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Abstract

Previous research has consistently shown that for sounds varying in intensity over time, the

beginning of the sound is of higher importance for the perception of loudness than later

parts (primacy effect). However, in all previous studies, the target sounds were presented in

quiet, and at a fixed average sound level. In the present study, temporal loudness weights

for a time-varying narrowband noise were investigated in the presence of a continuous

bandpass-filtered background noise and the average sound levels of the target stimuli were

varied across a range of 60 dB. Pronounced primacy effects were observed in all conditions

and there were no significant differences between the temporal weights observed in the con-

ditions in quiet and in background noise. Within the conditions in background noise, there

was a significant effect of the sound level on the pattern of weights, which was mainly

caused by a slight trend for increased weights at the end of the sounds (“recency effect”) in

the condition with lower average level. No such effect was observed for the in-quiet condi-

tions. Taken together, the observed primacy effect is largely independent of masking as well

as of sound level. Compatible with this conclusion, the observed primacy effects in quiet and

in background noise can be well described by an exponential decay function using parame-

ters based on previous studies. Simulations using a model for the partial loudness of time-

varying sounds in background noise showed that the model does not predict the observed

temporal loudness weights.

Introduction

Loudness is one of the fundamental aspects of auditory sensation and is important when it

comes to the perception of our environment through the auditory channel. Extensive research

on steady-state sounds has been done in the past and loudness models are available that

account for a large proportion of the psychoacoustic data [1–4]. However, static loudness

models do not seem to account for all aspects of the loudness of sounds that vary in level across

time [5,6].
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One reason may be that not all temporal parts of a sound are weighted equally when listen-

ers judge loudness. Previous studies consistently show that the beginning of a time-varying

sound is of higher importance for the perception of loudness than later temporal parts [7–9],

which has been referred to as a primacy effect (for a review see [10]). The primacy effect can be

described by an exponential decay function with a time-constant of about 200–300 ms [10,11].

The temporal weight at the beginning of the sound is 4 to 5 times higher than the asymptotic

weight, and the weight assigned to a temporal portion of a sound is the integral of this function

over the segment duration [11]. In addition to the primacy effect, some studies also found

higher perceptual weights assigned to the end of the sounds, commonly referred to as a

recency effect [8,9].

Oberfeld and Plank [7] suggested several potential explanations of the primacy effect. First,

the primacy effect might originate from an attention orientation response [12–14] to the

sound onset, in the sense that the sound onset captures the attention [15]. However, their data

did not support this explanation. They presented sounds starting with a gradual increase in

level across the first few hundred milliseconds ("fade-in"). This should have reduced the per-

ceived abruptness of the onset and, as a consequence, the capture of attention [16,17]. How-

ever, the data in [7] showed a delayed primacy effect in the sense of a high weight on the first

unattenuated temporal segment. Another possible source of the primacy effect might be the

response characteristic of auditory nerve (AN) neurons which tend to show a peak in the firing

rate at the onset of a sound [18–21]. However, because the activity of the auditory pathway

involves different types of neurons and efferent as well as afferent loops, a precise model of the

auditory nerve would be required to evaluate to which extent the observed primacy effect can

be explained on this basis.

Here, we investigate two factors that could potentially have an effect on both an attention

orienting response and on the response of auditory nerve neurons. The first factor is the pres-

ence or absence of a continuous background noise, and the second factor is the level of the tar-

get sound.

Concerning the first factor, all previous experiments measuring temporal loudness weights

presented sounds in quiet. This is a rather artificial condition since in a real environment, a

target sound (we are listening to) is usually embedded in a background made of other sounds.

The aim of the present study was thus to investigate the influence of a continuous background
noise on the occurrence of the primacy and recency effects. The target sounds were presented

in quiet as well as in a background noise. The presence of the continuous background noise

could be expected to reduce the capture of attention by the target sound onset, because it

makes the onset of this sound less abrupt or less surprising. Although we are not aware of rele-

vant studies using auditory distractors, in the visual domain attentional capture appears to

occur only for abrupt onsets of visual distractors [16,17]. Therefore, if the primacy effect was

due to attentional capture to the target sound onset, it should be reduced for sounds that are

presented in continuous background noise. In addition, responses of auditory nerve neurons

are sensitive to background stimuli in the way that in the presence of a background noise the

initial peak becomes smaller compared to the steady-state rate [22]. Thus, if the primacy effect

was related to the initial peak in the AN firing rate, we assume that its size should be reduced

in the presence of a background noise.

Concerning the second factor (target level), several studies investigated the effect of the rela-

tive level of temporal target components within a sound on the perceptual weights, showing

that target components with a higher relative level receive a higher weight ("loudness domi-

nance"; e.g., [7,23]). However, no previous study systematically tested for an effect of the aver-

age target level on the temporal loudness weights. Therefore, in the present study we measured

temporal loudness weights for several different average sound pressure levels of the target
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sounds. A variation of the average target level might again affect the capture of attention to the

sound onset, in the sense that the onset of a target sound presented only a few decibels above

the detection threshold might appear less abrupt than the onset of a target sound with much

higher level [16,17]. This leads to the prediction that if the primacy effect is related to atten-

tional capture, more pronounced primacy effects should be found in the conditions with a

higher target level, compared to target sounds presented just above the detection threshold.

However, we are not aware of studies investigating the effect of the intensity of auditory or

visual distractors on attentional capture.

In addition, the sound level has an effect on the responses of auditory nerve neurons, which

show an increase in the initial peak of the firing rate relative to the steady-state response with

increasing sound level [18,20]. Therefore, if the primacy effect was due to the initial peak in

the firing rate of auditory nerve neurons, we hypothesize that it should be more pronounced at

higher target sound levels.

To investigate the influence of both target level and background noise simultaneously,

some of the experimental conditions presented the same average target sound pressure level in

quiet and in background noise. In addition, a condition in quiet was compared to a condition

in background noise at the same level above threshold, i.e., the same sensation level. This made

it possible to test whether or not the primacy effect depends on the level or the signal-to-noise-

ratio, which was not investigated before.

Method

Listeners

Eight normal-hearing listeners (7 female, 1 male, age 18–26 years) participated in this study.

The experiment was conducted according to the principles expressed in the Declaration of

Helsinki. All listeners participated voluntarily and provided informed written consent, after

the topic of the study and potential risks had been explained to them. They were uninformed

about the experimental hypotheses. The Ethics Committee of the Institute of Psychology of the

Johannes Gutenberg-Universität Mainz approved the study (reference number 2016-JGU-psy-

chEK-002). Hearing thresholds were measured by Békésy audiometry with pulsed 270-ms

pure tones. All participants showed thresholds lower than or equal to 15 dB HL in the fre-

quency range between 125 Hz and 8 kHz in both ears. All participants were students from

Johannes Gutenberg-Universität Mainz and received partial course credit for their

participation.

Stimuli and apparatus

The stimuli were level-fluctuating noises consisting of ten bandpass-filtered low-noise noise

segments. Bandpass-filtered noise was generated by transforming a broadband Gaussian noise

into the frequency domain via a Fast Fourier Transform (FFT), setting the frequency compo-

nents to zero outside the desired passband, and transforming it back to the time domain via an

inverse FFT. The lower and upper cutoff frequencies were 770 Hz (7 Bark) and 1270 Hz (9

Bark), respectively. To reduce the intrinsic level fluctuations of the noise, the stimulus was

multiplied by the inverse of its Hilbert envelope and then again bandlimited in the frequency

domain, as described above. This multiplication and bandlimiting was repeated once. The

resulting noise is commonly referred to as low-noise noise (LNN). This procedure to generate

LNN is the second method proposed in Kohlrausch et al. [24]. Each noise segment had a dura-

tion of 120 ms including 20-ms cos2 on- and off-ramps. The segments were presented with a

temporal overlap of 20 ms, resulting in a total stimulus duration of 1020 ms. Level fluctuations
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were created by drawing each segment’s sound pressure level independently and at random

from a normal distribution on each trial.

In some conditions, the stimuli were presented in continuous background noise. The back-

ground noise was a Gaussian bandpass noise that was filtered with a 3rd-order Butterworth fil-

ter with cutoff frequencies of 300 Hz (3 Bark) and 2320 Hz (13 Bark), presented diotically with

a sound pressure level of 50 dB SPL.

All sounds were generated digitally with a sampling frequency of 44.1 kHz, D/A-converted

by an RME ADI/S with 24 bit resolution, attenuated by a TDT PA5 programmable attenuator,

buffered by a TDT HB7 headphone buffer, and presented diotically via Sennheiser HDA 200

circumaural headphones. The reproducing system was calibrated according to IEC 60318–

1:1998 [25] and free-field equalized as specified in ISO 389–8 [26]. Participants were tested in

a double-walled sound-insulated chamber. Instructions were presented on a computer screen.

Procedure

Measurement of detection thresholds. In order to ensure the same audibility of the target

sounds in the loudness judgment task, for each participant, the individual detection thresholds

for a single 120-ms LNN-segment (including 20-ms on- and off ramps) were determined in

quiet and in the presence of the continuous background noise. Thresholds were measured

using an adaptive two-interval, two-alternative forced-choice task [27]. On each trial, there

were two observation intervals. In one of the two observation intervals (selected randomly),

the signal (120-ms LNN-segment) was presented. The other interval contained no signal. Lis-

teners selected the interval containing the signal. The initial signal level was 45 dB SPL in the

condition in background noise and 20 dB SPL in the in-quiet condition. The level of the signal

was adjusted by a three-down, one-up adaptive rule. The step size was 8 dB until the third

reversal, and 2 dB for the remaining six reversals. The arithmetic mean of the signal levels at

the final six reversals was taken as the detection threshold, corresponding to 79.4% correct.

For each listener, a minimum of three adaptive blocks was presented for each of the two condi-

tions (in quiet and in background noise). A block was discarded if the standard deviation of

the signal levels at the six final reversals was greater than 6 dB. In the following, the average

detection threshold in quiet is denoted Lth_quiet, and the detection threshold in background

noise is denoted Lth_BGN. Resulting thresholds for the eight listeners are shown in Table 1.

Across the eight listeners, the mean threshold in quiet was 3.6 dB SPL (SD = 5.9 dB,

Table 1. Detection thresholds and mean target sound pressure levels for the eight listeners. Values are reported in dB SPL. For the calculation of the three different tar-

get sound pressure levels (LSLquiet7.5, LSLBGN7.5 and LSLBGN30) see section Measurement of temporal loudness weights.

Listener Lth_quiet Lth_BGN LSLquiet7.5 LSLBGN7.5 LSLBGN30

1 −3.6 41.2 3.9 48.7 71.2

2 2.3 41.9 9.8 49.4 71.9

3 7.0 50.0 14.5 57.5 80.0

4 1.2 41.0 8.7 48.5 71.0

5 −2.0 43.1 5.5 50.6 73.1

6 13.4 43.3 20.9 50.8 73.3

7 0.8 40.2 8.3 47.7 70.2

8 9.9 44.6 17.4 52.1 74.6

Lth_quiet = Threshold in quiet. Lth_BGN = Threshold in background noise.

LSLquiet7.5, LSLBGN7.5 & LSLBGN30 = Means of the target sound pressure level distributions.

https://doi.org/10.1371/journal.pone.0223075.t001
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min = −3.6 dB SPL, max = 13.4 dB SPL), and under masking 43.2 dB SPL (SD = 3.1 dB,

min = 40.2 dB SPL, max = 50.0 dB SPL).

Measurement of temporal loudness weights. To estimate temporal loudness weights, we

used an established experimental paradigm from previous experiments (e.g., [7,10,11]). The

target stimuli were level-fluctuating narrowband noises consisting of ten contiguous temporal

segments. On each trial, the ten segment levels were selected by drawing each segment’s sound

pressure level independently and at random from a normal distribution.

Temporal weights were measured for two mean segment levels in conditions with continu-

ous background noise (termed BGN in the following), and for three mean segment levels in

conditions without background noise (in quiet). In the first condition in background noise,

the mean of the normal distribution from which the segment levels were drawn was 7.5 dB

higher than the individual detection threshold for a single temporal segment in the continuous

background noise (see previous subsection on the measurement of detection thresholds),

LSLBGN7.5 = Lth_BGN + 7.5 dB. Thus, on average, the signal had a sensation level (SL) of 7.5 dB

SL under masking, and this condition is referred to as BGNSLBGN7.5. In the second condition

in background noise, the mean of the normal distribution was 30 dB higher than the individual

detection threshold in the background noise, LSLBGN30 = Lth_BGN + 30 dB. This condition is

referred to as BGNSLBGN30. Two in-quiet conditions (i.e., without background noise) with the

same mean sound pressure level of the segments as in the two conditions in background noise

were presented: QuietSLBGN7.5 used the same mean segment level as BGNSLBGN7.5, and the

mean segment level in QuietSLBGN30 was the same as in BGNSLBGN30. In addition, an in-quiet

condition with the mean segment level set to 7.5 dB SL (that is, 7.5 dB above the individual

detection threshold for a single segment in quiet), LSLquiet7.5 = Lth_quiet + 7.5 dB, referred to as

QuietSLquiet7.5, was included in the experiment. Table 2 provides an overview of the five experi-

mental conditions and the corresponding target levels. Table 1 shows the three different result-

ing mean target sound pressure levels for the eight listeners.

Fig 1 shows an example of the individual thresholds and mean target levels for a listener

with a threshold in quiet of Lth_quiet = 2.3 dB SPL and a threshold in background noise of

Lth_BGN = 41.9 dB SPL. The figure illustrates that we varied both the absolute sound pressure

level of the target sounds and the level of the target sounds relative to the individual detection

thresholds.

The standard deviation of each of the level distributions was σ = 2.5 dB. Unacceptably loud

or soft segments were avoided by limiting the range of possible sound pressure levels to three

standard deviations below and above the mean of the distribution.

For each condition, a distribution with higher mean and a distribution with lower mean

were created by adding or subtracting a value of ΔL/2 to the individual mean segment level in

the corresponding condition, respectively. On each trial, there was a 0.5 probability of

Table 2. Overview of the experimental conditions and the corresponding grand means of the target level distributions. ΔL specifies the difference in mean level

between the two level distributions presented in the loudness-judgment task in each condition.

In background noise In quiet

Condition Mean target level Condition Mean target level

BGNSLBGN7.5 LSLBGN7.5 = Lth_BGN + 7.5 dB QuietSLBGN7.5 LSLBGN7.5

ΔL = 2.5 dB ΔL = 2 dB

BGNSLBGN30 LSLBGN30 = Lth_BGN + 30 dB QuietSLBGN30 LSLBGN30

ΔL = 2 dB ΔL = 2 dB

QuietSLquiet7.5 LSLquiet7.5 = Lth_quiet +7.5 dB

ΔL = 2.5 dB

https://doi.org/10.1371/journal.pone.0223075.t002
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presenting a sound with segment levels drawn from the distribution with the higher or lower

mean. For conditions BGNSLBGN30, QuietSLBGN 7.5, and QuietSLBGN30, ΔL was 2.0 dB, while for

BGNSLBGN7.5 and QuietSLquiet7.5, ΔL was 2.5 dB. These values were selected on the basis of pilot

data in order to maintain a performance level of about 70% correct. Please note that the choice

of a minimum SL of 7.5 dB in quiet as well as in background noise ensured that, despite the

random level fluctuations, all segment levels were at or above the individual thresholds in vir-

tually all of the trials. Fig 2 shows a fluctuating level profile of a sound drawn from the distribu-

tion with the lower mean in condition BGNSLBGN7.5.

After each trial, listeners decided whether the presented target sound had been "louder" or

"softer". They were instructed to use previous trials within an experimental block as a reference

for their loudness judgments. The inter-trial interval was 1500 ms, with the restriction that the

next trial never started before the response to the preceding trial had been given. Trial-by-trial

feedback was provided during the first seven trials of each block so that the participants could

easily adopt a decision criterion for the new experimental condition. Those trials were not

Fig 1. Detection thresholds and mean segment levels of the loudness judgment task, for one listener. The individual means of the level distributions in the

loudness judgment task were determined by adding the indicated levels to the individual detection thresholds. The blue dashed line indicates the level of the

continuous background noise in the conditions in background noise.

https://doi.org/10.1371/journal.pone.0223075.g001
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considered for the data analysis. A response was classified as correct if the response (“softer”/

”louder”) matched the mean of the distribution that the stimulus’ segment levels were drawn

from. A summarizing feedback was provided each time 50 trials were completed. It contained

the number of correct and false answers, percent correct, the number of trials from the distri-

bution with higher mean and the distribution with lower mean, and the number of “louder”

and “softer” responses.

The usual rule of thumb from previous experiments [10] was used concerning the number

of trials necessary to obtain reliable weight estimates, and 100 trials per temporal segment

were presented. Since the sounds in each condition contained ten temporal segments, 1000

trials were presented per condition, resulting in a total of 5000 trials per listener.

Sessions. Each listener participated in five experimental sessions, each containing 1000

trials of the loudness judgment task (200 per condition). Additionally, there was an initial ses-

sion in which audiometric thresholds and detection thresholds in quiet and under masking

were measured, and practice blocks of the loudness judgment task were presented for all of the

Fig 2. Schematic plot of the time-varying stimuli in background noise in condition BGNSLBGN7.5. In this example, all segment levels are drawn independently

from the distribution with the lower mean (μL = LSLBGN7.5 − ΔL/2) and a standard deviation σ = 2.5 dB. The mean level is represented by the horizontal gray line. The

dashed blue line indicates the level of the continuous background noise. Please note that on- and off-ramps are excluded in this depiction.

https://doi.org/10.1371/journal.pone.0223075.g002
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five conditions. The practice blocks were excluded from data analysis. Within each session,

sounds of the same condition were arranged into blocks of 200 trials. The order of conditions

was chosen randomly. The duration of each session was approximately 60 minutes, including

a mandatory pause of about 5 minutes.

Data analysis

The perceptual weights representing the importance of the 10 temporal segments for the deci-

sion in the loudness judgment task were estimated from the trial-by-trial data via multiple

logistic regression. The decision model assumed that the listener compares a weighted sum of

the segment levels to a fixed decision criterion, and responds that the sound was of the "louder"

type if the weighted sum exceeds the criterion (a detailed description of the decision model is

provided by [7]). If the weighted sum is smaller than the criterion, it is assumed that the lis-

tener classifies the sound as "softer". In the data analysis, the binary responses ("louder" or

"softer" type of sound) served as the dependent variable. The predictors (i.e., the ten segment

levels) were entered simultaneously. The regression coefficients were taken as the decision

weight estimates.

A separate logistic regression model was fitted for each combination of listener and condi-

tion. Since the relative contributions of the different temporal segments to the decision were of

interest rather than the absolute magnitude of the regression coefficients, the ten regression

coefficients were normalized for each fitted model such that the mean of their absolute values

was 1.0. This resulted in a set of relative perceptual weights for each combination of listener

and condition. We also fitted separate logistic regression models to trials in the first and last

experimental session (session 2 & session 6), again for each combination of listener and condi-

tion separately, to investigate whether the temporal weighting changed during the course of

the experiment.

A summary measure of the predictive power of a logistic regression model is the area under

the Receiver Operating Characteristic (ROC) curve (for details see [9]). Areas of 0.5 and 1.0

correspond to chance performance and perfect performance of the model, respectively. Across

the 40 logistic regression models that were fitted to the pooled trials from all experimental ses-

sions, the area under the ROC curve ranged between 0.59 and 0.92 (M = 0.76, SD = 0.11), indi-

cating on average reasonably good predictive power [28].

The individual normalized temporal weights estimated by the multiple logistic regressions

were analyzed with repeated-measures analyses of variance (rmANOVAs) using a univariate

approach with Huynh-Feldt correction for the degrees of freedom [29]. The correction factor

~ε is reported, and partial η2 is reported as a measure of association strength. An α-level of .05

was used for all analyses.

Results

Fig 3 shows the mean normalized temporal weights in the five conditions. In each condition, a

clear primacy effect was observed, in the sense that the weight on the first segment was higher

than the weights on the following segments. For the condition in background noise where the

mean segment level was 7.5 dB higher than the detection threshold in background noise

(BGNSLBGN7.5), the primacy effect was slightly weaker than in the other conditions, and the

mean weights on the final three segments were slightly higher than the weights for the middle

segment, indicating a (weak) recency effect. Apart from this, the patterns of weights in the five

conditions were similar.

An rmANOVA with the within-subjects factors condition (BGNSLBGN30, BGNSLBGN7.5,

QuietSLBGN30, QuietSLBGN7.5, and QuietSLquiet7.5) and segment number (1–10) was conducted.

Temporal loudness weights in background noise
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There was a significant effect of segment number, F(9, 63) = 29.95, ~ε = .494, p< .001, Z2
p =

.811, confirming that the weights differed between the ten segments. The condition × segment

number interaction was not significant, F(36, 252) = 1.91, ~ε = .449, p = .058, Z2
p = .214, which

indicates that masking and signal level had no significant effect on the pattern of temporal

weights. To evaluate whether listeners adopted a decisional strategy during the experiment

that eventually lead to the uniform weights across the different conditions, we also analyzed

the weights from the logistic regressions that were fitted to the first and the last experimental

session for each combination of listener and condition separately. An rmANOVA with the

within-subjects factors condition (BGNSLBGN30, BGNSLBGN7.5, QuietSLBGN30, QuietSLBGN7.5,

and QuietSLquiet7.5), segment number (1–10) and session (2,6) showed neither a significant

main effect of session nor an interaction with session and any of the other factors. The relevant

segment number × session and segment number × condition × session interactions both were

not significant (F(9, 63) = 1.07, ~ε = .855, p = .400, Z2
p = 0.132; F(36, 252) = 1.14, ~ε = .509, p =

.317, Z2
p = 0.141).

To quantify the magnitude and time course of the primacy effect, exponential decay func-

tions were fitted to the mean weights at each of five conditions, as proposed in our previous

work [10,11]. The weight assigned at the time t was assumed to be

wðtÞ ¼ cðDr � e
� t
t þ 1Þ; ð1Þ

where t = 0 corresponds to the sound onset, c is the asymptotic weight at t!1, Dr is the

weight at sound onset (t = 0) relative to the asymptotic weight w(1) = c (i.e., Dr is the

"dynamic range" of the weights), and the time constant τ quantifies the time needed for the

weight to decay to a value of 1/e of the weight range between w(0) and the asymptotic weight c.
The weight assigned to a temporal segment with onset at ton and duration d was assumed to be

Fig 3. Mean normalized weights as a function of segment number. Panel A: in quiet. Panel B: in continuous background noise. The lines indicate the

different mean segment levels (see Table 2). Black circles: LSLBGN30. Blue squares: LSLBGN7.5. Green diamonds: LSLquiet7.5. Error bars show 95% confidence

intervals (CIs).

https://doi.org/10.1371/journal.pone.0223075.g003
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the integral of w(t) across the segment duration,

�wðton; dÞ ¼
Z tonþd

t¼ ton

wðtÞdt: ð2Þ

The function �wðton; dÞ was fitted to the mean weights in each experimental condition sepa-

rately, using the Mathematica function NonlinearModelFit, with the weight for a given data

point wi proportional to 1=SD2
wi

, where SD2
wi

is the variance of the eight individual estimated

weights for segment i. Since only the time course of the primacy effect was of interest (and

not potential recency effects), the function was fitted only to the first seven weights at the

BGNSLBGN7.5 condition. Here, the remaining mean weights descriptively showed a weak

recency effect. Fig 4 shows the fitted functions, together with the average decay function esti-

mated on the basis of previous experiments [10]. The estimated parameters of the fitted decay

functions are shown in Table 3. The exponential decay function provided an excellent fit to the

mean weights in all five conditions (R2� 0.96). However, the standard errors of the estimated

parameters in some of the conditions were larger than in the previous experiments [10]. This

was particularly pronounced for the BGNSLBGN7.5 condition, where only 7 of the 10 segment

weights were included in the fitting procedure due to the small recency effect. The size of the

time constant τ was comparable to previous studies in which the estimated τ varied between

180 ms and 300 ms [10]. In the present data, the estimated τ was about 240 ms for the condi-

tions in background noise, whereas for the conditions in quiet, τ varied between 217 and 355

ms. Previous studies showed a dynamic range Dr of about 4.70 for comparably long sound

durations [10,11]. In the current study, a similar dynamic range (Dr = 5.05) was only found for

condition QuietSLquiet7.5, whereas all other conditions showed higher dynamic ranges with Dr

between 10 and 27.48.

The dashed blue lines in Fig 4 show the average decay function with τ = 280 ms and Dr =

4.70 [11]. This average function was fitted to the mean weights in each condition of our experi-

ment, using only the multiplicative constant c as a free parameter. As seen in Table 2, the good-

ness of fit of this mean decay function (R2
avg) was only minimally lower than for the specific

decay function in all conditions. Thus, the average decay function provides a reasonably good

description of the primacy effect in quiet as well as in the conditions in background noise. This

confirms that the presence or absence of a background noise and variations in target level have

a negligible effect on the primacy effect.

Discussion

Temporal loudness weights in background noise

In the present study, the influence of the acoustic background on temporal loudness weights

was assessed for the first time by presenting the target sound either in quiet or in a continuous

background noise. The presence of the background noise did not result in significant changes

in the pattern of temporal weights compared to conditions without background noise. This is

in agreement with findings of Oberfeld and Plank [7]. They concluded from their results that

the primacy effect does not stem from an attention orientation response due to the abrupt

onset of the sound. This conclusion can also be drawn from the results of the present experi-

ment, in which the background noise was continuously presented during each experimental

block, which, as we assumed in the introduction, should have reduced a potential attention ori-

entating response to the onset of the target sound, relative to an in-quiet condition because the

abruptness of the onset of the stimulus is reduced [16,17]. However, this is just an assumption

based on the above mentioned research on attention capture in the visual domain, while to
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Fig 4. Fits of the exponential decay function as a function of segment onset and condition. For the fitted function see Eq 2. The

panels A-E show the five different conditions. Panel A: BGNSLBGN30. Panel B: BGNSLBGN7.5. Panel C: QuietSLBGN30. Panel D:

QuietSLBGN7.5. Panel E: QuietSLquiet7.5. The solid orange line in each panel indicates the exponential decay function that was fitted to

the data for this sound duration. Note that for condition BGNSLBGN7.5 (panel D), only the first seven segments (onsets between 0

and 500 ms) were used for fitting the decay function, due to the small recency effect observed in this condition. The orange shaded

areas represent 95% confidence bands for the mean. The dashed blue line shows the average decay function based on previous

experiments (Eq 2), using the average values of τ = 280 ms and Dr = 4.70 reported by Oberfeld et al. [11]. Error bars show ±1

standard error of the mean (SEM).

https://doi.org/10.1371/journal.pone.0223075.g004
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our knowledge, auditory attention orienting in quiet and with background noise has not been

compared so far.

The absence of an effect of the background noise on the temporal weights is surprising con-

sidering that background noise affects the neuronal responses at several stages of the auditory

pathway [22].

In addition to effects of background noise, we also investigated effects of the average target

level. In quiet, a variation in mean level across a range of about 60 dB (from 7.5 dB above the

individual threshold in quiet to 30 dB above the detection threshold in a 50-dB SPL back-

ground noise; see Table 2) had no significant effect on the temporal weights in the in-quiet

condition. In background noise, the primacy effect was descriptively slightly less pronounced

at the lower sound level compared to the higher sound level. Also, descriptively a small recency

effect was observed at the lower sound level. However, the temporal weights did not differ sig-

nificantly between the five experimental conditions. Taken together, varying the average target

level across a wide range resulted only in surprisingly small effects on the temporal loudness

weights. This pattern is at odds with an explanation of the primacy effect in terms of an orient-

ing response, because as we mentioned in the introduction, a lower mean target level should

have made the target sound onset less abrupt [16,17]. Again, the absence of a significant effect

of target level on the weights is surprising because the responses of neurons at many stages of

the auditory pathway are affected by the sound level.

One explanation of the primacy effect, which has been suggested in Dittrich and Oberfeld

[9] is that it might be caused in a memory system, because it resembles the serial position

effects commonly found in memory tasks. However, in Oberfeld et al. [10] this assumption

was not supported. They presented sounds consisting of 20 segments and varied the length of

the sounds between 1.0 s and 10.0 s. The data indicated that the weight assigned to a specific

temporal portion of the sound is determined by the time delay between sound onset and seg-

ment onset, rather than by the relative position of the segment within the sound (i.e., segment

number). In contrast, in memory experiments, the serial position curve is determined by the

relative temporal position of the items within the item lists, while the time delay between the

onset of the list and the given item plays only a minor role [30].

Table 3. Fits of an exponential decay function (Eq 2) to the observed primacy effects in the five different conditions. The estimated parameters τ, Dr, and c are dis-

played, together with the standard error of the estimate, the p-value for a test of the estimated parameter against 0, the 95% CI, R2 for the fitted function, and R2
avg for the

decay function with average parameters (see text).

Condition Parameter Estimate SE p 95% CI lower 95% CI upper R2 R2
avg

BGNSLBGN7.5 τ 236.01 129.90 0.14 −124.65 596.67 0.96 0.90

Dr 25.42 117.04 0.84 −299.51 350.417

c 0.001 0.0045 0.84 −0.012 0.019

BGNSLBGN30 τ 238.96 30.98 0.000 165.68 312.24 0.99 0.90

Dr 18.79 8.10 0.053 −0.35 37.94

c 0.0018 0.0008 0.056 −0.00006 0.0036

QuietSLQuiet7.5 τ 355.05 141.04 0.040 21.54 688.55 0.98 0.98

Dr 5.05 2.46 0.080 −0.78 10.87

c 0.0035 0.0018 0.085 −0.0006 0.0077

QuietSLBGN7.5 τ 217.72 69.66 0.017 53.00 382.44 0.96 0.93

Dr 10.00 6.27 0.15 −4.82 24.83

c 0.0030 0.0019 0.16 −0.0015 0.0075

QuietSLBGN30 τ 316.68 109.02 0.023 58.88 574.47 0.96 0.91

Dr 27.48 54.54 0.63 −101.50 156.46

c 0.001 0.0020 0.63 −0.0037 0.0058

https://doi.org/10.1371/journal.pone.0223075.t003
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Another potential explanation we are currently evaluating is whether the effects may stem

from an "evidence integration" or "sequential sampling" process in which evidence for one of

the two possible hypotheses (“louder” or “softer” type of sounds) is collected sequentially dur-

ing each trial and the decision is made as soon as sufficient information has been accumulated,

ignoring further evidence during the trial [31,32]. Some recent papers found primacy (and

sometimes recency) effects in visual motion perception [32] or brightness perception [33],

using time-varying stimuli as in our experiment. These temporal weighting patterns can be

modeled by accumulator or drift diffusion models. The authors of the respective papers thus

suggested that the temporal weights are not caused at an early, sensory stage, but rather at a

later decisional stage. An interesting prediction from this hypothesis is that within a partici-

pant, the temporal weights applied for instance in a loudness judgment task for sounds varying

in level across time as in the present paper, and in a brightness judgment task for visual stimuli

varying in brightness across time should be similar, because both of them are due to a certain

type of evidence integration at the decision stage. We are currently testing this hypothesis in

an experiment where participants receive randomly interleaved loudness-judgment and

brightness-judgment trials.

Temporal weights predicted by a dynamic loudness model

To test if the observed loudness weights are predicted by an existing dynamic loudness model,

the predictions of a model for the partial loudness of time-varying-sounds in background

noise [34] were analyzed. The model, which we refer to as the time-varying partial loudness

(TVPL) model, is based on the time-varying loudness (TVL) model by Glasberg and Moore

[35]. The model was slightly modified by using the attack and decay time constants from the

most current version of the TVL model [36]. An instantaneous partial loudness (IPL) is calcu-

lated from the predicted excitation patterns for signal and background noise [34]. The short-
term partial loudness (STPL) is calculated by feeding the time series of IPL values into a tem-

poral integration stage with an attack and a release time. The long-term partial loudness

(LTPL) is calculated by feeding the time series of STPL values into another temporal integra-

tion stage with longer attack and release times than for STPL. The mean long-term loudness

across the stimulus duration or its maximum were proposed to correspond to the overall loud-

ness of a relatively long sound, such as a sentence or a musical phrase [37].

The loudness model was applied to the same set of experimental conditions and segment

levels as in the experiment. In the experiment, a total of 38600 trials had been presented across

the eight participants and the five experimental conditions. For each of these trials, a narrow-

band low-noise noise stimulus was generated using exactly the same sequence of 10 segment

levels as in the corresponding trial of the experiment. This audio signal was fed into the loud-

ness model, combined with a bandpass-filtered background noise of the same type and sound

pressure level as in the corresponding trial, or without a background noise for the in-quiet

conditions. To reduce the computation time, only 1 s of background noise was included before

the onset of the stimulus. In the TVPL model, the long-term partial loudness is almost at its

asymptotic value after 1 s, so that an inclusion of more than 1 s of background noise before sig-

nal onset would not have changed the simulation results. After stimulus offset, the background

noise continued for 1.0 s, since in the experiment, the listeners typically responded within less

than 1 s after target offset.

For each simulated trial, three statistics of STPL and LTPL were calculated. We selected the

mean and the maximum because both were proposed to predict the overall perceived loudness

[37]. We additionally included the 90th percentile of both STPL and LTPL because some

authors assume that percentiles may be preferable in estimating loudness [4,38].

Temporal loudness weights in background noise

PLOS ONE | https://doi.org/10.1371/journal.pone.0223075 November 5, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0223075


In the loudness model, the STPL and LTPL do not return to 0 immediately after sound off-

set, but level off gradually across about 300 ms (STPL) and several seconds (LTPL) due to the

release time constants. To account for these temporal dynamics, the three statistics were calcu-

lated across a temporal window starting at stimulus onset and ending 300 ms or 1000 ms after

stimulus offset for STPL and LTPL, respectively. At 1000 ms after stimulus offset, LTPL is still

at approximately 30% of its value before stimulus offset. However, in the experiment the next

trial typically started after 1 s, so that a longer time window for analyzing the LTPL would not

have been realistic. To summarize, the mean (STPLmean), the maximum (STPLmax), and the

90th percentile (STPLpct) of the short term partial loudness were calculated across a period of

1300 ms, and the mean (LTPLmean), maximum (LTPLmax), and 90th percentile (LTPLpct) of the

long term partial loudness were calculated across a period of 2000 ms on each simulated trial.

The a) ability of the loudness model to predict the responses of the listeners, and b) the tem-

poral loudness weights predicted by the model were analyzed. Concerning a), separate logistic

regression models were fitted for each combination of participant and experimental condition.

For each simulated trial, the response of the participant in the experiment was used as the

dependent variable, and a loudness statistic produced by the TVPL model (e.g., STPLmean) was

entered as the predictor variable. The goodness-of-fit of the regression models based on the

TVPL model were compared to the goodness-of-fit of the regression model based on the 10

segment levels that was used to analyze the data (see Fig 3). Fig 5 shows the resulting area

under the ROC curve (AUC) for each of the regression models as an indicator of the goodness

of fit. The regression based on the 10 segment levels provided the best fit to the data in quiet as

well as in the presence of background noise at all signal levels. For a given TVPL-model loud-

ness estimate (STPL, LTPL), the mean showed a better fit than the 90th percentile, which, in

turn, showed a better fit than the maximum. This pattern was observed in each experimental

condition. The AUCs for the conditions with the highest target level (BGNSLBGN30 &

QuietSLBGN30) were higher than in the conditions with lower target levels. However, in the in-

quiet conditions the AUCs were higher in the condition QuietSLquiet7.5 than in condition

QuietSLBGN7.5, although the target level in the former condition was higher.

An rmANOVA with the seven different regression models (mean, maximum, and 90th-per-

centile STPL; mean, maximum, and 90th-percentile LTPL; 10-segment model) and the five

experimental conditions as within-subjects factors showed a significant main effect of model,

F(6, 42) = 79.00, ~ε = .311, p< .001, Z2
p = .92. There was also a significant main effect of condi-

tion, F(4, 28) = 8.73, ~ε = 1.0, p< .001, Z2
p = .56. The model × condition interaction was signifi-

cant but relatively weak, F(24, 168) = 4.90, ~ε = .305, p< .001, Z2
p = .41. As seen in Fig 5, the

rank order of AUC across the seven models was identical in the five experimental conditions,

but the exact difference between some models’ AUCs differed slightly as a function of experi-

mental condition. Post-hoc pairwise comparisons were calculated between each of the TVPL-

model based regression AUCs and the AUC of the regression based on the 10-segment model,

averaged across experimental conditions. The AUC of the 10-segment model was significantly

higher than the AUC of each of the TVPL-model based regression models (p< .01; Bonfer-

roni-corrected). The minimum effect size in terms of Cohen’s dz [39] was 2.91, which repre-

sents a strong effect.

Concerning the temporal loudness weights predicted by the TVPL-model (b), each of the

six loudness statistics produced by the TVPL model (e.g., STPLmean) were used to predict a

response of either classifying the stimulus presented on the current trial as "louder" or classify-

ing it as "softer", just as in the experiment. To this end, the given loudness statistic produced by

the model (e.g., STPLmean) on a given trial was compared to the median of the same loudness

statistic across all trials presenting the same experimental condition. If on a given trial the
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model loudness value was higher than this median value, the predicted response on this trial

was "louder"; otherwise it was "softer". Next, exactly the same type of logistic regression model

as we used for analyzing the psychoacoustic data was fitted for each of the five experimental

conditions, except that the simulated response was used as the dependent variable rather than

the observed response of the participants. Thus, the ten segment levels served as the predictors,

and the simulated response served as the dependent variable. The regression coefficients were

normalized as outlined in section Data analysis. Fig 6 shows the resulting normalized regres-

sion coefficients for each combination of summarizing statistic (mean, maximum, 90th

Fig 5. Mean AUC of the seven different regression models, as a function of signal level. Panels A and C on the left show the conditions in

quiet, panels B and D on the right show the conditions in background noise. The two upper panels show the fits based on short-term partial

loudness, the two lower panels show fits based on long-term partial loudness. The lines indicate the different summarizing statistics used as

predictors (squares: mean; circles: maximum; triangles: 90th percentile). The AUCs of the regression model based on the 10 segment levels

(open diamonds) are plotted in each panel as a reference.

https://doi.org/10.1371/journal.pone.0223075.g005
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percentile), model loudness value (STPL, LTPL), and experimental condition. For each TVPL

model statistic, the pattern of temporal weights was relatively stable across the different sound

levels and not strongly affected by the presence or absence of a background noise, just as in the

psychoacoustic data. However, none of the six TVPL model statistics predicted a pattern of

temporal weights similar to the weights observed in the experiment (Fig 3). The mean STPL,

maximum STPL, and mean LTPL predicted essentially flat temporal weighting profiles. The

90th percentile of the STPL predicts slightly lower weights on the beginning and end of the

sound, while the maximum and the 90th percentile of the LTPL predict an inverse U-shaped

pattern with much lower weights on the beginning and/or end of the sound. Thus, none of the

Fig 6. Mean normalized weights predicted by the TVPL model, as a function of segment number. The panels A-F show six combinations

of summarizing statistic (mean, maximum and 90th percentile; rows) and model loudness value (STPL and LTPL; columns). The lines indicate

the five experimental conditions.

https://doi.org/10.1371/journal.pone.0223075.g006
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TVPL model statistics predicts the strong primacy effects observed in the experiment (see

Fig 3).

Conclusion

The present study showed that the primacy effect, i.e., the assignment of higher weights to the

beginning of a sound when judging loudness, occurs even in the presence of a background

noise. As the onset of the continuous background noise occurred well before the presentation

of the to-be-judged target sounds, mechanisms such as attention orientation seem to be

unlikely to be the source of the primacy effect. In addition, the size of the primacy effect was

largely independent of the sound level. The parameters of an exponential decay function

describing the time course of the primacy effect were comparable to those obtained in earlier

studies, emphasizing that the time course of the primacy effect was hardly affected by the

experimental manipulations. None of the estimates of the time-varying partial loudness model

[34] could predict the obtained weights. Thus, further research appears necessary to gather a

better understanding of the mechanism(s) underlying the primacy effect and its time course.
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