each monomer displays a highly conserved and short

(six amino acids) cytoplasmic tail at the N-terminus, a 22-
amino acid hydrophobic transmembrane region and a long
extracellular domain of 738 amino acids. The heavily N-gly-
cosylated extracellular domain can be subdivided, in turn, in
several regions. The closest to the amino terminal part starts
with a flexible stalk region and contains 8 out of 10 possible
N-glycosylation sites, while the intermediate region is highly
enriched in cysteines (9 out of 12). Finally, the active centre is
located towards the carboxyl-terminal end and is another high-
ly conserved region [30–34].

Tissue and Cell Distributions of CD26

Human CD26 is broadly distributed in a variety of cell types,
tissues and organs [35–39]. Lungs display the second highest
CD26 activity amongst organs, especially in lung parenchyma
[17, 22]. Contrary to DPP8/9 and DPP10, bronchi almost do
not express CD26 [17], but it can be found in the apical mem-
brane of epithelial cells, capillary endothelial cells, fibroblasts
and serosal submucosal glands of human bronchi [40–42]. In
most of these places, CD26 levels are constitutive and highly
correlated with the messenger RNA (mRNA) content
(http://www.proteinatlas.org/ENSG00000197635-DPP4
/tissue) [43]. However, IL-13 causes a strong proinflammatory
upregulation of CD26 in the airway epithelial cells [44].
Moreover, both DPP4 activity and CD26 protein (but not
mRNA) increase after allergen exposure in lung parenchyma
in a rat model of allergic airway inflammation [17], suggesting
that CD26 on lung epithelium could be important in asthma
pathogenesis [45].

CD26 is also expressed in the immune system, being
detected in medullar thymocytes, T cell areas of spleen
and lymph nodes, peripheral blood T cells and, at a lesser
extent, B cells, NK cells, monocytes/macrophages and
granulocytes [24, 25, 30, 41, 46, 47]. CD26 density in
these cells is heavily controlled and augments upon cell
activation and acquisition of a memory phenotype, espe-
cially in the T cell lineage [33, 41, 48]. Human T lym-
phocytes display variable basal expressions of CD26
(CD4+ T >> CD8+ T cells), which depends on the indi-
vidual and the mAb used. Despite that not all resting T
cells are CD26+, most of them contain CD26 mRNA and
display CD26 molecules on the surface 4–8 h after stim-
ulation [49–51]. However, only a certain regulation on
CD26 mRNA levels has been detected by either northern
blot [36, 50, 52–54] or gene arrays [55] upon activation.
Additionally, CD26 is upregulated by interferon gamma
(IFNγ) on renal epithelial cells [56] and B-CLL [57]
through the modification of mRNA levels.

Despite the above described adjustment of CD26 expres-
sion through mRNA levels, several evidences support the
presence of upstream control levels. Thus, CD26 is strongly
regulated at protein level by several soluble factors. For

Clinic Rev Allerg Immunol (2019) 56:139–160140

http://merops.sanger.ac.uk/
http://www.proteinatlas.org/ENSG00000197635-DPP4/tissue
http://www.proteinatlas.org/ENSG00000197635-DPP4/tissue


example, the TH1 cytokine IL-12 (and to a lesser extent IL-2)
enhances the expression of CD26 on both activated T cells
[58, 59] and NK cells (together with IL-15) [47, 60]. On the
contrary, IFNγ (another TH1 cytokine) has no effect on CD26
levels in these lymphocytes [47, 58]. Regarding TH2 cyto-
kines, IL-4 promotes the expression of CD26 on human B
lymphocytes activated with Staphylococcus aureus Cowan I
[61, 62], while this cytokine moves from a lack of effect [63]
to a certain downmodulation of CD26 levels in T cells at high
concentrations [unpublished results]. In addition, in vitro ex-
posure to regulatory T cell (Treg)-derived soluble factors like
transforming growth factor beta 1 (TGF-β1) [64, 65] or aden-
osine (Ado) [66] leads to diminished CD26 levels.

Most of peripheral blood Treg lymphocytes display an
Bactivated-like^ (e.g., CD25high), Bmemory^ (CD45RO+) and
an Banergic/apoptosis-prone^ phenotype [67] and were expected
to express other activation/memory markers such as CD26. This
seems to be the case for rats, where CD25+ (Treg) and CD25−

(effector Tcells or Teff) subsets of peripheral CD4+ Tcells show
equivalent CD26 expression [68]. In contrast, human Treg cells
(CD4+CD25high or CD4+FoxP3high) display lower levels of
CD26 compared to Teff lymphocytes (CD4+CD25−/low or
CD4+FoxP3−/low) [69–72]. This likely explains why cytokines
that favour Beffector^ responses (e.g., IL-12) cause a strong up-
regulation of CD26 on Bbulk^ TH cell cultures, while others
important for the Treg homeostasis (e.g., IL-2, IL-15) only in-
duce a slight increase onCD26 levels [58, 73]. It also gives a clue
on why CD26 is downmodulated upon exposure of T cells to
TGF-β1 [64, 65].

CD26 expression amongst Teff lymphocytes is also vari-
able, and TH17 cells appear to display the highest levels of
CD26 according to the following order: TH17 >> TH1 > TH2

[72, 74–77]. Furthermore, two subsets were reported amongst
TH17 cells on the base of CCR4 expression [78], but only the
CCR4− TH17 subset (and not the TGF-β-secreting CCR4+

TH17 subpopulation) has a CD26high phenotype [79]. This
finding likely indicates that the degree of phenotypic diversity
found in Teff cells for CD26 levels is also probably present in
Tregs and reflects the presence of functionally different sub-
sets that mirror the corresponding Teff subsets [80].

The different expression levels of CD26 in Treg and
Teff lymphocytes could depend on a variation in CD26
mRNA levels, like it happens with Bregulatory-like^
CD4+ T cells in classical Hodgkin’s lymphoma [81].
However, it is worth to mention that, apart from regu-
lating this set of CD26 mRNA molecules, there is an
intracellular pool of CD26 protein maintained by con-
tinuous translation in human T cells (regardless of their
CD26+ or CD26− phenotype) [50] that can be mobilized
towards the plasma membrane [54] or released into the
extracellular space. Therefore, there could be a number
of additional mechanisms leading to a CD26−/low pheno-
type in human Treg cells.

Body Fluid Compartments and Distribution of Soluble
CD26

CD26 can be found in the extracellular space, with autocrine,
paracrine or endocrine effects. The soluble version of CD26
(sCD26) has been described in many biological fluids (e.g.,
serum, plasma, synovial fluid, cerebrospinal fluid) from dif-
ferent organisms [82]. Bronchoalveolar lavage contains DPP4
enzymatic activity in rats [17] and humans [83]. In serum or
plasma, at least 90 % of this activity is associated to a heavily
glycosylated 110-kDa CD26 isoform [84, 85], whose concen-
tration displays a normal distribution [86] and high biological
variability [87, 88] that seems to depend on pre-analytical
variables, like age or gender. Thus, serum sCD26 concentra-
tion increased up to 10–12 years in children, after which the
values start decreasing [89]. In adults, a slight decrease of
sCD26 or DPP4 activity in serum with age has been also
detected [87, 88], but other studies did not describe such cor-
relation [86, 90]. In addition, no differences were detected
regarding gender in some studies [90], while different authors
did find a higher sCD26 concentration in serum/plasma sam-
ples [86–89, 91] but a lower CD26 expression onCD4+ Tcells
(our unpublished results) from males.

Several studies have found a positive correlation between
sDPP4 activity and sCD26 in humans [91–93], but others
have reported a low correlation instead, with different expla-
nations like the presence of hypersialylated CD26 isoforms or
alternative proteins with DPP4 activity [82]. Thus, plasma
samples contain a soluble glycoprotein named DPPT-L or
attractin without homology with CD26 but with DPP4 activity
[94–96], although this activity has been questioned more re-
cently [97]. Attractin is accumulated in the plasma membrane
upon T cell receptor (TCR) triggering (∼24 h) [95, 96], espe-
cially in CD26high Teff cells (our unpublished results), and
released into the plasma at 48–72 h [95, 96]. Curiously, link-
age disequilibrium studies show association of asthma with a
region including the attractin (ATRN) gene, which is upstream
of the gene encoding the secretase/sheddase ADAM-33 (an
asthma susceptibility gene) [97].

Release of CD26 could be accomplished by a classical or
non-classical pathway and either by a constitutive or induced
mechanism. The classical pathway requires vesicular traffic from
the endoplasmic reticulum/Golgi towards the plasma membrane.
Intravesicular proteins are liberated in the extracellular medium
after membranes merge (exocytosis), while transmembrane pro-
teins appear in the secretome through proteolysis mediated by
Bsecretases^/Bsheddases^. This last process (Bshedding^) delivers
growth factors, cytokines, receptors and probably molecules like
CD26 [98]. This is additionally supported by the lack of posttran-
scriptional splicing in CD26 mRNA, the absence of cytoplasmic
and transmembrane domains in sCD26 or results from pulse chase
and transfection experiments [25, 82]. However, CD26 has been
detected in microvesicles and exosomes from lymphocytes
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(http://www.exocarta.org). Therefore, constitutive or induced
release of CD26+ vesicles (exosomes, microvesicles or apoptotic
bodies) into the medium could also contribute to the pool of
sCD26 in the circulation and reflect the cell subset of origin
(Bcell lineage fingerprint^).

The cell source of sCD26 is still controversial [25, 82].
Visceral fat, at least in obese patients, overexpresses CD26
and releases this Badipokine^ into the circulation [88], and
there are data supporting the presence of a positive correlation
between fasting sCD26 levels and body mass indexes (BMIs)
>25 [88, 99]. Soluble CD26 may also originate from other
sources, such as endothelial cells (e.g., lung) or epithelial cells
from liver (bile canaliculi) or kidney. However, immune cells
are also a likely source [25, 82, 100]. Thus, a transplantation
model in rats has determined that, under healthy conditions,
bone marrow-derived cells represent a significant source for
sCD26 [101]. Therefore, the concentration of sCD26 could
also be influenced by the number of lymphocytes [102] or
mirror the predominant phenotype of circulating CD4+ T lym-
phocytes in a pathological situation.

CD26 and Asthma

Asthma Phenotypes, Disease Severity and CD26 levels
in CD4+ T Cells

CD4+ TH cells play a central role in adaptive immune re-
sponses and the induction/persistence of asthma and other

allergic/atopic diseases. They are plastic and heterogeneous
lymphocytes, with four main lineages (TH1, TH2, TH17 and
Treg cells) and different roles. For example, TH2 (GATA-3

+)
cells infiltrate airways in allergic asthma and produce a set of
cytokines (IL-4, IL-5, IL-13) important for airway remodel-
ling, leucocytosis, eosinophilia, macrophage/mast cell activa-
tion and B cell-dependent IgE elevation [103, 104]. In the
same way that TH lymphocytes are heterogeneous, there are
also a number of asthma phenotypes as a likely reflection of
the TH cell heterogeneity itself, with both TH2

high and TH2
low

phenotypes sharing different clinical signs: (a) the early aller-
gic asthma, with a strong familiar background and mediated
by TH2 cytokines (TH2

high) and allergen-specific IgE (atopy);
(b) the less-allergic late-onset asthma (TH2

high), which is char-
acterized by eosinophilic inflammation, absence of specific
IgE (i.e., non-atopic) and worse response to corticosteroids;
(c) the neutrophilic asthma, a TH2

low phenotype refractory to
corticosteroids and linked to TH17 responses, sputum
neutrophilia and augmented levels of IL-8 and IL-17; (d)
and the obesity-related asthma, a TH2

low phenotype predomi-
nant in obese women, with higher levels of tumor necrosis
factor alpha (TNFα), IL-6 and leptin but low numbers of
eosinophils [1] (Table 1). Therefore, alternative CD26+/high

effector TH subpopulations are gaining importance in asthma,
particularly as disease becomes chronic and refractory to treat-
ment. In this context, even though it was initially described
that CD26+ TH1 cells were protective (Bhygiene hypothesis^),
now it is considered that these cells could be favouring the
inf lammation of the airways [105] . In addi t ion,

Table 1 Asthma: molecular and clinical classification

Symptomatology and
pathophysiology

Pathobiology Therapy response

Th2-high phenotype

Early onset
Allergic

Allergic and rhinitis
symptoms

Moderate to severe

Elevated levels of IL-4, IL-5 and
IL-13 (Th2-related chemokines),
specific IgE and thicker subepithelial
basement membrane

Corticosteroid response
and Th2-related targets

Late onset
Eosinophilic

Presence of sinusitis and less
allergic

Normally severe

Eosinophilia and IL-5 elevation
(Th2-related chemokine)

Against IL-5-Ab response
and to cysteinyl leukotriene
modifiers. Refractory to
corticosteroids

Th2-low phenotype

Obesity-related Mostly women, very
symptomatic, epithelial
hyperresponsiveness

Loss of Th2-markers and oxidative stress Response to weight loss, to
antioxidants and to hormonal
therapy

Late onset
Neutrophilic

Low FEV1 Sputum neutrophilia, Th17 and
IL-8 ways

Refractory to corticosteroids and
to other asthma medicines
Possibly response to macrolide
antibiotics

Modified table from Martinez et al. [9]

IL-5 interleukin 5, IL-8 interleukin 8, FEV1 forced expiratory volume in 1 s, Ab antibody
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proinflammatory CD26high TH17 cells have been detected in
biopsies from asthma patients and their cytokines (e.g., IL-17,
IL-6, IL-21, IL-22) are involved in eosinophilia/neutrophilia
and higher severity during acute attacks [106]. On the other
hand, Treg cells (FoxP3+, CD26−/low) also seem to play a
relevant role in controlling exaggerated TH2 responses and
asthma development [9, 107, 108]. Treg cells exert their sup-
pressor activity by using both soluble (e.g., adenosine,
TGF-β, IL-10) and membrane-associated (e.g., TGF-β,
CTLA-4) molecules [67], and a number of GWAS in asthma
have identified some genes (e.g., IL2RB, SMAD3,
GARP/LRRC32) linked to this suppressor activity. Thus, the
lower or higher prevalence of different Teff subsets and/or the
distortion of the Teff/Treg balance could also alter the pheno-
type and severity of asthma [104, 109, 110]. Moreover, de-
pending on the asthma phenotype or the severity of this dis-
ease, the levels and functions of CD26 on the surface of im-
mune cells and biofluids could be rather different and be a
factor influencing disease development. Therefore, it is time
to ask what the biological functions of CD26 are and what
their connection with asthma is.

Enhancing Functions of Both Membrane and Soluble
CD26 on Asthma

Functionally speaking, CD26 is a complexmolecule with both
harmful and beneficial activities in relation to asthma. With
regard to the first ones, CD26 has been traditionally linked to
both the amplification of TCR-mediated stimulatory signals
and cell adhesion/migration. These functions could be depen-
dent on production of certain biomolecules, the enzymatic
activity of CD26 or the extracellular association with other
proteins: adenosine deaminase (ADA) [111], CD45 [112],
caveolin-1 [113], CXCR4 [114], collagen [115], plasminogen
2 [116], glypican-3 [117] or fibronectin III [118, 119] (Fig. 1).
For example, CD26-mediated costimulation plays a role in the
migration of mesothelioma cells through upregulated produc-
tion of a current biomarker of BTH2

high^ asthma: periostin
[120, 121]. CD26 location could also be important for this
harmful function of CD26 in asthma. As a raft resident protein
[112, 122], CD26 improves the immunological synapse for-
mation between antigen-presenting cells (APCs) and T cells
[112, 113], important for TH cell proliferation/differentiation
and to empower these lymphocytes to proportionate help to B
cells and produce immunoglobulins like IgE [30] (Fig. 1).
This raft-dependent costimulatory function of CD26 could
be mediated by other proteins like CD45, a tyrosine phospha-
tase (PTPase) essential for TCR signalling [123]. Cross-
linking with anti-CD26 antibodies in T lymphocytes drives
the recruitment to rafts and the interaction of both CD26 and
CD45RO [112], which probably causes CD45 dimer dissoci-
ation [112], increased PTPase activity [124] and a signal

transduction cascade that both overlaps with and boost the
TCR pathway [112, 125–128] (Fig. 1).

This potentially detrimental function of CD26 to the
lungs of a person with asthma seems to involve the active
centre [112, 129], but not necessarily the DPP4 activity.
Thus, CD26 on TH cells recognizes caveolin-1 and induces the
upregulation of the proinflammatory B7.2/CD86 molecule in
APCs [113, 129]. In T cells, CD26-caveolin-1 interaction in-
duces the coalescence of lipid rafts, recruitment of CARMA1
and activation/nuclear translocation of the proinflammatory and
Brapid acting^ transcription factor NF-kB [130] (Fig. 1).
Therefore, the CD26+/high phenotype of Teff cells may favour
allergen-induced inflammation in lungs [131], while the
CD26−/low phenotype of Treg cells may contribute to keep low
levels of CD86 on APCs and trigger anergy/apoptosis in
allergen-specific naïve Tcells. However, all these findings about
the costimulatory role of CD26 need further clarification, as
either a partial or complete genetic deletion of CD26 or the use
of CD26 inhibitors does not impact this function [132, 133].

The costimulatory actions of CD26 also could depend on
the interaction with another enzyme: ADA [111, 134–136].
Most of ADA molecules in lymphocytes are cytosolic, but a
small proportion (10 %) are associated with either CD26 [111,
134, 135] or Ado receptors (ARs: A1AR and A2BAR) on the T
cell membrane (ecto-ADA) [114, 135–138]. Binding of ADA
to CD26 takes place in human (but not murine) lymphocytes
[25, 63], and this interaction could potentially trigger a
costimulatory signal that favours lymphocyte proliferation
and TH1 cytokine and chemokine production [139–141]
(Fig. 1). In turn, activation through the TCR/CD3 complex
and costimulation with TH1 (but not TH2) cytokines increase
the number of ecto-ADA molecules [63, 139] and the forma-
tion of the ADA-CXCR4-CD26 triad [114], which might help
to trap the chemokine receptor CXCR4 at the immunological
synapse to make lymphocytes insensitive to the chemokine
stromal cell-derived factor α (SDF1α/CXCL12) and trigger
a proliferative and cytokine-secreting response [142] (Fig. 1).

Costimulatory effects could also come from sCD26, which
is capable of enhancing the T cell-mediated reaction against
recall antigens (e.g., tetanus toxoid) or suboptimal amounts of
polyclonal stimuli (PHA or anti-CD3) [143, 144]. Contrary to
initial results [143], the most recent data point out that this pro-
inflammatory effect of sCD26 is not dependent on CD26 or
ADA-binding activities [145] and is likely triggered upon inter-
action with proteins like caveolin-1 [113, 129, 130] or insulin-
like growth factor II/mannose-6-phosphate (IGF-II/M6P) recep-
tor [146, 147] in APCs or protease-activated receptor 2 (PAR2)
in smooth muscle cells [148]. sCD26 promotes CD86 upregula-
tion in APCs [113, 129, 146] and the generation of reactive
oxygen species (ROS) and toll-like receptors [149] (Fig. 1).

CD26 is the major member of the prolyl oligopeptidase
family and cleaves X-proline or X-alanine dipeptides from
the N-terminus of different polypeptides, even though other
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amino acids are accepted with lower efficiency: Pro > Ala >
Hyp>> Ser > Gly > Val > Leu [25]. Apart from the primary
sequence, the 3D structure, size and substrate ionization (op-
timum pH 7.5–8.5) significantly influence the catalytic effi-
ciency of CD26 [10, 94, 100, 150, 151]. Peptides containing
X-proline or X-alanine at theN-terminus are not easy to process
by most of proteases [152], which means that CD26 has a key
biological role. Indeed, DPP4 activity has been linked to the
activation of T lymphocytes in response to extracellular stimuli.
For example, Jurkat cells transfected with CD26 display greater
activation than those expressing DPP4-deficient CD26 mole-
cules [153]. DPP4 activity is also necessary in sCD26 mole-
cules to boost the tetanus toxoid-dependent proliferation [146].
CD26 inhibitors yield similar results in vitro, with suppression
of T cell proliferation and secretion of proinflammatory cyto-
kines but enhanced release of TGF-β1 [154–157]. In vivo, the
use of CD26 inhibitors in murine models of human diseases
like rheumatoid arthritis [158], multiple sclerosis [159] or asth-
ma (aerosolized simultaneously with the allergen) [45] also
describes a proinflammatory role of CD26. Moreover, CD26
inhibitors also support a positive role of CD26 in NLRP3
inflammasome formation [160]. However, enzyme activity is
required, but not in absolute terms, during the costimulatory
function of CD26, since this biological activity is retained after
deleting part of the hydrolase domain [132] (Fig. 1).

Inhibitory Functions of Both Membrane and Soluble
CD26 on Asthma

Apart from its costimulatory and asthma-detrimental role,
there is also evidence that CD26 exhibits other asthma-
preventive activities. This protective function of CD26 is
linked to the indirect or direct control of different soluble
mediators like Ado, bradykinin or neuropeptides that are in-
volved in bronchoconstriction, inflammation, chemoattraction
or airway remodelling in asthma patients [161]. For instance,
the nucleoside Ado is the substrate of ADA, an enzyme that
catalyses its irreversible deamination to inosine [139, 140]. As
already mentioned, ADA has been found anchored to CD26
(Fig. 1) in many cells, but two frequently regarded proinflam-
matory ARs (A1AR and A2BAR) also interact with this en-
zyme, which seems important for their efficient ligand-
dependent signalling [111, 134–138]. ARs are novel targets
for treatment of human asthma, and some antagonists and
agonists have entered the clinical phase with a not totally clear
efficacy [161, 162]. Indeed, there is an elevated expression of
asthma-favouring and ADA-interacting receptors A1AR and
A2BAR in bronchial tissue [161, 162], but probably reduced
amounts of asthma-protective A2AAR [161]. In addition, there
is an augmented Ado concentration in the extracellular com-
partment in asthma. This nucleoside plays a detrimental role in

Fig. 1 Functions of both membrane and soluble CD26 on asthma. This figure summarizes both positive (i.e., those that favour asthma development or
exacerbation) and negative (i.e., those that prevent asthma development or exacerbation) functions of CD26 on this disease
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this disease by causing bronchoconstriction, airway inflam-
mation (e.g., mast cell degranulation, airway accumulation
of eosinophils), airway remodelling, edema or mucus produc-
tion [161, 162]. These harmful effects also depend on the
specific engaged type I purinergic receptor and the particular
cells expressing the ARs in airways (e.g., APCs, lymphocytes,
eosinophils, neutrophils, endothelial and mast, epithelial, en-
dothelial and smooth muscle cells) [161, 162]. This role of
Ado in asthma is affected by binding affinity, receptor density
and local levels of this nucleoside, which are influenced by a
delicate balance where different mechanisms are involved
(e.g., extracellular/intracellular Ado metabolism) [161, 162].
Amongst these mechanisms, the Ado catabolism mediated by
ADA molecules anchored to CD26 is the major regulated
pathway that influences the local concentration and biological
effects of Ado. In this respect, relevant TH2 cytokines in aller-
gic asthma (IL-4, IL-13) reduce ADA activity in the lung
[161] and ecto-ADA levels on TH lymphocytes [63]. These
findings suggest that low levels of CD26/ecto-ADA on the
TH2 subset in TH2

high (allergic/atopic) asthma could favour
the local accumulation of Ado, the activation of A1AR and
the participation of proinflammatory ARs that require Ado
concentrations over the physiological levels (e.g., the low-
affinity A2BAR) in order to neutralize the off-signals provided
by the engagement of high-affinity and asthma-protective
A2AARs. Therefore, it is likely that AR-targeted therapy is
more effective in TH2

high asthma than in TH2
low or severe

asthma, wherein CD26/ecto-ADAhigh TH1 and TH17 cells are
more frequent. Moreover, additional studies are needed to
clarify what could be exactly the role of Treg cells in asthma,
a lymphocyte subset with a CD26/ecto-ADAlow phenotype
that should favour the high production of Ado [70]. On the other
hand, CD45 has been involved in Janus kinase dephosphoryla-
tion [163]. Therefore, the CD26-CD45 association could
have a negative and DPP4-independent role important to restrain
the signal transduction of cytokine receptors [122]
(Fig. 1). In this sense, the low PTPase activity in human
naïve CD4+CD45RA+CD26−/low Tcells makes them susceptible
to small amounts of IL-4, as mentioned as an important
cytokine in allergic asthma, while memory/effector
CD4+CD45RO+CD26+/high T cells secrete this soluble factor
upon activation, but are less sensitive to its effects [164].
Indeed, high levels of CD26 inmemory/effector TH lymphocytes
might act as a Bbrake^ for the proliferative responses to
cytokines (for example, IL-12; our unpublished results).

The protective function of CD26 in asthma could also be
linked to the DPP4 activity (Fig. 1). Some CD26 substrates
fall outside the scope of the immune system and this review,
like incretins (glucose-dependent insulinotropic peptide
(GIP), glucagon-like peptide-1 (GLP-1), glucagon-like pep-
tide-2 (GLP-2)) [10, 165, 166], glucagon, pituitary adenylate
cyclase-activating polypeptide (PACAP), gastrin-releasing
peptide (GRP), peptide YY, vasoactive peptides (bradykinin

and vasoactive intestinal peptide (VIP)), natriuretic peptides
(B-type natriuretic peptide (BNP)) and neuropeptides (neuro-
peptide Y (NPY), beta-casomorphins, endomorphins, sub-
stance P) [41, 82, 166, 167] (Table 2). However, some
others have an important immunomodulatory role, such as
cytokines (e.g., IL-3, G-CSF, GM-CSF) [168] or
chemokines (e.g., RANTES/CCL5, eotaxin/CCL11,
MDC/CCL22) [82, 166]. CD26 enzymatic activity
downmodulates the biological function of most of these
chemokines and cytokines (Table 3). Consistent with this
observation, it has been found that CD26 inhibitors can
enhance some in vivo immune responses depending on the
dose, application route, timing or predominant Teff subset
[45, 169], which could be explained by the presence of off-
target effects as well [25, 170]. However, animal models
of rheumatoid arthritis [93], multiple sclerosis [171] and
inflammatory bowel disease [172] in CD26 KO mice do
support an immunosuppressive role of both CD26 and
DPP4 activity. This immunosuppressive function has also
been observed for sCD26 during strong in vitro prolifera-
tive responses of immune cells [143, 145]. Moreover,
CD26 has been even regarded a tumour suppressor gene
in melanomas or neuroblastomas [173, 174]. For this rea-
son, we will focus this part of this review on the CD26
substrates with a direct connection with the immune
system like chemokines.

CD26, TH2-Related Chemokines and TH2
high Asthma

Even though cytokines like IL-1β or IL-2 contain an appro-
priate N-terminal sequence, the molecular weight precludes
their N-terminal clipping, with exceptions like IL-3, granulo-
cyte colony-stimulating factor (G-CSF), granulocyte-
macrophage colony-stimulating factor (GM-CSF) or erythro-
poietin (Epo) [168]. In contrast, CD26-dependent processing
of chemokines (8–10 kDa) like RANTES (regulated on acti-
vation, normal T cell expressed and secreted) is one of the
most interesting aspects of CD26 biology [175]. Moreover,
this function is mostly dependent on CD26 levels, which is
influenced by the Tcell subset or disease, as we have just seen.

Chemokines are proinflammatory cytokines with a role in
leukocyte activation and migration. They are classified accord-
ing to the position of two N-terminal cysteine residues (CC,
CXC, C and CX3C) [176] but can also be divided as a function
of the cells they attract or the receptor they recognize. As
Table 3 shows, the major branches of effector (TH1, TH2 and
TH17) and regulatory T cells express characteristic (but not to-
tally selective) chemokine receptors [76, 103]. For example,
TH2 lymphocytes and other leukocytes important in asthma
(basophils, mast cells and eosinophils) express CCR3, CCR4,
CCR8, CXCR4 and, in humans, CRTH2 [103]. CCR3, CCR4
and CXCR4 interact with CD26 substrates, but only CCR3 and
CCR4 are actually specific for TH2 cells. Regarding CXCR4,
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TH2 cells seem to display a slight overexpression compared to
TH1 lymphocytes [177], but other authors describe CXCR4 as a
merely trafficking marker [178–180].

Ligation of CCR3 with eotaxin/CCL11; RANTES/CCL5;
and MCP-1/CCL2, MCP-2/CCL8, MCP-3/CCL7 and MCP-
4/CCL13 participates in the recruitment of basophils, eosino-
phils and mast cells [103, 181, 182] (Table 3). Eotaxin is an
important chemokine in allergic asthma produced by endothe-
lial cells and monocytes in response to IFNγ and TNFα, re-
spectively. This chemokine is recognized by CCR3 (eosino-
phils, basophils, mast cells and TH2) and at lesser extent by
CCR5, a putative TH1 marker (see later) [183]. Eotaxin is a
chemoattractant for eosinophils that facilitates their mobiliza-
tion from bone marrow [184]. Truncation of eotaxin by CD26
is characterized by an intermediate-low efficiency (kcat/Km:
SDF1α > MDC > I-TAC > IP-10 > MIG > eotaxin >
RANTES > LD78β) [185]. Despite this, N-terminal clipping
by CD26 results in an isoform (3–74) with reduced chemotac-
tic activity that causes CCR3 desensitization [183, 186, 187].
Indeed, administration of eotaxin to F344 rats leads to a mo-
bilization of eosinophils, an effect enhanced in CD26-deficient

animals or with CD26 inhibitors [187]. Additionally,
CD26−/− mice challenged with ovalbumin (OVA) show higher
levels of CCR3 and CCR3 ligands (eotaxin, RANTES) and
stronger eosinophil infiltration in lungs [16]. Another ligand
of CCR3 is CCL14 (Table 3), a chemokine processed by plas-
min and urokinase plasminogen activator (UPA) to yield
CCL14 (9–74). This isoform binds to CCR3 (and also CCR1
and CCR5) to efficiently attract eosinophils, monocytes and
TH2 cells, a process also dampened by CD26 [188].
Therefore, a CD26−/low phenotype in both eosinophils and
TH2 cells (CCR3

+) seems to favour the inflammatory response
in TH2

high asthma.
CXCR4 is found in monocytes and B/T (preferentially

TH2) cells [177, 189] and promotes the recruitment of T
cells in lungs during allergic airway diseases [178, 190].
CXCR4 recognizes macrophage migration inhibitory fac-
t o r (M IF ) a nd s t r oma l c e l l - d e r i v e d f a c t o r 1
(SDF1/CXCL12) [189] (Table 3), the last one a small
chemokine synthesized by endothelial cells and fibro-
blasts that induces T/B cell activation [142] and regulates
the traffic of lymphocytes, monocytes and dendritic cells

Table 2 Known substrates processed by CD26/DPP4 out of the immune system

Substrate name and family N-terminal sequence Effect of DPP4 processing In vitro/in
vivo evidence

Reference

β-Casomorphins (neuropeptide) Tyr-Pro▼Phe Inhibitory Yes/yes [10, 82, 167]

BNP (natriuretic peptide) Ser-Pro▼Lys Inhibitory
Change in receptor preference

Yes/yes [82, 248]

Bradykinin (vasoactive) Arg-Pro▼Pro Inhibitory
Change in receptor preference

Yes/yes [10, 82, 167]

Endomorphins (neuropeptide) Tyr-Pro▼Phe Inhibitory
Change in receptor preference

Yes/yes [10, 41, 82, 167]

Enterostatin (gastrointestinal hormone) Val-Pro▼Asp Inhibitory Yes/yes [10, 41, 167]

GIP (incretin) Tyr-Ala▼Glu Inhibitory Yes/yes [10, 41, 82, 165, 167]

GLP: GLP-1 (7-36) amide, GLP-1 (7-37)b

and GLP-2 (incretin)
His-Ala▼Glu (GLP-1)
His-Ala▼Asp (GLP-2)

Inhibitory Yes/yes [10, 41, 82, 165, 167]

Glucagon (gastrointestinal hormone)a His-Ser▼Gln Inhibitory Yes/yes [82, 167]

GRH: GRH (1-29) and GRH (1-44)
(hypothalamic hormone)

Tyr-Ala▼Asp Inhibitory Yes/no [10]

GRP (bombesin family hormone) Val-Pro▼Leu Not known Yes/yes [82]

NPY (neuropeptide) Tyr-Pro▼Ser Receptor Y1 Inactivation
Change in receptor preference

Yes/yes [10, 41, 82, 167]

PACAP (PACAP27 and PACAP38)a His-Ser▼Asp Probably inhibitory Yes/yes [82, 249]

Peptide YY (pancreatic peptide) Tyr-Pro▼Ile Receptor Y1 Inactivation
Change in receptor preference

Yes/yes [10, 41, 82, 167]

Substance P (neuropeptide) Arg-Pro▼Lys Inhibitory
Questionable

Yes/yes [10, 41, 82, 167]

VIP peptides (VIP, PHV42, PHM27)
(vasoactive)a

His-Ala▼Asp (PHV, PHM)
His-Ser▼Asp (VIP)

Probably inhibitory Yes/yes [10, 41, 82, 165, 167]

BNP B-type natriuretic peptide, GIP glucagon inhibitory peptide, GLP glucagon-like peptide, GRH growth hormone-releasing hormone, GRP gastrin-
releasing peptide, NPY neuropeptide Y, PCAP pituitary adenylate cyclase-activating polypeptide, VIP vasoactive intestinal peptide, PHV42 peptide
histidin valin 42, PHM27 peptide histidin methionine 27
aGlucagon, PACAP and VIP have a Ser in position 2 and, with less efficiency than Pro or Ala, also can be a DPP4 potential substrate
b GLP-1 (7-36) amide and (7-37) are the active forms of GLP-1 and substrates of DPP4
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Table 3 Chemokines processed by CD26/DPP4

TH subset Chemokine
receptor
expressed:

Common
ligands of
these
receptors

Substrates
of DPP4
activity

Effect of clipping on
chemokine activity or
receptor preference

N-terminal
cleavage

Mr

(Da)
expasy

Half-
life
(min)

KCAT/KM

(10−6M−1S−1)
References

Treg

(FoxP3, CD26−/low)

CCR4 CCL17/TARC

(n.d.)

No

CCL22/MDC Yes ↓, RP Gly-Pro▼Tyr 8090.47 1.6 4 ± 1 [10, 41, 82,

166, 167,

185]

CCR6 CCL20/MIP-3α
(n.d.)

No

TH2

(GATA3, CRTH2,
CD30, CD26+)

CCR3 CCL5/RANTES Yes RP Ser-Pro▼Tyr 7851.01 400 0.04 ± 0.01 [10, 41, 82,

167, 185]
CCL11/eotaxin 1 Yes ↓ Gly-Pro▼Ala 8364.90 30 0.08 ± 0.01 [10, 41, 82,

166, 167,

185]

CCL24/eotaxin 2

(n.d.)

No

CCL26/eotaxin 3

(n.d.)

No

CCL8/MCP2

(n.d.)

No

CCL7/MCP3

(n.d.)

No

CCL13/MCP4 No

CCL14a [9–74] Yes ↓ Gly-Pro▼Tyr 7800.83 n.d. n.d. [188]

CCL15/MIP-5 No

CCL28/MEC No

CCR4 CCL17/TARC No

CCL22/MDC Yes ↓, RP Gly-Pro▼Tyr 8090.47 1.6 4 ± 1 [10, 41, 82,

166, 167,
185]

CCR8 CCL1 No

CCL17/TARC No

CXCR4 CXCL12/SDF-

1α
Yes ↓, CXCR4 antagonist Lys-Pro▼Val 7609.97 <1 5 ± 2 [10, 41, 82,

166, 167,

185]

TH1

(t-bet, CD26++)

CCR5 CCL3L1/LD78β Yes ↑, RP Ala-Pro▼Lys 7797.74 6000 0.003 ± 0.002 [82, 166,

167, 185]

CCL4/MIP-1β No

CCL5/RANTES Yes RP Ser-Pro▼Tyr 7851.01 400 0.04 ± 0.01 [10, 41, 82,

167, 185]

CCL8/MCP2 No

CCL7/MCP3 No

CCL13/MCP4 No

CCL11/Eotaxin Yes ↓ Gly-Pro▼Ala 8364.90 30 0.08 ± 0.01 [10, 41, 82,

166, 167,

185]

CCL14a/HCC-
1[9–74]

Yes ↓ Gly-Pro▼Tyr 7800.83 n.d. n.d. [188]

CCL16 No

CCL23/MPIF-1 No

CXCR3A CXCL9/Mig Yes ↓, CXCR3 antagonist Thr-Pro▼Val 11724.81 24 >0.4 ± 0.2 [82, 166,

167, 185]

CXCL10/IP-10 Yes ↓, CXCR3 antagonist Val-Pro▼Leu 8646.30 4 0.5 ± 1 [10, 41, 82,

166, 167,

185]

CXCL11/I-TAC Yes ↓, CXCR3 antagonist Phe-Pro▼Met 8307.01 2 1.2 ± 0.1 [82, 166,

167, 185]
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towards inflamed epithelia [179, 189, 191, 192]. Amongst the
several SDF1 isoforms, at least two (SDF1α and SDF1β)
are efficiently processed by CD26 in vitro [185, 193–195]
and in vivo [93]. The SDF1α (3–67) isoform is unable to
activate CXCR4 and displays antagonistic activity [185,
193–198]. Moreover, both CD26 and CXCR4 have simi-
lar expression kinetics upon activation [58, 199] and in-
teract in lymphocytes [114]. Binding of SDF1α to
CXCR4 initiates the CXCR4-CD26 complex endocytosis
[114], a process disrupted by N-terminal clipping of
SDF1α [195]. This finding could not explain however
the preferential expression of CXCR4 in CD26low cells
(e.g., TH2 or naïve TH) [76, 199] or why TGF-β (a
cytokine that induces CD26 downmodulation) leads to
augmented expression of CXCR4 and a potentiated
SDF1α -CXCR4 ax i s [ 200–202 ] . Th i s CD26 − /

lowCXCR4+ phenotype also facilitates a vigorous response
to SDF1α in the recruitment of T cells and eosinophils in
a mouse model of lung allergic inflammation [178]. On
the other hand, CD26 has also been positively correlated
with the in vitro invasive capacity of T cell lines in
response to SDF1α, and this positive effect is mediated
by CD45 [203], a tyrosine phosphatase that enhances cell
migration in response to SDF1α [204].

CCR4 is present on monocytes, dendritic cells, NK
cells and TH cells (TH2, TH17, Treg). CCR4 recognizes
both CCL17/TARC and CCL22/MDC (Table 3), the last
chemokine produced by macrophages, dendritic cells,
NK cells and B/T lymphocytes [205]. TARC and
MDC are expressed by epithelial cells in the airways,
and their levels are upregulated after allergen challenge
[103]. TH2 cytokines (e.g., IL-4 and IL-13), LPS, IL-1
and TNFα stimulate the secretion of MDC, whereas TH1

cytokines (e.g., IFNα, IL-12) inhibit MDC production
[205, 206]. Moreover, MDC generates and amplifies
TH2 re sponses and rec ru i t s TH2 lymphocy te s
[205–207], being important in diseases with a TH2-

cytokine profile (e.g., asthma) or equivalent models in
mice [207]. In these models, CCR4-MDC has a domi-
nant role in later and chronic stages of the disease as
compared with CCR3-eotaxin [181]. Furthermore, CD26
processes MDC (half-life 2–5 min) very efficiently to
generate MDC(3–69) and, subsequently, MDC(5–69)
[185]. This last isoform preserves the attractant power
for monocytes, but displays reduced chemotactic activity
for lymphocytes and dendritic cells [150], two subsets
important in asthma. As Tregs, TH2 and CCR4+ TH17

cells are CD26−/low cells, while CCR4− TH17 cells are
CD26high cells [72, 79], the CD26−/low phenotype of
these CCR4+ subsets should apparently facilitate their
recruitment to inflammatory sites.

CD26, TH1/TH17-Related Chemokines and TH2
low Asthma

Most of asthma patients present a TH2
high disease, but there are

other two types (obesity-associated and neutrophilic asthma)
linked to a TH2

low (i.e., TH1/TH17) profile [1]. The CD26
high T

cell subset displays a CD45RO+CCR7low effector-memory
phenotype and produces TH1/TH17 cytokines [72, 77, 208].
TH1 cells are CCR5+CXCR3A+ lymphocytes [72, 208]; are
essential for the production of IgM, IgG and IgA (but not IgE)
by B cells; and orchestrate the response against intracellular
microbes [103]. A few CCR5 ligands and all the CXCR3A-
specific chemokines are CD26 substrates (Table 3). For exam-
ple, CCL5/RANTES is produced by endothelial and epithelial
cells, platelets, macrophages, eosinophils and T cells [209].
RANTES activates CCR1, CCR3 (TH2) and preferentially
CCR5 (TH1), thereby attracting monocytes, eosinophils and
T cells to inflammatory sites [209]. This chemokine is cleaved
with a low efficiency (half-life of 400 min) by CD26 [100,
185], leading to RANTES(3–68), a chemokine that loses its
capacity to bind CCR1 and CCR3 (monocytes, eosinophils
and TH2 cells), but not CCR5 [197]. As CCR5 is expressed
on TH1 and CD45RA−CD45R0+CCR7low effector-memory

Table 3 (continued)

TH subset Chemokine
receptor
expressed:

Common
ligands of
these
receptors

Substrates
of DPP4
activity

Effect of clipping on
chemokine activity or
receptor preference

N-terminal
cleavage

Mr

(Da)
expasy

Half-
life
(min)

KCAT/KM

(10−6M−1S−1)
References

TH17
(RORγT, CD26+++)

CCR4 CCL17/TARC No

CCL22/MDC Yes ↓, RP Gly-Pro▼Tyr 8090.47 1.6 4 ± 1 [10, 41, 82,

166, 167,

185]

CCR6 CCL20/MIP-3α No

CCRC–Cmotif chemokine receptor,CXCRC–X–Cmotif chemokine receptor,CCLC–Cmotif chemokine ligand,CXCLC–X–Cmotif chemokine ligand,
TARC thymus and activation-regulated chemokine, MDC macrophage-derived chemokine, MIP-3α macrophage inflammatory protein-3 α, RANTES
regulated on activation, normal T cell expressed and secreted, MCP(2, 3 and 4) monocyte chemotactic protein, MIP5 macrophage inflammatory protein
5,MECmucosae-associated epithelial chemokine, SDF-1α stromal cell-derived factor 1α,MIP-1βmacrophage inflammatory protein-1β,MPIF-1myeloid
progenitor inhibitory factor 1, Mig monokine induced by γ-interferon, IP-10 10-kDa interferon γ-induced protein, I-TAC interferon-inducible T-cell α
chemoattractant, RP change in receptor preference, ↓↑ change in activity/function, n.d not determined
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CD4+ Tcells (both CD26+/high) [76, 103, 199], this means that
RANTES(3–68) favours their attraction towards inflammato-
ry sites [175, 197, 198, 210].

Another TH1 chemokine and CD26 substrate that
binds CCR5 is LD78β/CCL3L1 [211]. Macrophage in-
flammatory protein-1α (MIP-1α) is encoded by two dif-
ferent loci: LD78α and LD78β [212]. Both chemokines
are agonists of CCR1, CCR3 and CCR5, but LD78β
binds with high affinity to CCR5 [213], regulating the
traffic/activation of macrophages/monocytes, NK cells,
eosinophils, basophils, immature dendritic cells and T
lymphocytes. Strikingly, the inefficient (half-life ∼ 5 h)
[185, 211] clipping of LD78β by CD26 generates
LD78β(3–70) and enhances the chemotactic activity for
TH1 cells (CCR5) and monocytes/neutrophils (CCR1)
(Table 3). This fact, together with the CCR1low pheno-
type in eosinophils (<20 %) and the reduced affinity of
LD78β (3–70) for CCR3 (TH2), proves once again that
this posttranslational modification tends to favour TH1

responses [211, 214].
CXCR3A is overrepresented on TH1 cells [208] and is rec-

ognized by IFNγ-induced chemokines (CXCL9/Mig,
CXCL10/IP-10, CXCL11/I-TAC) secreted by endothelial
cells, hepatocytes, fibroblasts, keratinocytes and leucocytes
in response to infections and several diseases including asth-
ma. These chemokines are important to bring TH1 cells into
epithelial barriers [103]. Moreover, after being N-terminally
processed by CD26 with intermediate-high efficiency [185]
(Table 3), they become less active TH1 chemoattractants. In
addition, this modification also makes IP-10 a CXCR3 antag-
onist and induces receptor desensitization, being part of a
negative feedback mechanism important to downmodulate in-
flammation [215–217].

TH17 lymphocytes play a major role in tissue inflam-
mation, are essential to activate macrophages and recruit
neutrophils and drive the defensive activities against ex-
tracellular bacteria and fungi. Human TH17 cells are asso-
ciated with the expression of CCR4, CCR6 and CXCR6
[72, 103, 218]. Skin-homing addressins (e.g., CCR4,
CCR6) are also shared by CD26−/low Treg cells and TH2

cells [73]. However, TH17 cells are rare at sites of inflam-
mation, maybe due to homeostatic mechanisms that avoid
their expansion, a high plasticity to shift to TH1 cells
[103] or the heterogeneous expression of CCR4, with a
proinflammatory CCR4−CCR6+CD26high phenotype in
most of TH17 cells and a small subset of immunosuppres-
sive CCR4+CCR6+CD26low [79, 81]. This heterogeneity
for CCR4 is also detected in TH22 cells, a lineage that
produces IL-22; expresses CLA, CCR6 and CCR10; and
plays an anti-inflammatory and tissue-protective role in
asthma [219]. Curiously, CCR4− TH22 cells are CD26−,
whereas CCR4+ TH22 cells are constituted by either
CD26− or CD26+ lymphocytes [79].

In summary, taking into consideration the CD26 expression
gradient in the major TH subsets (TH17 >> TH1 > TH2>> Treg),
the small proportion of chemokines affecting Treg/TH2/TH17
cells that are processed by CD26 as compared with those
recruiting TH1 cells and that CD26-dependent clipping pro-
duces a drop in the biological functions of most of them, it
is evident that CD26 forms part of a homeostatic mechanism
to downmodulate airway inflammation mediated by TH2 and
especially TH17/TH1 cells (e.g., obesity-linked asthma).

CD26 and Asthma: Animal Models, Studies
in Human System and Clinical Implications

Despite the reported evidences on a role of CD26 in TH1-
related diseases, the involvement of both the peptidase-
dependent and peptidase-independent functions of CD26 in
the pathophysiology of asthma is not yet fully understood.
In this section, we summarize some results obtained in animal
models and the human system.

Rat Models

Rat models using inhaled allergens such as OVA have been
used to evaluate the role of CD26 in bronchial asthma. Thus,
the severity of the airway inflammation decreases as the en-
dogenous CD26 level of the strain becomes lower [220], like-
ly due to the costimulatory role of CD26. One of the models
more extensively used is the F344 strain. Challenge of F344
rats with OVA generates bronchoconstriction and higher
CD26 expression on lymphocytes and epithelial cells of lung
parenchyma [14, 17]; enhanced levels of DPP8/9 and DPP10
in bronchi [17]; and a dose-dependent recruitment to the lungs
of dendritic cells, eosinophils and CD4+CD25+CD26+ T cells
[14]. More specifically, OVA causes increased recruitment of
T cells to bronchi (but not lung parenchyma) [22] and en-
hanced sDPP4 activity in bronchoalveolar lavage fluid
(BALF) [17], the last finding likely related with the augment-
ed presence of CD26− Tcells in bronchi. Interestingly, there is
a F344 substrain with an active-site mutation in theDpp4 gene
that causes protein retention/degradation in the endoplasmic
reticulum and lower CD26 levels [221]. This F344 substrain
also displays the early bronchoconstriction in response to
OVA challenge [222], but the late inflammatory response is
milder regarding OVA-specific serum IgE, eosinophilia and
recruitment of Tcells in both bronchi and BALF [14, 22, 220].
In contrast, entrance of T cells in bronchoalveolar lymphoid
tissue (BALT) is enhanced, no matter the CD26+ or CD26−

phenotype of transferred T cells [223].
Because bronchi are DPP4− (but DPP8/9/10+) compart-

ments [17], CD4+CD25+ T cells recruited in the airways of
OVA-challenged F344 rats are either TH cells with a CD26low

phenotype or they downmodulate CD26 during peribronchial
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infil tration. Thus, a potential higher response of
CD4+CD25+CD26+ T cells to SDF1α [203] could allow their
recruitment to bronchi (CD26− SDF-1high environment) of
wild-type rats [22] with a concomitant SDF1-driven
downmodulation of CD26, as it happens during skin homing
of Sézari cells [224]. In contrast, CD4+CD25+CD26− Teff
cells in CD26-deficient rats would not be attracted to the bron-
chi as a result from either an anomalous/aberrant response to
SDF1α [203] or a reduced chemokine gradient [22], resulting
in a milder asthma-like disease. However, despite that SDF1 is
augmented in the bronchi of asthmatic patients [225], OVA
challenge does not increase the number of SDF1 transcripts in
the large airways of F344 rats [22]. Curiously, the amount of
SDF1 is increased in the BALT of CD26-deficient rats, likely
supporting the above commented higher recruitment of T cells
to this lymphoid compartment after OVA challenge [223].

CD26-deficient F344 rats display a parallel increased influx
of Tregs into the lungs, with a concomitant raise in the IL-10
production that explains the diminished inflammation [222].
However, this may not happen in the same way in humans,
where Treg cells display a CD26−/low phenotype [69–72] in
contrast to rats [14, 68]. Moreover, it is difficult to conciliate a
milder asthmatic-like inflammation in OVA-challenged CD26-
deficient F344 rats with either a lower truncation rate of TH2

chemokines (e.g., eotaxin) or the in vivo enhanced eotaxin-
mediated recruitment of eosinophils caused by a CD26 inhibi-
tor [187]. Perhaps the different genetic background [226] or the
administration route might play a significant role [45]. For ex-
ample, oral administrated inhibitors seem to enhance allergic
inflammation of the airways, whereas topic inhibition
(aerosolization) has a rather protective effect in line with that
observed in CD26-deficient F344 rats [45]. Moreover, dual
deficiency of enzymatic and extraenzymatic activities of
CD26 in murine asthma models may generate results different
from the observed effects of CD26 inhibitors, which only in-
hibit enzymatic functions [166].

Mouse Models

CD26 KO mice display a healthy phenotype, with in-
creased glucose clearance, resistance to obesity and small
changes in the percentages of NK, NKT and CD4+ T cells
[227, 228]. In addition, in vitro pokeweed mitogen
(PWM)-activated splenocytes from CD26−/− C56BL/6
mice show a decreased IL-4 production, while IgE and
IL-4 are significantly reduced in sera from CD26−/− ani-
mals upon PWM treatment [228]. In clear contrast, Yan et al.
reported in 2012 unchanged IgE concentration but enhanced
eosinophilia and TH2 cytokines (IL-4, IL-5, IL-13) in BALF
from OVA-induced CD26−/− C56BL/6 animals, as well
as higher mRNA and protein levels of CD26 substrates
(eotaxin and RANTES) and chemokine receptors (CCR3
and CCR5) [16]. These partially contradictory results

probably depend on the type, administration route and
strength of the polyclonal stimulus (PWM vs. OVA) [16].
They also point out that induced and targeted (cell type-
specific) KO models could be necessary to truly dissect the
role of CD26 in asthma [16].

Human System

In line with the small differences in CD26 levels observed
between TH1 and TH2 cells [72], this marker is not helpful to
differentiate TH1- from TH2-driven responses in patients with
atopic asthma [229]. However, augmented CD26 levels are
actually detected on total lymphocytes, CD4+ T cells and
iNKT (but not CD8+ T lymphocytes, monocytes or B cells)
in adult allergic asthma, reflecting the existence of an activat-
ed status [20]. This last work also published an elevation of
plasma sCD26 in patients, which was associated with eosino-
phil counts and IgE concentration. Additionally, this group
reported a lower production of TH1 chemokines (IP-10,
MIG) and higher presence of other chemokines (RANTES,
MDC) and their receptors (CCR3, CCR4), in both cases at-
tributable to a TH2-response predominance [20]. In clear con-
trast, Matsuno et al. found that sCD26 is inversely correlated
with the inflammation level in chronic eosinophilic pneumo-
nia, a disease frequently preceded or accompanied by asthma
[230]. More recently, no differences were found in serum
sCD26 levels in children with asthma or association of this
variable with either asthma or atopy (e.g., skin prick test, IgE,
eosinophil cationic protein) [86].

From the analysis of all these studies, the need to expand
them to different asthmatic phenotypes (or endotypes) and
levels of severity/chronicity is obvious. In addition, it is also
clear that other variables (sample size, lymphocytes counts, age,
sex) should also be taken into account, especially knowing (a)
the influence of sex on membrane-bound CD26 (our unpublished
results) and sCD26 levels [86–89, 91] and (b) the augmented
prevalence of asthma in boys at early ages and the higher preva-
lence of asthma in women after puberty [5, 6], especially in the
case of certain TH2

low phenotypes [1]. For example, sCD26 is
apparently increased in the blood of both atopic dermatitis (a
TH2-like disease) [231] and adult asthma patients [20], but in the
last study these results might be partially explained by a higher
proportion ofmales in the group of patients. In contrast, Remes did
not show altered sCD26 levels in asthmatic children and took into
consideration certain pre-analytical variables (gender, age) [86].
Therefore, more studies are needed to reveal the potential correla-
tion between CD26/sCD26 and the severity and phenotype of the
asthmatic pathology.

Clinical Implications

High body mass index is a factor with a positive association
with asthma development and severity [3, 232, 233]. This
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association of asthma and obesity appears to be stronger in
women than in men, with a role for both non-inflammatory
and subclinical/systemic chronic inflammatory pathways, in-
cluding the release of proinflammatory (e.g., leptin) or anti-
inflammatory (e.g., adiponectin) adipokines that regulate the
survival of eosinophils and their recruitment to the lungs
[232, 233]. As mentioned above, visceral fat in obese patients
releases the Badipokine^ sCD26 into the circulation [88], but, as
we have already been highlighting throughout this review, with
proinflammatory or anti-inflammatory effects depending on the
processed substrate: incretins or chemokines/substance P,
respectively.

Obese persons are at risk of a number of comorbidities
like type 2 diabetes mellitus (T2DM), a disease character-
ized by impaired production of incretins, with subsequent-
ly hyperglycaemia. Incretins (GIP, GLP-1, GLP-2) are
well-known CD26 substrates that lose their function when
they are processed. Inhibition of CD26 enzymatic activity
avoids the degradation of these hormones, enhances the
incretin effect, improves both the insulin secretion and the
glucose uptake and lowers the glycosylated haemoglobin
A1c levels. To achieve these goals, a new group of anti-
hyperglycaemic drugs (CD26 inhibitors or gliptins) have
come on the market, with sitagliptin, (Januvia®; Merck
Sharp & Dohme Ltd) and vildagliptin (Galvus®;
Novartis Europharm Ltd) (both approved by European
Medicines Agency/EMA in 2007) as the first outpost
(Table 4). Currently, there are several orally administered
CD26 inhibitors that have been approved by agencies like
the Food and Drug Administration (FDA) or EMA and
are being used with satisfactory results as a second- or
third-line medication in combination with other oral
anti-diabetic drugs. Commercially available gliptins in-
clude the above-mentioned sitagliptin (Januvia®,
Ristaben®) but also saxagliptin (Onglyza®), linagliptin
(Trajenta®), alogliptin (Vipidia®) and vildagliptin
(Galvus®, Jalra®, Xiliarx®) (Table 4). However, there is
a controversial debate about the secondary effects on co-
morbidities (e.g., cardiovascular outcome, renal impair-
ment, acute pancreatitis) that the long-term treatment with
these long half-life inhibitors may have. These concerns
are a result of several issues related to the great number of
CD26 substrates linked or not to the immune system.
Thus, the SAVOR TIMI-53 (saxagliptin) [234] trial de-
tected a significantly increased rate for hospitalization
due to heart failure, and a more recent study based on
FAERS (US-FDA Adverse Event Reporting System)
[235] is also consistent with this finding. In clear contrast,
the TECOS trial (sitagliptin) [236] did not find an in-
creased risk of heart failure.

More in accordance with the scope of this review, CD26
reversible inhibitors seem to increase the frequency of risk fac-
tors for asthma development/exacerbation like atopic

sensitization, rhinitis or rhinovirus infection in T2DM patients
[3]. Thus, a rapid review of clinical data published on the EMA
web page (http://www.ema.europa.eu) supports increased risk
of non-serious upper respiratory tract infections (e.g., viral
nasopharyngitis, rhinitis, sinusitis) (Table 4), which would be
in line with the costimulatory role of CD26. As Willemen and
coauthors sustain, this increased risk of infections with CD26
inhibitors (∼3% cases) cannot be comparedwith the magnitude
of the effects seen with biological agents like tumour necrosis
factor inhibitors [237]. However, this effect should not be
underestimated and must be added to the immune impairment
caused by T2DM itself to increase the overall asthma
development/exacerbation risk in these patients.

Other adverse drug reactions (ADRs) reported in
association with gliptins and more associated with an
inhibitory role of CD26 would be interstitial lung disease,
hypersensitivity reactions (including anaphylactic responses
or bronchial hyperreactivity) and skin and subcutaneous tissue
disorders such as pruritus, angioedema, rash, urticaria, cuta-
neous vasculitis or more severe and rare skin conditions
(Table 4). For example, Bullous pemphigoid [187, 238–240]
is an autoimmune subepidermal disease with overproduction
of eotaxin and eosinophilia that affects skin and mucosae.
Therefore, the association between gliptins and bullous pem-
phigoid is in tune with in vivo studies in F344 rats showing
that CD26 limits the eotaxin-mediated recruitment of eosino-
phils [187] or with the finding that oral administration of
CD26 inhibitors promotes the allergic inflammation of the
airways [45]. This means that CD26 could be part of a ho-
meostatic mechanism to downmodulate airway inflammation
mediated by TH2 and especially TH17/TH1 cells important in
some TH2

low asthma phenotypes such as obesity-related asth-
ma. Nevertheless, it should be noted that besides chemokines
there are other CD26 substrates with implications on obesity
and asthma like substance P. Inhaled substance P, but not
bradykinin, enhances the airway response to bronchoconstricting
agents in guinea pigs [241]. Substance P also favours
allergen sensitization and bronchial inflammation, as ob-
served in a mouse model of diet-induced obesity sensi-
tized and challenged with OVA and treated with an antag-
onist of the substance P receptor (NK1-R) [242].
Therefore, expanded half-life in substance P caused by
treatment with CD26 inhibitors in T2DM patients could
increase certain obesity-related comorbidities such as
asthma. In the same way, administration of sitagliptin in
T2DM generates a temporary decrease in the percentage
of peripheral blood Tregs that also could favour asthma
prevalence in these patients [243]. In clear contrast,
GLP-1-based therapies have anti-inflammatory effects
in chronic inflammatory diseases including T2DM and
asthma [244]. For example, in vitro studies have described
that CD26 inhibitors induce a decrease of NLRP3
inflammasome, toll-like receptor 4 (TLR4) signalling
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and IL-1β in macrophages via GLP-1 receptor [160].
Therefore, more studies are needed to clarify whether gliptins
have an overall positive or negative role in T2DM patients
with obesity-related asthma.

Concluding Remarks

CD26 is a relevant molecule in asthma for several
reasons. The first one is because of its potential utility
together with periostin to test the efficacy of the treatment
with interleukin-13-neutralising monoclonal antibodies

(e.g., Tralokinumab) in patients with severe uncontrolled
asthma [245, 246]. Secondly, it is because of its
multifunctionality nature, with both costimulatory and in-
hibitory roles in the immune system, apart from the high
(but variable) CD26 levels in a subset of lymphocytes
central to asthma: the CD4+ T cells. Different authors
have highlighted the inhibitory functions of this molecule
relative to signalling mediated by cytokines and
chemokines. A handful of chemokines important for
CD26+ TH2 cells during early-onset allergic or late-onset
eosinophilic asthma includes chemotactic factors whose
biological activity is reduced with low-intermediate

Table 4 DPP4 inhibitors registered for clinical use in EMA and adverse drug reactions identified during both the clinical and postmarketing
surveillance stage

Active substance used as
monotherapy

Proprietary name (company; date of
EMA authorization)

Immune system and respiratory disorders,
infections (frequency)a

Skin and subcutaneous tissue
disorders (frequency)a

Sitagliptin Januvia®
(Merck Sharp & Dohme Ltd; 2007)
Ristaben®
(Merck Sharp & Dohme Ltd; 2010)

• Hypersensitivity, including anaphylactic
responses
(not known)b

• Interstitial lung disease
(not known)

• Pruritus (uncommon)b

• Angioedema (not known)b

• Rash (not known)b

• Urticaria (not known)b

• Cutaneous vasculitis (not
known)b

• Exfoliative skin conditions
including
Stevens-Johnson syndrome
(not known)b

• Bullous pemphigoid (not
known)b

Vildagliptin Galvus®
(Novartis Europharm Ltd; 2007)
Jalra®
(Novartis Europharm Ltd; 2008)
Xiliarx®
(Novartis Europharm Ltd; 2008)

• Upper respiratory infection
(very rare)

• Nasopharyngitis (very rare)

• Urticaria (not known)b

• Bullous pemphigoid
(not known)b

• Exfoliative skin conditions
(not known)b

Saxagliptin Onglyza®
(AstraZeneca AB; 2009)

• Small decrease in the absolute count of
peripheral blood lymphocytes

• Upper respiratory infection (common)
• Sinusitis (common)

• Pruritus (uncommon)b

• Angioedema (rare)b

• Rash (common)b

• Urticaria (uncommon)b

• Dermatitis (uncommon)

Linagliptin Trajenta®
(Boehringer Ingelheim International

GmbH; 2011)

• Nasopharyngitis (uncommon)
• Hypersensitivity (e.g., bronchial

hyperreactivity) (not known)
• Cough (uncommon)

• Angioedema (rare)b

• Rash (uncommon)b

• Urticaria (rare)b

• Bullous pemphigoid (not
known)b

Alogliptin Vipidia®
(Takeda Pharma A/S; 2013)

• Upper respiratory infection (common)
• Nasopharyngitis (common)
• Hypersensitivity reactions (not known)b

• Pruritus (common)
• Rash (common)
• Exfoliative skin conditions,

including
Stevens-Johnson syndrome,
Erythema
multiforme, Angioedema and
Urticaria
(not known)b

a Absolute frequencies of ADRs; very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1000 to 1/100), rare (≥1/10,000 to 1/1000), very
rare (<1/10,000) or not known (i.e., not estimated)
b Adverse drug reactions (ADRs) identified based on postmarketing surveillance
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(eotaxin) or high (MDC, SDF1α) efficiency, whereas im-
portant chemokines for CD26+ TH1 (I-TAC, IP-10, Mig)
and CD26high TH17 cells (MDC), two Teff subsets relevant
in obesity-related asthma, late-onset neutrophilic asthma
or severe asthma, are inactivated with intermediate-high
effectiveness. Therefore, CD26 could act as a Bbiological
brake^ by reducing the attraction of Teff cells at sites of
inflammation (e.g., the bronchi). This means that CD26
inhibitors used in T2DM patients could lead to a higher
persistence of unprocessed substance P or chemokines
and exacerbation of TH2

high and especially TH2
low asthma.

In conclusion, it is necessary to previously take into
consideration the many existing questions regarding the
biological functions of this enzyme before the therapeutic
targeting of this molecule [247], as CD26 inhibitors could
enhance the frequency of hospital admission amongst
people with certain asthma phenotypes.
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