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Amplicon high-throughput sequencing of 16S ribosomal RNA (rRNA) gene is currently
the most widely used technique to investigate complex gut microbial communities.
Microbial identification might be influenced by several factors, including the choice
of bioinformatic pipelines, making comparisons across studies difficult. Here, we
compared four commonly used pipelines (QIIME2, Bioconductor, UPARSE and mothur)
run on two operating systems (OS) (Linux and Mac), to evaluate the impact of
bioinformatic pipeline and OS on the taxonomic classification of 40 human stool
samples. We applied the SILVA 132 reference database for all the pipelines. We
compared phyla and genera identification and relative abundances across the four
pipelines using the Friedman rank sum test. QIIME2 and Bioconductor provided
identical outputs on Linux and Mac OS, while UPARSE and mothur reported only
minimal differences between OS. Taxa assignments were consistent at both phylum
and genus level across all the pipelines. However, a difference in terms of relative
abundance was identified for all phyla (p < 0.013) and for the majority of the most
abundant genera (p < 0.028), such as Bacteroides (QIIME2: 24.5%, Bioconductor:
24.6%, UPARSE-linux: 23.6%, UPARSE-mac: 20.6%, mothur-linux: 22.2%, mothur-
mac: 21.6%, p < 0.001). The use of different bioinformatic pipelines affects the
estimation of the relative abundance of gut microbial community, indicating that studies
using different pipelines cannot be directly compared. A harmonization procedure is
needed to move the field forward.

Keywords: 16S rRNA amplicon sequencing, QIIME2, bioconductor, UPARSE, mothur, microbiome, fecal
human samples
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INTRODUCTION

The human gut microbiota (GMB) represents the next frontier in
medicine to unravel the pathophysiology of chronic diseases and
to develop novel treatments. A growing number of studies have
shown that human microbial communities can contribute to the
development of several pathologies, including cancer (Contreras
et al., 2016; Ren et al., 2019), metabolic (Xiao and Zhao, 2014;
Cai et al., 2015) and inflammatory (Tedjo et al., 2016; Zhou
et al., 2018) disorders, but also brain diseases (Scheperjans et al.,
2015; Cattaneo et al., 2017; Horne and Foster, 2018; Rodrigues-
Amorim et al., 2018; Winter et al., 2018).

High-throughput sequencing (HTS) technologies have
opened new frontiers in microbial community analysis by
providing a cost-effective means to identify the microbial
phylotypes present in samples (Caporaso et al., 2011). This
is commonly achieved by sequencing the 16S ribosomal
RNA (rRNA) gene for bacteria and archaea, which contains
also specific variable regions that can be used for taxonomic
classification. 16S rRNA sequencing allows researchers to get
information about the microbial diversity within the gut, to
assist in identifying disease-associated microbiome changes.
However, the processing of 16S rRNA gene amplicon sequences
requires specialized technical and bioinformatic expertise not
always accessible to biologists in their own lab. Indeed, the size
and complexity of these data, incompleteness of nucleotide
databases, and the numerous tools available for each step of
the analytical process, make these data difficult to process by
untrained users. The analytical post-processing steps required
to extract taxonomic information from raw sequences are
essentially threefold: (i) merging of read pairs into longer
single reads, (ii) quality control and read trimming, and (iii)
taxonomic assignment. Each step may need several tools
or algorithms, and each of them may require expertise for
parameter definition and/or programming and thus may need
extensive computational resources and expertise. Furthermore,
these bioinformatic tools are not always well-documented,
and are often patched together by users, raising doubts on the
reproducibility of results (Nekrutenko and Taylor, 2012).

Several workflows have been recently developed to overcome
these limitations by simplifying the analytical procedure
and allowing untrained users to familiarize themselves with
advanced programming or computational techniques. Among
the bioinformatic pipelines available so far, those used in
QIIME2 (Bolyen et al., 2019), Bioconductor (Callahan et al.,
2016b), USEARCH (Edgar, 2010) and mothur (Schloss et al.,
2009) are the most widely used to analyze 16S rRNA gene
sequencing data. Bioconductor and several plugins in QIIME2
[i.e., DADA2 (Callahan et al., 2016a) and Deblur (Amir et al.,
2017)] allow researchers to infer amplicon sequence variants
(ASVs) while UPARSE and mothur return operational taxonomic
units (OTUs). For ASVs, sequences are resolved down to the level
of single-nucleotide differences over the sequenced gene region,
while for OTUs sequences that have typically less than 3% of
variance from each other were binned into the same OTU.

Although several studies have evaluated the impact of different
bioinformatic pipelines on microbial taxonomy, comparative

data on real dataset are still missing. Indeed, previous studies
analyzed synthetic simulated datasets (Almeida et al., 2018),
mock communities (Segota and Long, 2019), chicken (Allali
et al., 2017), or rumen (López-García et al., 2018) microbiota. To
the best of our knowledge, only three studies analyzed human
16S rRNA gene amplicon sequencing data, but have used the
old release of QIIME (D’Argenio et al., 2014; Plummer and
Twin, 2016) or did not include Bioconductor in the comparison
(Prodan et al., 2020). Finally, as reported for other complex
bioinformatic data processing (i.e., neuroimaging analysis), the
same pipelines are known to generate different results depending
on the computing platform where they are compiled and
executed (Gronenschild et al., 2012; Glatard et al., 2015). This
variable has never been described in the literature in the context
of the analysis of 16S rRNA gene sequencing data.

Based on this, in this study we aimed at evaluating whether
different bioinformatic pipelines, and also different OS, can
influence the taxonomic classification of the fecal microbiota in
40 human samples. In particular, we analyzed the human 16S
rRNA gene sequencing data by using four different pipelines
(QIIME2, Bioconductor, UPARSE, and mothur), we ran them
using two different OS (Linux and Mac OS), and we compared
the results focusing on phylum and genus identification and
relative abundance.

MATERIALS AND METHODS

Stool Collection
Stools were collected from participants to an existing larger
cohort study on brain aging in 18 memory clinics in Eastern
Lombardy, Italy. The parent study aimed at assessing the added
value of amyloid imaging in the clinical work-up of patients
with cognitive complaints (the Incremental Diagnostic Value of
Florbetapir Amyloid Imaging [INDIA-FBP] study) (Altomare
et al., 2018). After completion of the INDIA-FBP procedures, 150
patients and controls were asked to further contribute with their
samples of stools and blood. As previously reported (Cattaneo
et al., 2017), stool samples were collected from subjects at
their own home in a sterile plastic cup, stored at −20◦C, and
delivered to IRCCS Fatebenefratelli Institute in Brescia within
the following 24 h, where they have been stored at −20◦C until
their processing. The stool samples used in the current study were
from a subgroup of 40 subjects with cognitive performance from
normal to dementia.

The study was approved by the Ethics Committee
of “Comitato Etico dell’IRCCS San Giovanni di Dio –
Fatebenefratelli” (Brescia, Italy) under registration number
57/2014. Written informed consent was obtained from
all participants.

DNA Extraction
DNA was extracted from 180 to 200 mg of frozen stool using the
QIAamp DNA Stool Mini Kit (Qiagen Retsch GmbH, Hanover,
Germany) and according to the manufacturer’s instructions.
Bead-beating homogenization by TissueLyser II (Qiagen Retsch
GmbH, Hanover, Germany) was performed to mechanically
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disrupt fecal samples before DNA extraction. The samples were
homogenized for 10 min at 30 Hz. DNA was then quantified
using a NanoDrop ND-1000 spectrophotometer, and then stored
at + 4◦C for subsequent analyses. All the stool samples were
processed at the same time.

PCR Amplification, Barcoding, and DNA
Sequencing
Bacterial DNA was amplified and purified according to
16S Metagenomic Sequencing Library Preparation protocol
by Illumina. The first step consists in the amplification
of the regions V3 and V4 of the bacterial ribosomal
RNA 16S gene, by using the suggested primers (Forward
Primer = 5′TCGTCGGCAGCGTCAGATGTGTATAAGAGACA
GCCTACGGGNGGCWGCAG; Reverse Primer = 5′GTCTCGT
GGGCTCGGAGATGTGTATAAGAGAC AGGACTACHVGGG
TATCTAATCC) and the suggested cycling conditions (3′ at
95◦C; 25 cycles: 30′′ at 95◦C, 30′′ at 55◦C, 30′′ at 72◦C; 5′ at
72◦C). The amplicon DNA was immediately purified with a
magnetic bead step, washed in 80% ethanol and resuspended
in Tris-HCl 10 mM. Amplicon DNA integrity was assessed by
2.0% agarose gel electrophoresis on gels containing 0.8 mg/mL
ethidium bromide and stored at −20◦C. Within 1 week from
storage, amplicon DNA was uniquely dual-indexed, by using
the suggested indices (Nextera XT) and the suggested cycling
conditions (3′ at 95◦C; 8 cycles: 30′′ at 95◦C, 30′′ at 55◦C,
30′′ at 72◦C; 5′ at 72◦C). The resulting indexed DNA was
immediately purified with a magnetic bead step, washed in 80%
ethanol, resuspended in Tris-HCl 10 mM and stored at −20◦C.
Within 1 week from storage, indexed DNA was quantified
using fluorometric quantification (Qubit, Invitrogen) and the
amplicon length was determined by using a Bioanalyzer DNA
1000 chip (Agilent). DNA was then normalized to 4 nM, pooled,
denatured with NaOH 0.1N, diluted to the final concentration
of 10 pM and loaded into the MiSeq v3 cartridge (Illumina).
A paired-end read of 300 cycles per read was performed. Samples
from cognitively intact persons and demented patients were
sequenced in two different runs. Data are publicly available at
www.ebi.ac.uk/ena/data/view/PRJEB35434.

Bioinformatic Analyses
The paired-end MiSeq Illumina reads (2 × 300 bp) were
processed by using four popular tools: QIIME2 (Bolyen et al.,
2019) (version 2018.8), Bioconductor (Callahan et al., 2016b)
(version 29 October 2018), USEARCH (Edgar, 2010) (version
11.0.667) and mothur (Schloss et al., 2009) (version 1.43.0).
For QIIME2, Bioconductor and mothur, the 64 bit version
was used while for USEARCH (Edgar, 2010), only a memory-
confined 32-bit version is freely available for academic use.
QIIME 2 was installed in a conda environment. All the pipelines
were run on both a Linux workstation (Ubuntu 14.04.5 LTS)
equipped with Intel CPU 8 × 3.70 GHz processors and 31.3
GB of RAM and a MacBook Pro (15-inch, 2018) with 2.6 GHz
6-core Intel Core i7 processor, 16 GB of RAM and macOS
Mojave, version 10.14.6. In QIIME2 we followed the “Moving
Pictures” tutorial (accessed 3 January 2019), in Bioconductor the

pipeline reported in https://f1000research.com/articles/5-1492/
v2 (version: 29 October 2018), in USEARCH (Edgar, 2010)
the instruction of the online tutorial1 (accessed 4 January
2019), and in mothur the SOPs in https://www.mothur.org/
wiki/MiSeq_SOP (accessed 09/27/2018). Details for each pipeline
are shown in Figure 1 and the list of commands used for
each tool is reported in Supplementary Methods 1–6. Briefly,
sequencing Illumina MiSeq data were already demultiplexed. The
parameters used for the quality check of the 16S rRNA data
were those suggested in the corresponding tutorials. In general,
forward and reverse primers, reads containing ambiguous bases
or homopolymers greater than eight base pairs in length as
well as chimeras were removed in all pipelines. Moreover, in
QIIME2 we set a maximum number of expected errors equal
to 2 and reads truncation if the quality score was less than
2. In Bioconductor we used a maximum of 2 and 5 expected
errors per-read for forward and reverse reads, respectively, and
reads truncation if the quality score was less than 2; moreover,
features with ambiguous phylum annotation were discarded.
For both QIIME2 and Bioconductor, the software packages
Divisive Amplicon Denoising Algorithm 2 (DADA2) (Callahan
et al., 2016a) was used to infer true biological sequences from
reads. Since the samples were sequenced in two different runs
and that different runs may have different error profiles, the
denoising process was applied separately to the two runs. In
QIIME2, the “dada2” plugin uses the DADA2 R library and has
been implemented to perform sequence denoise, dereplication,
and chimeras filtering. All these steps correspond to individual
commands in Bioconductor. For QIIME2, the pipeline included
also the extraction of the representative sequences using “feature-
table” and their classification by taxon using the “feature-
classifier” (Supplementary Methods 1). For Bioconductor, the
pipeline included also the taxonomic classification of the ASVs
using “assignTaxonomy,” the construction of the phylogenetic
tree using the phangorn R package (v2.4.0) (Schliep, 2011) and
the creation of a single data object that can be used for graphical
and statistical purposes using phyloseq R package (v1.24.2)
(McMurdie and Holmes, 2013) (Supplementary Methods 2).
The UPARSE (Edgar, 2013) and the UNOISE (Edgar, 2016)
pipelines are both implemented in USEARCH and have been
used to defined OTUs with a similarity threshold of 97
and 99%, respectively, as recommended by the author of
USEARCH2. All the steps preceding the clustering, namely
merging, filtering (where a maximum number of expected errors
equal to 1 was set) and dereplication, are the same between
the two pipelines (Supplementary Methods 3). In mothur,
sequences were merged using “make.contig” command, quality
filtered by “screen.seqs” command, dereplicated, aligned to the
reference database SILVA v132 (Quast et al., 2013) and pre-
clustered allowing 1 difference for every 100 bp of sequence
(four differences in our case) (Supplementary Methods 4).
After removing the undesirables features (i.e., chloroplasts,
mitochondria, archaea, eukaryota, or unknown) using the
“remove.lineage” command and chimera by applying the

1https://youtu.be/pOV_tuZqzso
2https://www.drive5.com/usearch/manual/uparse_otu_radius.html
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FIGURE 1 | Overview of the pipelines used by free and open-source workflows: QIIME2, Bioconductor, UPARSE, and mothur. Each gray box represents a command
of the pipelines. For UPARSE, chimera filtering is part of the OTU clustering step, and OTU taxonomic assignment was performed using mothur.

“chimera.vsearch” command, unique sequences were clustered
into OTUs at 97 and 99% identity.

SILVA (version 132) (Quast et al., 2013)3 and RDP
(version 16) reference databases were customized following
the instructions on the respective tutorials for QIIME2
and mothur (Supplementary Methods 5, 6) and were
downloaded for Bioconductor (SILVA v1324, RDP v165). As
SILVA version 132 was not available for UPARSE, taxonomic
assignment of OTUs was performed on mothur (Supplementary
Method 3), where bacterial classification identity was set to
80%. ASVs and OTUs found in a single sample (also named as
singletons) were discarded.

In order to facilitate the data analysis and reproducibility,
the list of all commands used for each pipeline and the number
of reads assigned to taxa, are included as Supplementary
Methods 1–6 and Supplementary Table 1.

Statistical Analysis
All statistical analyses and graphs were performed using
GraphPad Prism Software (v 8.1.1) (GraphPad Software, San
Diego, CA, United States) except for Venn diagrams that were
created with the jvenn web application6 (Bardou et al., 2014).
Differences among the four used pipelines, in term of the number
of reads assigned, the number of identified phylum and genera
as well as their relative abundances were tested using Friedman

3www.arb-silva.de/
4https://zenodo.org/record/1172783#.XtkSOi-ua-y
5https://zenodo.org/record/801828#.Xh2Uqy3h3AI
6http://jvenn.toulouse.inra.fr/app/example.html

rank sum test conducted with a Dunn’s correction. Wilcoxon
signed rank test was applied when genera relative abundances
were compared between two pipelines. Significance level of
alpha = 0.05 was used.

RESULTS

Impact of the Use of Different Pipelines
on Data Output
A total of 4715000 reads from 40 fecal samples were used to infer
and to compare the taxonomical composition identified by the
pipeline suggested in QIIME2, Bioconductor, UPARSE/UNOISE
and mothur. The processing of the samples took approximately
3 h of computational time in QIIME2, approximately 8 h in
Bioconductor, less than 1 h in UPARSE and approximately 9 h
in mothur (Table 1). The comparison of the pipelines between
Linux and Mac OS showed that QIIME2 and Bioconductor
provided identical outcomes, negligible differences in the number
of reads assigned at any identity were obtained when using
UPARSE or mothur (p > 0.999).

Overall, after filtering and denoising, pipelines in QIIME2 and
Bioconductor resulted in a higher number of reads to assign
(QIIME2: 3391670; Bioconductor: 3736927; UPARSE: 3173733,
regardless the OS; mothur: 3244489, regardless the OS). Among
these reads, 84–99% were assigned at the phylum level and 75–
99% at the genus level, depending on the pipeline used. Similarly,
the proportion of reads assigned to the Bacteria domain, but
with no taxonomical assignment at phylum and genus level,
differed dramatically among pipelines. Excluding Bioconductor,
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where the removal of unclassified reads is one step included in
the pipeline, the proportion of unclassified reads at the genus
level varied from 5% in QIIME2 to 24–29% in UPARSE and
mothur (p < 0.001, df = 4, X2 = 103). UPARSE-linux provided
the same number of unclassified reads at the phylum level as
those obtained by using UPARSE-mac (p > 0.999), and the same
number of unclassified reads at the genus level as those obtained
with mothur, regardless the OS (p > 0.999).

Impact of the Use of Different Pipelines
on Phylum Taxonomic Identification
All the used pipelines showed general agreement in the
identification of the phyla distribution: the proportion of
Firmicutes varied from 46.6 (UPARSE-mac) to 48.3% (QIIME2),
Bacteroidetes from 39.7 (QIIME2) to 41.9% (UPARSE-mac),
Proteobacteria from 5.7 (QIIME2, Bioconductor, UPARSE) to
6.0% (mothur), Verrucomicrobia from 1.45 (UPARSE, regardless
the OS) to 1.90% (Bioconductor), Actinobacteria from 1.44
(UPARSE-linux) to 1.59% (Bioconductor) and, Tenericutes
from 0.22 (mothur-mac) to 0.34% (QIIME2) (Figure 2).
Cyanobacteria were detected in lower abundance by UPARSE
(0.12%, regardless the OS) and mothur (0.18%, regardless the
OS) as compared to Bioconductor (1.68%) and QIIME2 (1.21%),
whereas Lentisphaerae were identified only by using QIIME2
and Bioconductor (0.47 and 0.50%, respectively). Pairwise
comparisons among pipelines revealed widespread differences in
the relative abundance of all the phyla (p < 0.0002) (Figure 3).
UPARSE (on Linux and Mac OS) or mothur (on Linux and Mac
OS) provided comparable values (p> 0.999). Similar results were
obtained clustering OTUs at 99% (Supplementary Figure 1).

Impact of the Use of Different Pipelines
on Genus Taxonomic Identification
At the genus taxonomic level, QIIME2 and Bioconductor
identified a higher number of bacterial genera than those
obtained by UPARSE-linux, UPARSE-mac, mothur-linux, and
mothur-mac (p < 0.001, df = 5, X2 = 125) (Figure 4A). After
singleton removal, 187 genera were identified by QIIME2, 232
by Bioconductor, 120 by UPARSE-linux, 118 by UPARSE-mac,
139 by mothur-linux, and 138 by mothur-mac. Considering all
the 316 genera identified, 78 were in common to all the different
pipelines, 17 were in common to 5, 19 were in common to
4, 8 were in common to 3, and 87 were in common to 2 out
of 6 pipelines. In terms of absolute number of shared genera,
QIIME2 and Bioconductor were the two pipelines that provided
the most similar results, sharing 147 genera, while UPARSE-mac
and QIIME2 were the most different ones, sharing 78 genera.
In terms of proportion of shared genera, UPARSE-linux and
UPARSE-mac as well as mothur-linux and mothur-mac, were
the most producing the overlapping results. Similar results were
found after removal of the genera identified in less than five
subjects or with less than 10 reads across all samples (Figure 4B).

As the quantitative comparison of all the genera was
unfeasible, we arbitrarily selected and compared the 10 most
abundant genera identified in each pipeline. All the used
pipelines showed general agreement in the identification of the
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FIGURE 2 | Phyla distribution as identified by using QIIME2, Bioconductor, UPARSE, or mothur. The phyla present in less than 0.005% were Epsilonbacteraeota
(QIIME2: 0.0046%, Bioconductor: 0.0043%, UPARSE-linux: 0.0049%, UPARSE-mac: 0.0049%, mothur: 0.0050%) and, for mothur only, Planctomycetes
(0.0006%), Acidobacteria (0.0003%), Nitrospirae and Gemmatimonadetes (0.0001% both) Chloroflexi and Omnitrophicaeota (<0.0001%, both).

FIGURE 3 | Comparison of the relative abundance of phyla obtained by using QIIME2, Bioconductor, UPARSE, or mothur. p-Values were calculated using Friedman
test followed by Dunn’s multiple comparisons test. Wilcoxon signed rank test was applied when only two pipelines were compared.

most abundant genera. It has been found that Bacteroides,
Faecalibacterium, Alistipes and Subdoligranulum were
consistently identified by all the pipelines (Figure 5). Moreover,
Blautia and Ruminococcus_1 were concordantly identified
by QIIME2, mothur-linux, mothur-mac, UPARSE-linux and

UPARSE-mac; CAG-352, Ruminococcaceae ge, Agathobacter
and Prevotella 7 were concordantly identified by mothur-
linux, mothur-mac, UPARSE-linux and UPARSE-mac and,
Parabacteroides, Barnesiella and Ruminococcaceae UCG-002
were concordantly identified by QIIME2 and Bioconductor.
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FIGURE 4 | Venn diagram showing the number of shared and specific bacterial genera among the pipelines. Histogram representing the number of genera identified
by each pipeline and number of genera shared between 6, 5, 4, 3, 2, and no pipelines are also reported.
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FIGURE 5 | Comparison of the relative abundance of the 10 most abundant genera obtained by applying QIIME2, Bioconductor, UPARSE, or mothur at genera
level. p-Values were calculated using Friedman test followed by Dunn’s multiple comparisons test. Wilcoxon signed rank test was applied when only two pipelines
were compared.

Eubacterium coprostanoligenes group was identified by QIIME2
only while Lachnosphira, Ruminococcus 2, and Lachnospiraceae
NK4A126 group by Bioconductor only. Pairwise comparisons
among pipelines revealed widespread differences in the relative
abundance of above-mentioned shared genera. Indeed, pipeline-
dependent differences in term of relative abundance was
reported for all (p < 0.041) except for Ruminococcus_1 and
Ruminococcaceae (p > 0.074). Among the same 10 genera
identified as most abundant by UPARSE-linux and UPARSE-
mac, a trend forward significance was reported for CAG-352 only
(p = 0.056). Similar results were obtained after clustering OTUs
at 99% (Supplementary Figure 2).

The 10 genera identified as the most abundant from the
different pipelines were selected also when RDP was used as
a reference database. Six out of 10 genera were consistently
found in all pipelines and the 3 most abundant genera,
Bacteroides, Faecalibacterium and Alistipes, have also been
identified using SILVA. As in the previous analysis, pairwise
comparisons among pipelines revealed widespread differences
in the relative abundance of shared genera (p < 0.031)
(Supplementary Figure 3).

DISCUSSION

In this paper, we compared four commonly used pipelines,
QIIME2, Bioconductor, UPARSE and mothur, run on both Linux
and Mac OS, to evaluate how much different bioinformatics
pipelines and OS can influence taxonomic classification. In

terms of usability of each pipeline (Table 2), we found those
implemented in QIIME2 and UPARSE to be the most user-
friendly considering that they include only a limited number
of commands characterized by simple syntaxes and minimal
programming knowledge is required. In contrast, Bioconductor
uses the R language, providing an advantageous interface for
trained users who are typically familiar with R. Nevertheless,
the extensive and detailed documentation of Bioconductor and
mothur facilitates their application for users with intermediate
command line experience. In the case of UPARSE, this was
true except for the taxonomic assignment step, as the UPARSE
pipeline does not provide taxonomic assignments to the
OTU representative sequences or recommendations on how
to run it. The main differences between pipelines consist in
the installation procedures. Indeed, USEARCH and mothur
only require downloading an executable file, while QIIME2
and Bioconductor require configuration and installation. In
particular, as it has been previously noted in a similar study
using QIIME1 (D’Argenio et al., 2014), QIIME2 depends on
several programs, making the installation much more time
consuming and laborious.

We have shown that the resulting outputs differed significantly
between pipelines despite using the same inputs. In particular,
when the clustering was used (i.e., 97% OTU clustering using
UPARSE), this resulted in fewer distinct genera in total.
This can be due either to the clustering step erroneously
clustering distinct genera together due to sequence similarity
(which would result in only a single genus being assigned
to the OTU), i.e., clustering underestimating the correct
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TABLE 2 | Usability of pipelines: pros and cons from an untrained user’s point of view.

QIIME2 Bioconductor UPARSE Mothur

Open source
√

Yes
√

Yes ∅ 32-bit only
√

Yes

Installation
√

Clear online instruction ∅ Specific
version dependencya

√
∅ Easy for R user

√
Installation not required

√
Installation not required

User support
√

Tutorials, forum, SOPs
√

Tutorials, forum, SOPs
√

Video tutorials, forum, SOPs
√

Tutorials, forum, SOPs

Specific computer skills
√

Not required ∅ Required
√

Not required ∅ Required

aMarks indicate pros and cons, respectively. “∅” and “
√

” Miniconda 2 or 3 depending on python 2.7 or 3.7, respectively.

number of distinct genera, or due to ASVs sometimes being
mis-assigned and resulting in false positives in the list of
identified genera. We also found that, despite neither methods
employing clustering, processing with Bioconductor led to
significantly more detected genera than QIIME2. Examples
such as these highlight the fact that measures of bacterial
community richness (e.g., alpha- and beta-diversity) cannot
be reliably compared for samples processed using different
pipelines. For example, the fact that different pipelines result
in different numbers of distinct organisms will result in
different alpha-diversity values for the same sample. Conducting
these comparisons simply using the default pipeline values
result in clear differences between pipelines that are difficult
to interpret, both in indices of alpha- and beta-diversity
(Supplementary Figure 4).

We also found that more reads are unassigned by SILVA
when using UPARSE and mothur (which produce OTUs) than
QIIME2 (which produces ASVs). OTU clustering generally
results in a representative sequence (i.e., cluster centroid) that
is taxonomically annotated. Due to the ranking of individual
unique 16S rRNA sequences by abundance as the first step of
the clustering procedure in UPARSE, this is believed to result
in more biologically meaningful representative sequences given
the cluster centroid is always the most abundant sequence in the
cluster. In contrast, ASVs may allow the detection of potentially
important and distinct organisms that may have low prevalence
across samples. Theoretically, this may be at the expense of
the ability to annotate them taxonomically, but our data do
not indicate this. However, since the other ASV-producing
method used (Bioconductor) discards unassigned reads prior
to the analysis, it is unclear to what extent this difference is
due to assignment of ASVs and OTUs, or due to differences
in the pipeline.

It was surprising to us that application of the same UPARSE
and mothur commands (cf. Supplementary Methods 3, 4)
on two different OS (Linux and Mac) produced different
results, and we were unable to establish the reason for this
observed difference.

Of particular note is the fact that the starkest differences
in relative abundances between pipelines were observed in
low abundance organisms. For example, Lentisphaerae were
only detected using QIIME2 and Bioconductor (with relative
abundances below 1% in both cases). The problem is further
compounded by the fact that low abundance organisms are likely
to be less represented in reference databases. Similar observations
can be garnered from a previous analysis comparing the MG-
RAST and QIIME1 pipelines, where low abundance organisms

can differ in their estimated abundance by several orders of
magnitude (D’Argenio et al., 2014). This is significant since it
is likely that these organisms play nonetheless important roles
in human diseases.

It is worth noting that there were clearly discernible phylum-
specific biases in certain pipelines: in particular, we observed
statistically significant differences between QIIME2 and all
other pipelines in Firmicutes phylum annotations, and between
QIIME2 and all other pipelines except Bioconductor for the
Bacteroidetes phylum. Thus, different processing pipelines can
lead to differences even at the level of phyla, including the two
most abundant and prevalent phyla of the human gut microbiota.

A difficulty we identified in our analysis is that certain genera
have better inter-pipeline agreement than others. For example,
the abundance of the Faecalibacterium genus is in good general
agreement across outputs from all pipelines, while Bacteroides
is less so (Figure 5). While we cannot establish the reason
behind these differences, we can suggest that they could be likely
related to the diversity within these genera: Faecalibacterium
consists of few species with fewer close relatives, compared to
Bacteroides which has a great species-level diversity in the human
gut microbiota and is therefore more sensitive to bioinformatic
steps before taxonomic assignment. Moreover, it is possible that
the choice of taxonomic classification method (which are built
within different databases) can impact the results differently in
different regions of the phylogenetic tree.

Overall, we report differences associated with processing of
the same raw data using different bioinformatics pipelines.
The magnitude of such differences is comparable to what
reported by previous studies investigating the impact of upstream
sample processing. Different DNA extraction methods and
laboratory locations have been shown to lead to up 10- and
2-fold differences respectively in the relative abundances of
specific bacterial genera, respectively (Kennedy et al., 2014).
For example, differences in relative abundance of the highly
abundant Bacteroides genus can be over twofold depending on
the extraction method used, and we observed similar differences
in magnitude from the sample between different pipelines or
even the same pipeline on different OS (Figure 5). Similarly, a
comparison between Illumina versus 454 Titanium sequencing
platforms resulted in up to twofold difference in the number
of detected bacterial genera (Claesson et al., 2010), which is
comparable to the difference between Bioconductor and UPARSE
or mothur (Figure 4). In addition, a study investigating distinct
sample collection and storage methods reported similar (albeit
relatively small) differences in the relative abundance of the
dominant bacterial phyla (Choo et al., 2015).
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CONCLUSION

Beyond differences in runtime, the ease of use and installation,
we have demonstrated that the use of different bioinformatic
pipelines has a strong impact on resulting analyses, with a
magnitude that is comparable to differences in upstream sample
treatment and sequencing procedures. These differences include
the presence of a different number of assigned reads, different
number of distinct taxonomies detected in the dataset, and the
relative abundance of different organism in the gut microbial
community. Taken together, our data indicate that results cannot
be compared if obtained by applying different pipelines and
that a harmonization is urgent to move forward in the field.
As previously noted in the literature, adherence to specific
harmonization guidelines would greatly mitigate these difficulties
(Nekrutenko and Taylor, 2012). Such guidelines should report
the exact versions of software used in an analysis, indicating
specific parameters used (even if these are default settings), and
standardizing methods and parameter sets within and between
research groups. In addition, the field would likely benefit from
working as much as possible with open-source, collaborative
pipelines and frameworks such as QIIME2, which integrates and
is continuously updated with state-of-the-art methods developed
in the field. These frameworks can then be automatically applied
to the existing set of raw data deposited in public repositories.
This may require a shift away from emphasizing static results in
an immutable publication format, and toward constantly updated
and publicly available databases containing data in both raw and
processed forms, such as MG-RAST.

Moreover, particular caution is warranted when conducting
meta-analyses combining the results of several studies.
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