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Abstract: Multifunctional optical devices are desirable at all times due to their features of flexibility
and high efficiency. Based on the principle that the phase of excitation light can be transferred to the
generated surface plasmon polaritons (SPPs), a plasmonic grating with three functions is proposed
and numerically demonstrated. The Cherenkov SPPs wake or nondiffracting SPPs Bessel beam or
focusing SPPs field can be correspondingly excited for the excitation light, which is modulated by a
linear gradient phase or a symmetrical phase or a spherical phase, respectively. Moreover, the features
of these functions such as the propagation direction of SPPs wake, the size and direction of the SPPs
Bessel beam, and the position of SPPs focus can be dynamically manipulated. In consideration of the
fact that no extra fabrication is required to obtain the different SPPs fields, the proposed approach
can effectively reduce the cost in practical applications.

Keywords: surface plasmon polaritons; phase modulation; nondiffracting beam; focusing

1. Introduction

Similar to an electromagnetic wave propagating along a metal/dielectric interface,
surface plasmon polaritons (SPPs) are capable of shorter wavelength, tighter field confine-
ment, and stronger field enhancement than the excitation light in the free space [1]. Owing
to these unique properties, applications based on SPPs have been extensively exploited,
ranging from plasmonic circuits [2], super resolution imaging [3], biosensing [4], and
optical tweezers [5] to energy harvesting [6] and metamaterials [7]. The foundation of the
aforementioned applications is through the modulation of the propagation and distribution
of SPPs field. Therefore, the SPPs devices with different functions including the focusing
lens [8,9], reflection mirror [10], hologram [11], logic operation [12], vortex [13,14], and
nondiffracting beam generation [15–17] have been demonstrated by designing the position
and shape of metallic or dielectric structures.

Traditional SPPs are usually static. Various methods were utilized to dynamically
modulate the function of SPPs devices [18–22]. In 2011, the wavelength-multiplexed SPPs
focusing field was demonstrated with a nonperiodic nanoslit array, which was designed
by an iterative algorithm [18]. Using a nanohole array, Bergin Gjonaj et al. actively con-
trolled the position of SPPs focus by modulating the amplitude and phase of incident
beam [19]. In 2008, Erez Hasman et al. observed the polarization-dependent shift of
SPPs focus generated by a semicircular plasmonic lens and explained this effect with the
spin-orbit coupling [21,22]. Since then, the polarization-based dynamical SPPs focusing
field [23–25], vortex [13,14], hologram [26,27], and nondiffracting beam [16,28] have been
achieved. In addition, the nonlinear light-matter interaction [29], laser-induced thermal
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effect [30], and 2D materials such as graphene [31] were employed to manipulate the
SPPs field. Nevertheless, different functions require the fabrication of the correspond-
ing structure. The active modulations of SPPs fields are generally restricted to a single
function. Although the multifunctional metasurface modulation of the transmission light
(far field) is demonstrated [32,33], the near field SPPs devices with multiple functions are
rarely discussed.

In this paper, through the modulation of the phase of excitation light, three different
SPPs fields can be generated using a plasmonic grating. Simulations based on finite
difference time domain (FDTD) method verified the feasibility of the proposed approach.
The Cherenkov SPPs wake or nondiffracting SPPs Bessel beam or focusing SPPs field
can be generated when the excitation light is imprinted with a linear gradient phase or a
symmetrical phase or a spherical phase, respectively. The propagation direction of SPPs
wake, the nondiffracting and self-healing properties of SPPs Bessel beam, and the position
of SPPs focal point are analyzed. In addition, the relationship between each function and
the corresponding phase is discussed. The proposed multifunctional plasmonic grating
can play different roles as needed, which are efficiency and flexibility in applications.

2. Results and Discussion

Figure 1a schematically shows how the plasmonic grating realizes multiple functions.
The plasmonic grating consists of subwavelength periodical slits etched on the gold film. A
linearly polarized plane wave is normally incident on the spatial light modulator (SLM) and
the wavefront of the transmitted wave is modulated by the phase mask loaded on the SLM.
Then, the excitation light impinges on the plasmonic grating and the generated SPPs wave
propagates along the gold/air interface. The phase mask carried by the excitation beam
can be transferred to the SPPs wave. Therefore, by changing the phase mask addressed
on the SLM, the wavefront of the SPPs wave is subsequently modulated and different
functions can be accomplished. As shown in Figure 1b, without the phase mask, the
SPPs field excited by the normally incident plane wave propagates perpendicularly to the
grating, which is the fundamental function of a plasmonic grating. When a linear gradient
phase in Figure 1c or a symmetrical phase in Figure 1d or a spherical phase in Figure 1e is
loaded on the SLM, the Cherenkov SPPs wake [34], nondiffracting SPPs Bessel beam [28]
or focusing SPPs field [8] can be correspondingly excited. Moreover, to obtain these phase
modulations, the expensive SLM can be replaced by the optical wedge, axicon, and lens.
Numerical simulations based on the finite difference time domain method (Lumerical
FDTD Solutions) are conducted to analyze the various SPPs fields. In the simulations, the
excitation light with a wavelength of 632.8 nm illuminates the plasmonic grating from the
bottom. To obtain the optimum excitation of SPPs, the polarization is perpendicular to the
grating since the transverse electric (TE) polarized light cannot excite the SPPs and only the
transverse magnetic (TM) polarized light can give rise to SPPs [35,36]. The different phase
modulations are generated by the script file editor and then imported into a simulation
model. The boundary conditions in three directions are all set as perfect matched layers
to avoid the reflection of the electromagnetic wave. The SPPs distributions are extracted
from the frequency-domain field profile monitor. The thickness of the Au film usually
ranges from 100 to 200 nm for the 632.8 nm excitation light [8,24,37] in the experiments.
Therefore, the thickness of the Au film is chosen to be 150 nm, which can effectively avoid
the transmission of excitation light. The substrate is set as SiO2, which is commonly used in
plasmonic devices [8,24,29]. It is transparent for the 632.8 nm incident light and can support
the Au film. The permittivity of the gold film is εm = −11.82 + 1.24i and the wavelength of
the excited SPPs λsp is 606 nm, according to the dispersion curve of SPPs. The width of
the slit is 150 nm and the period of grating is equal to the wavelength of SPPs, in order for
the SPPs wave generated by each slit to interfere constructively. In the following sections,
we analyze the SPPs fields generated by the excitation light and imprinted with the linear
gradient phase, symmetrical phase, and spherical phase.
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(SNOM) technique [37,38] or far-field scattered imaging system [39]. 

Figure 1. (a) Schematic diagram of the multifunctional plasmonic grating lens enabled by modulating the phase of light
with SLM. (b) The SPPs wave propagates perpendicularly to the grating when no phase mask is loaded on the SLM.
(c–e) The linear gradient phase, symmetrical phase, and spherical phase distributions addressed on the SLM, which can
correspondingly excite the Cherenkov SPPs wake, nondiffracting SPPs Bessel beam, and focusing SPPs field.

2.1. Cherenkov SPPs Wake

Initially, we modulate the excitation light with a linear gradient phase in Figure 1c,
which can be expressed as follows:

ϕ(x, y) = −k0y sin α. (1)

k0 is the wave vector and α determines the incident angle of excitation light after transmis-
sion through the SLM. The grating can be divided into a series of subwavelength slits along
the y direction and each subwavelength slit is regarded as a SPPs dipole [37]. For normal
incidence light α = 0◦, all of the excited dipoles are in the phase and the SPPs plane wave
propagates perpendicularly to the grating. For oblique incidence light, the gradient phase
along the grating makes the SPPs plane wave propagate obliquely, which is also referred
to as the Cherenkov SPPs wake [34]. As shown in Figure 2a, the propagation direction of
SPPs wave is described by the angle θ and the expression is given by:

sin θ =
sin α

ne f f
, (2)

where ne f f = k0/ksp = λsp/λ0 is the effective index of the SPPs. The simulated real
parts of SPPs fields generated by the α = 5◦ and α = −5◦ incident light are presented in
Figure 2a,b. It can be seen that the wavefront of SPPs wave denoted by the dashed green
lines is tilted and the SPPs wave propagates upward and downward, respectively. The
simulated propagation angle is θ = 4.84◦, which is in good consistency with the theoretical
value θ = 4.78◦ obtained with Equation (2). The propagation direction of SPPs wave can be
dynamically controlled by changing the incident angle of excitation light. For the α = 10◦

and α = −10◦ incident light, the propagation angle of SPPs wave increases to θ = 9.64◦,
which is obtained from Figure 2c,d. The propagation and distribution of the SPPs field can
be measured with the scanning near field optical microscope (SNOM) technique [37,38] or
far-field scattered imaging system [39].
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Figure 2. The propagation direction of the SPPs wave can be dynamically manipulated by changing
the phase mask loaded on the SLM. (a–d) The real parts of SPPs field excited by the α = 5◦, α = −5◦,
α = 10◦, and α = −10◦ incident light, respectively.

2.2. Nondiffracting SPPs Bessel Beam

In the above, the entire SPPs plane wave propagates in the same direction. However,
if we encode two linear phases with different gradients on the SLM and correspondingly
divide the plasmonic grating into the upper part and lower part, the propagation direction
of the SPPs waves generated by these two parts will be different. The expression of the
phase mask can be written as follows:

ϕ(x, y) = −k0|y| sin β− k0y sin α, (3)

which consists of a symmetrical phase and a linear gradient phase. For α = 0◦, the phase
mask can be simplified into the symmetrical phase in Figure 1d. In this case, the SPPs
wave generated by the upper part propagates downward and the lower part that excites
the SPPs propagates upward. These two SPPs waves interfere constructively and the SPPs
beam with the Bessel profile is generated, which can be seen from the normalized SPPs
intensity distribution in Figure 3a for β = 10◦. A comparison of the intensity distribution
along x = 3 µm, x = 7 µm, and x = 11 µm is given in Figure 3b. The full-width at half-
maximum (FWHM) of the main lobe is nearly the same (0.998 µm) during the propagation,
which indicates that the diffraction of the SPPs Bessel beam is weak. In order to analyze
the self-healing property of the SPPs Bessel beam, a metal particle with a diameter of
400 nm is placed at x = 2.7 µm, which is represented by the white circle in Figure 3c [28].
Around the particle, the SPPs field is seriously distorted. However, the SPPs Bessel beam
recovers to its shape after the obstacle. The FWHM of the main lobe and the length of
the nondiffracting area can be dynamically changed by varying the parameter β. The
SPPs fields in Figure 3d,e show that the FWHM decreases and the nondiffracting area
gets shorter as β increases from 15◦ to 20◦. The propagation direction of the SPPs Bessel
beam is determined by the parameter α. For α = 10◦ and α = −10◦, the SPPs Bessel beam
propagates upward and downward, respectively, as presented in Figure 3f,g. Moreover,
by adding a sign function sgn(y) to the symmetrical phase, the SPPs fields generated by
the upper and lower parts of the grating are out of phase and interfere in a destructive
manner. Therefore, intensity minima can be observed along the x axis and the profile of
the SPPs beam becomes the first-order Bessel function [40], as shown in Figure 3h. In our
previous study [28], the position and the profile of the SPPs Bessel beam are controlled by
orthogonally linearly or circularly polarized light, which is a binary modulation. Here, the
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parameters α and β can be continuously modulated. Therefore, the propagation direction
of the SPPs Bessel beam and FWHM of the main lobe can be arbitrarily controlled.
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Bessel beam. By changing β, the FWHM of the main lobe and the length of the nondiffracting area
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beam propagates upward and downward, respectively. (h) The SPPs beam takes on the profile of
first-order Bessel function when the symmetrical phase is multiplied by a sign function.

2.3. Focusing of SPPs

Furthermore, in addition to the excitation of Cherenkov SPPs wake and the generation
of diffraction free SPPs Bessel beam, the plasmonic grating can function as a SPPs lens. To
realize this function, the expression of the required phase mask is as follows:

ϕ(x, y) = −k0(
√

f 2 + x2 + y2 − f )− k0y sin α. (4)

The first term is a spherical phase that converges the SPPs wave to the focus. The
second term is a linear gradient phase that determines the transversal displacement of
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the SPPs focus. For α = 0◦, the linear phase becomes zero and we only need to consider
the spherical phase in Figure 1e. The normalized intensity of SPPs field is presented in
Figure 4a for the f = 8 µm spherical phase. The SPPs wave propagates along the radial
direction and the wavefront is circular. The simulated SPPs focal length is 7.85 µm, which
agrees well with the setting value. By changing the focal length f, the SPPs wave can be
focused on different positions. Figure 4b,c shows the simulated focusing of SPPs field for
f = 10 µm and f = 6 µm, respectively. Moreover, if a linear gradient phase is imposed on
the excited SPPs, the SPPs focus will experience a transversal displacement. As can be
seen from Figure 4d,e, the SPPs focus correspondingly deviates from the center upward
and downward for the α = 5◦ and α = −5◦. The theoretical value of the displacement
calculated with f sin α is 0.697 µm and the simulated value is 0.728 µm. The real parts of
SPPs field in Figure 4f show that the polarity of SPPs lens can be changed from positive
(convex) to negative (concave) by projecting a divergent spherical phase on the plasmonic
grating. Of note, the dynamic focusing of SPPs by illuminating an arc slit with a vortex
beam has been reported [41,42]. The SPPs wave can be focused on different positions
by changing the topological charge. However, the alignment between the vortex beam
and the arc slit is required and only the focusing function is realized. The proposed
multifunctional plasmonic grating does not need the alignment and can play different roles.
To experimentally demonstrate the theoretical model, the desired phase modulations can
be projected to the plasmonic grating with a 4f system [43].
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3. Conclusions

In conclusion, without the extra demand of fabrication, one plasmonic grating is able
to play the role of three different SPPs devices by modulating the phase of excitation light.
For incident light that is imprinted with a linear gradient phase, the SPPs wave propa-
gates obliquely and the Cherenkov SPPs wake can be observed. The nondiffracting SPPs
Bessel beam is generated with a symmetrical phase modulation. Moreover, the plasmonic
grating can function as a SPPs lens when a spherical phase is encoded into the excitation
light. Furthermore, each function can be actively controlled. The required phase can be
obtained with SLM or optical devices including the wedge, axicon, and lens. Therefore,
the proposed versatile approach can find applications in on-chip communications and
particle manipulations.
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