
1. Introduction
Indo-Gangetic Plain (IGP) is home to almost half the Indian population. However, it accounts for only one fifth 
of India's land area, making it one of the most densely populated places on Earth. Known for its fertile lands, the 
IGP is a region with intense farming and agricultural activities. Due to the unique topography of the region, air 
pollution can either persist, a process relevant mostly during wintertime, or be impacted by long-range transport, 
which occurs mostly during the summer (pre-monsoon; Pawar et  al.,  2015). These factors result in frequent 
high-pollution events and rise in premature deaths related to poor air quality (David et al., 2019).

High concentrations of air pollutants in India and their impacts on the atmosphere and on human health have been 
extensively studied (Ghude et al., 2016; V. Kumar et al., 2016; Mohan & Saranya, 2019; Ojha et al., 2012; Yadav 
et al., 2014). Tropospheric ozone concentrations are influenced by the concentrations of ozone precursors (e.g., 
nitrogen oxides [NOx = NO + NO2] and volatile organic compounds), high exposure being detrimental to human 
health and agriculture (Y. Chen et al., 2021; Gaudel et al., 2018; Lefohn et al., 2018; Lu et al., 2020; Sharma 
et al., 2019; B. Sinha et al., 2015). Among the sources of anthropogenic emissions of NOx and volatile organic 
compounds (VOCs) in the IGP region are industry, heavy traffic, power generation and agricultural biomass 
burning and residential fuel usage. Particulate matter smaller than 2.5 µm in diameter (PM2.5) arises from primary 
emissions or forms in situ by secondary chemical reactions of gas-phase precursors such as NOx, ozone, VOCs 
and sulfur dioxide (SO2). 2016 World Health Organization (WHO) report (World Health, 2016) states that PM2.5 
levels in Delhi during the years 2011–2015 were the highest measured in mega-cities around the world and a large 
fraction of it (>50%) is derived from oxidation of precursors (Gani et al., 2019). More than 80% of Indian popula-
tion suffers from poor air quality, with conditions deviating from WHO standards for PM2.5 exposure. In the IGP, 
for example, PM2.5 levels often exceed 160 µg/m 3 (Ravishankara et al., 2020). David et al. (2019) investigated 
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impacts of emissions from different regions in India on premature death related to PM2.5 exposure. They estimated 
that anthropogenic air pollution from the IGP region is responsible for 24%–31% of deaths in other regions in 
India, while about 70% of deaths are caused by local emissions.

Atmospheric oxidation capacity is controlled by concentrations and sources of the major oxidants OH, O3 and 
NO3. Chlorine radicals may also initiate tropospheric oxidation cycles, and recent observations in polluted 
regions have shown ClNO2 to be an important photolytic precursor (Baker et al., 2016; Q. Chen et al., 2022; 
Haskins et al., 2019; Jeong et al., 2019; Wang et al., 2020; Xia et al., 2021). Nocturnal aqueous-phase reaction 
of particulate chloride with N2O5 produces ClNO2 that affects next-day chemistry through photolysis (Osthoff 
et al., 2008). Sources of soluble chloride in the IGP include biomass burning, coal combustion, industrial waste 
incineration and to a lesser extent long-range transport of sea salt aerosol (Gunthe et al., 2021; Saiz-Lopez & von 
Glasow, 2012; Wang et al., 2019).

In order to limit the spread of COVID-19, governments imposed lockdowns in early 2020 that restricted mobility 
and public activities such as schools and businesses. India imposed a strict lockdown from the end of March until 
the beginning of May 2020. We studied a timeframe that can be regarded as three different periods: between 1 
and 22 March 2020 (herein “before lockdown”), between 23 March–14 April 2020 (herein “strict lockdown”), 
and finally between 15 April–1 May 2020 (herein “lockdown relaxation”). The main differences between the two 
lockdown periods were that during lockdown relaxation, agricultural activities were approved (mainly harvest-
ing) and some mobility restrictions were lifted (leading to slightly increased transportation emissions). Due to 
the lockdown, atmospheric concentrations of many anthropogenic pollutants, such as NOx, anthropogenic VOC 
(AVOC) and SO2, decreased. Forster et al. (2020) analyzed national mobility data and found an average decrease 
of >70% in mobility in India during the strict lockdown, resulting in NOx emission decrease. Such sudden and 
unprecedented emission reductions present a unique opportunity to investigate chemical responses under differ-
ent chemical scenarios.

In this study, we modeled the impact of lockdown restrictions on selected atmospheric oxidation pathways. These 
pathways are superimposed on changing seasonality of the chemical regime in winter-to-spring transition in the 
highly polluted IGP region. Elucidating NO3 production and consumption pathways can help our understand-
ing of the state of secondary atmospheric processes in the IGP under different atmospheric chemical regimes 
imposed by the lockdown.

2. Materials and Methods
2.1. Site Description

The measurement site is located on the outskirts of Mohali, a city in northwest IGP, in Indian state of Punjab. 
The measurement facility is housed in the Indian Institute of Science Education and Research (IISER; 
30.667°N–76.729°E, 310 m a.s.l.) campus. The facility consists of a high sensitivity proton transfer reaction 
quadrupole mass spectrometer (PTR-QMS), an air quality station equipped with gas analyzers for the detection 
of trace levels (pptv–ppbv range) of O3, NOx, CO, SO2, PM2.5 and PM10 aerosol mass concentrations and a mete-
orological station for wind direction, wind speed, ambient temperature, relative humidity and solar radiation 
measurements (Met One Instruments Inc.). Inlets are located at 20 m above ground level. These instruments and 
their QA/QC have been comprehensively described in previous works reporting multi-year data from the facility 
(Chandra & Sinha, 2016; V. Kumar et al., 2020; V. Sinha et al., 2014). Calibrations performed before and after 
the lockdown were consistent with the general instrumental sensitivities and zero drifts. Overall uncertainty for 
all VOCs reported in this work was less than 20%, except for formaldehyde for which it was estimated to be less 
than 30% due to lack of calibration gas standard (see V. Kumar et al., 2020). For other trace gases and particulate 
matter (Pawar et al., 2015) it was less than 10%.

2.2. Model Description

The Framework for zero-Dimensional Atmospheric Modeling (F0AM), based on Master Chemical Mechanism 
(MCM) 3.3.1, was used to explore the effect of COVID-19 lockdown conditions on atmospheric oxidation 
processes associated with NO3 (Jenkin et al., 2015; Wolfe et al., 2016). Observations of trace gases and particu-
lates from the Mohali site were used to calculate the average diel cycles of species used to constrain the model in 
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ten-minute time steps, same resolution as the model. The model was set to simulate a diel cycle with constrained 
ozone, NOx, CO, SO2, isoprene, DMS, 4 AVOCs, 11 aromatic VOCs, 6 oxygenated VOCs, relative humidity and 
temperature (Figure 1, Table S1 in Supporting Information S1, additional details on AVOC speciation can be 
found in Supporting Information S1). Photolysis rates were calculated in F0AM based on the trigonometric solar 
zenith angle function provided by the MCM. The method provides an upper limit of the photolysis rates since 
it does not account for surface albedo, overhead ozone column, cloud and aerosol extinction or enhancement, 
which may alter the photolysis rates (Wolfe et al., 2016). Modeled NOx was constrained to the measurements, but 
partitioning between NO and NO2 was allowed to vary.

In addition to the three lockdown periods (i.e., before lockdown, strict lockdown, and lockdown relaxation), 
approximately 17% of the before period measurements showed excess NO (>5 ppbv) and low ozone (<30 ppbv; 
Figure S1 in Supporting Information S1). These datapoints were treated as a separate category, since chemical 
evolution during events that end in full ozone titration differed considerably from that of non-titrated events 
(Figure S2 in Supporting Information S1) and are further explored in Supporting Information S1.

Average mixing ratios of measured species across 3 hours prior to sunset (15:30–18:30) provided the initial input 
for an atmospheric chemistry model intended to represent the residual layer. This approach mimics the transi-
tion from a well-mixed boundary layer to a two-layered nighttime boundary layer consisting of a surface layer 
(or nocturnal boundary layer), impacted by continuous emissions, and an overlying residual layer, consisting of 
late-afternoon chemical composition that is isolated from the surface emissions.

NO3 is produced from reaction of NO2 with ozone (Brown & Stutz, 2012) and is in equilibrium with its reservoir 
species N2O5, which undergoes heterogeneous uptake to form nitric acid (HNO3) and ClNO2. The first-order rate 
coefficient for N2O5 aerosol uptake is generally expressed as:

Figure 1. Diel cycles, at 10-min time resolution, of the three periods: before lockdown (brown), during strict lockdown (red), and during lockdown relaxation (pink). 
Dots represent measurements and solid lines represent simulation results. Shaded areas represent standard deviation of the measurements. Changes in isoprene and 
temperature between lockdown periods are driven by seasonality of the meteorology. During the lockdown, all pollutant mixing ratios decreased, except for ozone, 
which increased, especially during nighttime.
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𝑘𝑘het.N2O5
=

𝛾𝛾 c̄SA

4
 (1)

where, γ is the aerosol uptake coefficient, 𝐴𝐴 c̄ the mean molecular speed of 
N2O5, and SA the aerosol surface area. N2O5 measurements that are used to 
constrain this parameter are not available at this site. Therefore, an uptake 
coefficient sensitivity test is described in details in Figure S3 of Support-
ing Information S1. The model uses a single representative uptake coeffi-
cient of 𝐴𝐴 𝐴𝐴N2O5

= 10
−2 (Chang et al., 2011; R. Kumar et al., 2014; McDuffie 

et al., 2018).

The first-order rate coefficient for the NO3 loss through N2O5 aerosol uptake 
is then (Brown et al., 2003):

𝑘𝑘het. NO3
= Keq [NO2] 𝑘𝑘het.N2O5 (2)

where, Keq is the equilibrium constant between NO2, NO3 and N2O5.

Aerosol surface area was calculated from measured PM2.5 and PM10 after 
assuming a typical size distribution in the IGP according to the relevant 
season and correction for hygroscopic growth (Pawar & Sinha, 2020). Figure 
S4 in Supporting Information S1 shows resultant surface area and calculated 
heterogeneous rate coefficients for NO3 and N2O5.

3. Results
NO3 is formed from the oxidation of NO2 by ozone. It then reacts with NO2 
to establish an equilibrium with N2O5, which can act as a reservoir for NO3 
or as a loss pathway, by uptake onto aerosols. Since NO3 is photolabile, it 
typically serves as an oxidant only during the night hours. Uptake of N2O5 
to aerosols leads to HNO3 and ClNO2 production, with a yield that depends 
on the available chloride (Bertram & Thornton, 2009; Roberts et al., 2009). 
HNO3 may partition to the aerosol phase as inorganic nitrate.

During daytime, reaction with NO and photolysis destroy NO3 and recycle it 
to NOx. The NO3 production rate is calculated by:

P (NO3) = kO3+NO2
[O3] [NO2] (3)

During the strict lockdown, NOx mixing ratios decreased and NO3 production decreased correspondingly relative 
to before the lockdown. After the lockdown, a late evening NO2 peak resulted in a NO3 production peak, a feature 
that appeared only slightly in the prior periods.

Figure 2 shows NO3 reactivity toward important atmospheric species and its modeled lifetime. NO3 reactivity 
toward these species is calculated by:

𝑘𝑘NO3 =

∑

𝑘𝑘𝑖𝑖[X]i (4)

where, 𝐴𝐴 𝐴𝐴𝑖𝑖 is the rate coefficient (cm 3 s −1) for reaction between a species X of concentration 𝐴𝐴 [X]i and NO3.

Steady-state lifetime, 𝐴𝐴 𝐴𝐴NO3
 , is given by the inverse of 𝐴𝐴 𝐴𝐴NO3 from Equations 2 and 4. Lifetime is normally calculated 

with observed NO3. However, in the absence of such measurements at this site (or at any location in the IGP to 
date), (NO3) in Equations 3 and 5 served as modeled concentration of NO3:

[NO3] = 𝜏𝜏NO3
∗ 𝑃𝑃 (NO3) (5)

where, P(NO3) is the production rate of NO3 (ppbv s −1), as described in Equations 1 and 3.

Figure 2. NO3 production rate and reactivity toward anthropogenic volatile 
organic compound (AVOC), NO, isoprene, photolysis, heterogeneous uptake 
and DMS during the period before lockdown (top), during the strict lockdown 
(middle) and after relaxation of the lockdown (bottom). Cyan line is the 
modeled NO3 lifetime. NO3 has the shortest lifetime before the lockdown, 
when the overall emissions were higher. Reduction in aerosol surface 
area dramatically decreased heterogeneous loss of NO3 and increased its 
atmospheric lifetime.
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Production rate of nitrate radicals as shown in Equations 1 and 3 can be used 
as a useful metric for comparing the extent of nighttime chemistry in differ-
ent megacities. For example, Brown et al. (2017) determined P(NO3) from 
measurements in a tower in the Asian megacity of Seoul, South Korea, in 
May to early June 2015. Median production rate in Seoul 2015 exceeded 
90th percentile P(NO3) from nighttime research aircraft flights in a similar 
altitude range in Los Angeles, a comparably sized U.S. megacity. Figure S5 
in Supporting Information S1 shows nighttime measurements from Seoul and 
Los Angeles with P(NO3) as calculated in our study. 10th percentile P(NO3) 
of all three studied periods in Mohali exceeded the 90th percentile production 
rate measured in Los Angeles. The lockdown relaxation period was meas-
ured during a similar time of year as the measurements made in Seoul and 
Los Angeles. However, median nighttime P(NO3) in Mohali were the larg-
est during the 2020 lockdown relaxation period (1.5 ppbv hr −1), compared 
to Seoul in 2015 (1.3 ppbv hr −1) and Los Angeles in 2010 (0.3 ppbv hr −1). 
These high NO3 production rates are comparable to daytime chemical oxida-
tion rates in polluted regions (Volkamer et al., 2010; Young et al., 2012) and 
lead to a significant nighttime oxidative capacity.

Figure 2 shows that diel profiles of NO3 lifetime is similar in all periods. 
NO and sunlight are the main NO3 daytime consumers, longest NO3 lifetime 
occurs at sunset and shortest lifetime occurs at sunrise. Before the lockdown, 
nighttime NO3 lifetime decreased rapidly (from ∼12 s −1 to ∼8 s −1 in under 
3 hr) due to heterogeneous uptake by high loading of particulate matter. At 
the onset of the lockdown, significant decreases in particulate matter concen-
trations in the IGP region (Singh et al., 2020) eliminated this rapid loss of 
NO3 by heterogeneous uptake, resulting in longer NO3 lifetime. NO morning 
peak consumed most of the NO3 (up to 90% Figure S6 in Supporting Infor-
mation S1) during all periods. As the sun sets, NO mixing ratio decreased 
and the main NO3 reactions are with isoprene, DMS and AVOC.

Figure S7 in Supporting Information S1 shows daytime ratio of NO3 reac-
tivity toward isoprene, DMS and AVOC to the overall NO3 reactivity and 
predicted amount of produced NO3 that reacted with isoprene, DMS and 
AVOC. Daytime NO3 oxidation of these species increases from morning, 
and reached maximum daytime values in the afternoon. As seen in Figure 2, 
before the lockdown, NO3 oxidation of these three species was approximately 
the same. However, upon strict lockdown, isoprene consumed more produced 

NO3 during the day (0.08 ppbv hr −1), and more than twofold after lockdown relaxation (0.25 ppbv hr −1). Fuchs 
et al. (2017) and Williams et al. (2016) measured the reactivity of the main daytime oxidant, OH, in polluted areas 
in north China plain and megacity Beijing, respectively. They have found that during the daytime an average of 
∼10% of the OH reactivity is toward isoprene. This is comparable to 8%–10% NO3 reactivity toward isoprene in 
the afternoon once lockdown is imposed.

Surface measurements at night are often not representative of chemistry within the entire boundary layer struc-
ture, which consists of both a nocturnal boundary layer and overlying residual layer. Following the approach of 
Baasandorj et al. (2017), the simulation of chemistry in the residual layer is initialized with atmospheric mixing 
ratios of the late afternoon, but the model of this layer remained isolated from further surface emissions. Figure 3 
shows the calculated NO3 reactivity, O3 and NO2 mixing ratios and modeled production rate of NO3 predicted for 
the residual layer, which could not be directly sampled from this measurement site. Predicted production rate of 
NO3 decreased as surface NO2 (and, to a lesser extent, O3) was consumed. O3 mixing ratios in the residual layer 
increased between the three periods, likely as a result of seasonality in the photochemistry. NO2 mixing ratios, 
by contrast, were impacted by COVID-19 lockdown, marked by a clear decrease. Consequently, during the strict 
lockdown, modeled NO3 production rate was the slowest of the three periods, with fastest NO3 production rates 
occurring upon lockdown relaxation, when O3 mixing ratios were the highest.

Figure 3. Nighttime NO3 reactivity toward NO, isoprene, photolysis, 
heterogeneous uptake, DMS and anthropogenic volatile organic compound 
(AVOC) during the period before lockdown (top), during strict lockdown 
(middle) and after lockdown relaxation (bottom). Residual layer is split into 
the first (until 21:00, left plots) and second (from 21:00, right plots) part of the 
night to illustrate differences in reactivity scales. Ozone and NO2 mixing ratios 
and production rate of NO3 are shown in the inset for the full night period. 
Cyan line reflects NO3 lifetime.
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While NO3 in the surface and residual layers exhibits similar reactivity at the beginning of the night, predicted 
NO3 lifetime in the residual layer increases as the residual layer VOCs are consumed in the absence of contact 
with surface-based emissions. Residual layer modeled reactivity of NO3 toward NO is negligible, since NO is 
rapidly consumed by ozone within ∼2–5 min. After the lockdown relaxation, isoprene mixing ratios rose due to 
higher temperatures and solar flux, as well as higher ozone mixing ratios. Therefore, consumption of the constit-
uents in the residual layer was fastest after the lockdown relaxation. However, predicted NO3 lifetime reached the 
highest values during the strict lockdown, when surface emissions and particulate matter loading were at their 
lowest.

Integrated production of NO3 from NOx over the course of one night in the residual layer exceeds initial mixing 
ratios of reactive VOCs such as DMS and isoprene, as discussed below. Therefore, loss of NO3 and N2O5 transi-
tions from NO3 + VOC-dominated to heterogeneous uptake in the residual layer as reactive VOCs are consumed. 
This transition affects production of inorganic nitrate species HNO3 and ClNO2. Figure S8 in Supporting Infor-
mation S1 shows a comparison of HNO3 and ClNO2 production potential in the residual and surface layers, here 
shown as the maximum ClNO2 production using an assumed ClNO2 yield, ϕ(ClNO2) = 1. In this simulation, 
ClNO2 and HNO3 are equal. Regardless of the assumed ClNO2 yield, total amount of produced inorganic nitrate 
(ClNO2 + HNO3) would be equal to twice that of ClNO2. Before the lockdown, nighttime maximum ClNO2 
production in the residual layer (3 ppbv) was about half that in the surface layer (5.5 ppbv). During the strict 
lockdown, maximum ClNO2 production in both layers was similar (∼1 ppbv). However, with the lifting of some 
lockdown restrictions, maximum ClNO2 production in the residual layer exceeded production in the surface layer 
(2.5 and 1.5 ppbv, respectively) due to a faster N2O5 uptake rate.

VOC/NOx ratios are a useful diagnostic for probing secondary pollutant formation regimes from both photochem-
istry and nighttime chemistry. The influence of this ratio on daytime ozone photochemistry is well established 
(Council, 1991; V. Kumar & Sinha, 2021; Seinfeld, 1989). During the day, this ratio indicates the competition 
between ozone production and consumption through photolysis of NO2, oxidation of VOC, NO and NO2 reac-
tion with peroxy radicals, scavenging of ozone by NO etc. During the night, this ratio indicates the competition 
between NO3- and O3-dominant regimes of VOC oxidation. VOC/NOx ratio also determines the competition 
between inorganic and organic nitrate production during the night and day. At low VOC/NOx ratios, nighttime 
production of inorganic nitrate (HNO3 and ClNO2 from N2O5 uptake) increases while the level of organic nitrate 
(the major product of VOC oxidation by NO3) decreases (Romer Present et al., 2020). The competition between 
inorganic nitrate and organic nitrate determines the aerosol yield and composition by changing the reaction path-
ways (Huang et al., 2021; Petit et al., 2021).

Using nighttime measurements from the residual layer in the southeast US, Edwards et al. (2017) calculated the 
transition between NO3- and O3-dominant regimes, which occurs at NOx/isoprene ratio of approximately 0.5. 
Transition between inorganic and organic nitrate production occurs at NOx/isoprene ratio of approximately 3. 
These transition points are shown in Figure 4, which also displays nighttime NOx/VOC ratio in the simulation 
and in the measurements during the three studied periods. Before the lockdown, inorganic nitrate production was 
the main sink for NO3. During the lockdown, nitrate production changed from inorganic- to organic-dominant, 
although the measurements rarely cross the line calculated by Edwards et al. (2017). In all three periods, NOx/
VOC ratio never reached the transition point to an O3- (rather than NO3) dominated nighttime chemistry (Edwards 
et al., 2017). Consequently, decreasing NOx as occurred during the lockdown did not dramatically affect isoprene 
oxidation, which was always dominated by reactions with NO3 (Figure S9 in Supporting Information S1). This 
also affected the maximum potential for ClNO2 production (Figure S8 in Supporting Information S1), which 
decreased from nighttime maximum production of 5.5 ppbv before the lockdown to less than 1 ppbv during the 
strict lockdown, followed by an increase to 1.5 ppbv upon lockdown relaxation. This maximum ClNO2 produc-
tion changes have the capability to affect photochemistry and next-day ozone production, however, this depends 
on available chloride. Gunthe et al. (2021) measured chemical composition of PM1 in Delhi and found that during 
episodes with high chloride, its concentration in PM1 may reach 22.1 ± 13.7 µg m −3 (equivalent to 15 ± 9 ppbv), 
whereas during the entire period, measured chloride was 5.9 ± 9.1 µg m −3 (equivalent to 4 ± 6 ppbv). Gani 
et al. (2019) also measured the chemical composition of PM1 in Delhi and found that diel cycle of chloride in PM1 
has a morning peak of up to 50 µg m −3 (equivalent to 33 ppbv) during winter. Nighttime winter concentrations 
of chloride in PM1 varied between 20 and 30 µg m −3 (equivalent to 13–20 ppbv). Reaching such concentrations 
in an inland location such as the IGP indicates there is sufficient chloride to sustain the maximum potential for 
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ClNO2 production in the region. Therefore, calculated maximum ClNO2 production may be close to actual levels, 
and this potential chlorine chemistry requires further investigation in the IGP.

4. Conclusions
Effects of emission reductions during COVID-19 lockdowns on atmospheric composition and air quality have 
been studied in many places around the world and will continue to be of scientific and public interest for years 
to come. Lockdown emissions reductions combined with seasonal variations provide a unique opportunity to 
investigate selected oxidation processes at a site in the Indo-Gangetic Plain, a highly polluted region, where 
nighttime oxidation has rarely, if ever, been investigated. Our work quantifies, for the first time in India, rates of 
several atmospheric oxidation processes. These processes include the consumption of VOCs by NO3 radicals, and 
potential production of ClNO2. These processes were affected differently by changes related to the transition from 

Figure 4. Left—NOx/volatile organic compound (VOC) ratio during nighttime from the model. Color scale shows the ratio 
between inorganic and organic nitrate production. Gray dots reflect the spread of measured data during the night. Right—
NOx/VOC ratio histograms of measured nighttime data. Data is shown for the three periods studied: before COVID-19 
lockdown (top), during strict lockdown (middle) and after lockdown relaxation (bottom). Dashed gray lines are the transition 
points modeled by Edwards et al. (2017) (0.5 - NO3-to-O3 dominant regime; 3 - inorganic-to-organic-nitrate-production 
dominant regime) as is shown in the upper right panel.
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winter to spring and to emission changes due to COVID-19 pandemic. Nighttime chemistry was highly influ-
enced by reduction in emissions related to COVID-19 restrictions. During the lockdown, nighttime NO3 average 
production rates and ClNO2 production decreased by 50% and 80%, respectively, accompanied by a clear shift in 
nitrate production from an inorganic- to an organic-nitrate-production-dominant regime.

Extreme pollution levels associated with the IGP lead to increased rates of unconventional atmospheric chem-
istry processes, such as those investigated here. This manuscript identifies several processes that have not been 
studied in this region previously and were likely modified by pollutant emission changes during COVID-19 
lockdowns. Future work to quantify these processes, their contribution to particulate matter and ozone chemistry 
in the IGP and their dependence on emissions will be of substantial interest to the air quality scientific and policy 
communities.

Data Availability Statement
The observational data used for this study is available online at https://data.mendeley.com/datasets/svvf9nwc43/
draft?a=5ba5e802-386f-410b-b46f-8107d67f6158.
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