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Polypeptides containing ≤100 amino acid residues (AAs) are generally considered to be
small proteins (SPs). Many studies have shown that some SPs are involved in important
biological processes, including cell signaling, metabolism, and growth. SP generally has a
simple domain and has an advantage to be used as model system to overcome folding
speed limits in protein folding simulation and drug design. But SPs were once thought
to be trivial molecules in biological processes compared to large proteins. Because
of the constraints of experimental methods and bioinformatics analysis, many genome
projects have used a length threshold of 100 amino acid residues to minimize erroneous
predictions and SPs are relatively under-represented in earlier studies. The general protein
discovery methods have potential problems to predict and validate SPs, and very few
effective tools and algorithms were developed specially for SPs identification. In this
review, we mainly consider the diverse strategies applied to SPs prediction and discuss
the challenge for differentiate SP coding genes from artifacts. We also summarize current
large-scale discovery of SPs in species at the genome level. In addition, we present an
overview of SPs with regard to biological significance, structural application, and evolution
characterization in an effort to gain insight into the significance of SPs.
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INTRODUCTION
Proteins generally contain from 50 to 1000 amino acid residues
(AAs) per polypeptide chain. In most studies, polypeptides con-
taining ≤100 AAs are considered to be small proteins (SPs) but
there is no strict definition of an SP. Some studies have used
wider thresholds for SPs of ≤200 AAs (Yang et al., 2011) and
some have used narrow thresholds for SPs of ≤85 AAs (Zuber,
2001; Schmidt and Davies, 2007). To date, the smallest protein
described is the TAL protein (11 AAs), which influences devel-
opment of the Drosophila melanogaster (Galindo et al., 2007).
Because of the short length, SPs generally consist of a simple
domain and represent simple, useful model systems for simula-
tion of protein folding (Imperiali and Ottesen, 1999; Polticelli
et al., 2001) and for drug design (Martin and Vita, 2000). But
many of the earlier studies assumed that the length of a pro-
tein sequence is associated with its specific functions and that
SPs probably have few notable functions compared to large pro-
teins. According to a statistical survey of SPs, the majority of SPs
in a certain species are hypothetical proteins or proteins with
unknown functions (Wang et al., 2008), and it is less likely to find
shorter proteins with confirmatory homology in other organisms
(Lipman et al., 2002; Wang et al., 2008; Zhao et al., 2012). Large
proteins have the priority to be annotated (Galperin and Koonin,
2004) and studied while shorter proteins to be relatively unimpor-
tant (Hirsh and Fraser, 2001; Jordan et al., 2002). However, the
identification of increasing numbers of important SPs has grad-
ually attracted the attention of scientists and many studies have

demonstrated that SPs are widespread and have important func-
tionality in all three domains of life (Camby et al., 2006; Galindo
et al., 2007; Gleason et al., 2008; Muller et al., 2008; Notaguchi
et al., 2008; Oelkers et al., 2008; Jung et al., 2009). In fact, due
to binding studies of peptides of various sizes, the minimal size
of a functional epitope is ∼8AAs, with an average size of 15–20
AAs. SPs with less than 100 AA are sufficient to contain at least a
single domain that exhibits a relevant function or to assist a bio-
logical process (Wang et al., 2008). Furthermore, there appears to
be a significant evolutionary trend favoring shorter rather than
longer proteins for specialized functions (Lipman et al., 2002).
This field is receiving increasing interest focused on the signifi-
cance of SPs. Thus, the bottleneck for the research on SPs might
not be the “trivial” functional SPs themselves but the techniques
of discovery and analysis of SPs.

SMALL PROTEIN-CODING GENES OVERLOOKED IN GENOME
ANNOTATION
In pace with the rising sequence data in NCBI database, the
biggest challenge for whole genome annotation and analysis is
becoming to differentiate meaningful gene-coding ORFs from
inutile ORFs. Random sequence simulation suggests that, except
for long repetitive sequences, ORFs ≥200 AAs are unlikely to
occur by chance, whereas a large number of sORFs could include
numerous artificial genes (Fickett, 1995; Das et al., 1997). SP-
coding genes could easily escape detection in a genome-wide
prediction because they are “buried” in an enormous pile of
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sORFs (Basrai et al., 1997). Dujon et al. defined a key criterion
to annotate an ORF; this criterion takes proteins with ≥100 con-
tiguous codons (including the first ATG) as functional genes and
ORFs that are shorter than 100 codons as questionable genes
(Dujon et al., 1994). With the application of this criterion, ORFs
were identified automatically in the yeast Saccharomyces cere-
visiae chromosome XI (Dujon et al., 1994). Goffeau also applied
this criterion and defined 5885 potential protein-encoding genes
from the 12,068 Mb DNA sequence of the S. cerevisiae genome,
exclusive of SPs (Goffeau et al., 1996). Since then, most algo-
rithms of genome annotation or protein prediction have used
a cutoff of ≤100 AAs to reduce the likelihood of false-positive
genes. In 2006, Kastenmayer et al. used gene expression-based
analyses and homology searching and brought 299 un-annotated
sORFs in S. cerevisiae, 247 of which have been verified exper-
imentally (Kastenmayer et al., 2006). Thus, the limitations of
discovery techniques could have contributed to the assumption
that the functions of SPs are less worthy of study. It is suggested
that the number of SP-coding genes is substantially greater than
those discovered to date, which becomes a challenging problem
for biologists trying to predict and validate SPs throughout the
genome.

FUNCTIONAL SIGNIFICANCE OF SPs
As a result of the constraints of discovery techniques, few SPs are
identified and the majority of SPs are annotated as hypotheti-
cal proteins or proteins with unknown functions. But SPs with
known functions are involved in various important functional
classes, including information storage and processing, cellular
processes and signaling, and metabolism. There is growing evi-
dence that many sORFs in single-celled microorganisms surpris-
ingly encode small bioactive peptides. Some of the well-known
SPs include chaperonin, Hsp10, translation initiation factor IF-1,
ribosomal proteins and others (Wang et al., 2008). In Bacteria,
two SPs, PtrA and PtrB are actively participate in the suppres-
sion of the type III secretion system under the stress of DNA
damage in Pseudomonas aeruginosa (Ha et al., 2004; Wu and
Jin, 2005); a group of small acid-soluble spore proteins (SASP)
are the crucial factors that protect spore DNA from damaging
in dormant spores of Bacillus, Clostridium, and related species
(Setlow, 2007). In yeast, it has been reported that SPs include
mating pheromones, proteins involved in energy metabolism,
proteolipids, chaperonins, stress proteins, transporters, transcrip-
tional regulators, nucleases, ribosomal proteins, thioredoxins,
and metal ion chelators (Basrai et al., 1997). In fact, regulatory
and metabolic proteins are more common than constitutive or
structural proteins. On the basis of the Clusters of Orthologous
Groups (COG) database (Tatusov et al., 2000), we summarized
the function types of SPs in Archaea, Bacteria, and Fungi and
found that SPs cover nearly all subclasses of functional classes in
the COG database, except for constitutive or structural classes;
i.e., RNA processing and modification, nuclear structure, and
extracellular structures (Table 1).

Among multicellular organisms, certain important signaling
molecules, hormones, antibacterial defensins, animal toxins, and
protease inhibitors belong to the SP family. In plants, some
SPs are known to be involved in cell-to-cell communications

and regulatory processes. It was demonstrated recently that a
membrane-associated thioredoxin (140 AAs) (Meng et al., 2010)
is related to intercellular communication, the Cg-1 protein (<33
AAs) (Gleason et al., 2008) controlling the tomato/nematode
interaction, the lipid-binding protein AZI1(161 AAs) (Jung et al.,
2009) involved in priming plant defenses, and the FLOWERING
LOCUS T (FT) protein (175 AAs) (Notaguchi et al., 2008) act-
ing as a long-range signal regulating flowering. In Arabidopsis,
the CLE family proteins (75–140 AAs) (Fletcher et al., 1999;
Trotochaud et al., 2000; Muller et al., 2008) participate in meris-
tem development. CAPRICE (CPC; 94 AAs) is a transcription
factor involved in intercellular signal transduction associated
with root epidermal cell differentiation (Kurata et al., 2005).
In animals, there is a rich diversity of short peptides involved
in intercellular transportation and development (Basrai et al.,
1997). A eukaryotic TAL protein (11 AA) was reported to influ-
ence Drosophila development (Galindo et al., 2007). A long
non-coding RNA called polished rice (pri) was found to encode
small peptides (11–32 AA) that control proteolytic cleavage of a
transcription factor control Shavenbaby (Svb) during Drosophila
embryogenesis (Kondo et al., 2010). In humans, galectin-1 (135
AAs), for example, plays major roles in neuronal cell differentia-
tion and the establishment and maintenance of T-cell tolerance
and homeostasis in vivo (Luo et al., 1996). In fact, it is clear
that almost all subclasses of functional classes in KOG database
(eukaryotic representatives of the COG database) (Tatusov et al.,
2003) are covered in A. thaliana (Ath), Caenorhabditis elegans
(Cel), Drosophila melanogaster (Dme), and Homo sapiens (Hsa),
except for the nuclear structure class (Table 1; see Table S1 for
details).

We further studied domains of SPs in the Pfam-A database
(Pfam-A) and the NCBI genpept database (NCBI genpept
database). The NCBI genpept database contains 14,324,397 pro-
teins, including 1,796,324 (12.54%) SPs. Only 310,909 (17.31%)
SPs, about 2.17% of total proteins are annotated, and among the
annotated domain SPs, most of them (85.26%) have only one
domain (Figure 1). SPs usually contain single domain. Domain-
known SPs cover 3274 domain items (85.39% of the total 3834
domain items in all Pfam-A families against the NCBI genpept
database) (Table S2). Some similar domains are grouped together
into clans; we clustered the 3274 domains on the basis of Pfam-
C, but not every domain has a corresponding clan. Specifically,
1687 domains belong to clans and 1587 domains were not found
in clans (Table S3). Domain analysis revealed that large num-
bers of SPs are not identified but, as for SPs with known domain,
they usually have a simple structure and cover almost all domain
classes.

PREDICTION AND VALIDATION FOR SPs
Although recent advances in computational and experimental
approaches make it possible to identify ORFs efficiently at the
genome-wide level, there are potential problems for the predic-
tion and validation for SPs.

HOMOLOGY-BASED SEARCHING
The general technique of homology-based gene prediction is the
most reliable tool for discovering evolutionarily conserved genes.

Frontiers in Genetics | Bioinformatics and Computational Biology December 2013 | Volume 4 | Article 286 | 2

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Su et al. A review of small proteins

Table 1 | Function characterization of small proteins in COG/KOG database.

COG/KOG function classes Archaea Bacteria Fungi Cel Ath Dme Hsa

[J] Translation, ribosomal structure, and biogenesis + + + + + + +
[A] RNA processing and modification − − − + + + +
[K] Transcription + + + + + + +
[L] Replication, recombination, and repair + + − + + + +
[B] Chromatin structure and dynamics + + + + + + +
[D] Cell cycle control, cell division, chromosome partitioning + + + + + + +
[Y] Nuclear structure − − − − − − −
[V] Defense mechanisms + + − + − + +
[T] Signal transduction mechanisms + + + + + + +
[M] Cell wall/membrane/envelope biogenesis + + − − + + +
[N] Cell motility + + − + − + +
[Z] Cytoskeleton − + + + + + +
[W] Extracellular structures − − − + + + +
[U] Intracellular trafficking, secretion, and vesicular transport + + + + + + +
[O] Posttranslational modification, protein turnover, chaperones + + + + + + +
[C] Energy production and conversion + + + + + + +
[G] Carbohydrate transport and metabolism + + + + + − +
[E] Amino acid transport and metabolism + + − + + + +
[F] Nucleotide transport and metabolism + + − − + − +
[H] Coenzyme transport and metabolism + + + + + − +
[I] Lipid transport and metabolism + + + + + + +
[P] Inorganic ion transport and metabolism + + + + + + +
[Q] Secondary metabolites biosynthesis, transport, and catabolism + + − − + + +
[R] General function prediction only + + + + + + +
[S] Function unknown + + + + + + +

“+,” found; “−,” not found. It describes function types of SPs in Archaea, Bacteria, and Fungi in COG database and those of SPs in eukaryotic species in KOG

database. In Archaea, bacteria, and fungi, constitutive or structural classes are not covered, that is, RNA processing and modification, nuclear structure, extracellular

structures. In Arabidopsis thaliana (Ath), Caenorhabditis elegans (Cel), Drosophila melanogaster (Dme), and Homo sapiens (Hsa), the nuclear structure class is not

covered in all these organisms.

FIGURE 1 | Domain number distribution of small proteins in NCBI

genpept. SP usually contains a single domain. The NCBI genpept database
contains 14,324,397 proteins, including 1,796,324 (12.54%) SPs. Only
310,909 (17.31%) SPs, about 2.17% of total proteins, are annotated, and
among the annotated domain SPs, most of them (85.26%) have only one
domain.

The key issue is to identify sequence similarity. Each predicted
gene from the stringent genome sequence can be annotated if the
gene aligns significantly with a known protein sequence from the
same organism or other organisms. It has been used to discover
small, un-annotated, protein-coding, and non-protein-coding

genes in chromosomal regions previously considered to be inter-
genic region between the genome of S. cerevisiae and those of
other hemiascomycetous yeasts (Blandin et al., 2000) or other
Saccharomyces genomes (Cliften et al., 2001). However, as for
SPs, the sequence similarity-based homology assessment method
is limited by the large size of the protein database and the short
length of the sequence. The expectation (e-value) for finding a
random sequence match in a database often takes into account the
length of the sequence and, for a short query sequence, the prob-
ability of a random match is quite high. Thus, alignment-based
methods exclude a lot of small potential genes, which are often
classified as ORFs that occur by chance (Skovgaard et al., 2001).
Moreover, it is also less likely to find SPs that do not have con-
firmatory homology in other organisms. By BLAST comparisons,
Wang F et al. took several representative phyla to investigate con-
servation among SPs and found the species-specific SPs are the
majority in all of the phyla (Wang et al., 2008). Thus, homology
searching is not competent for discovery of species-specific SPs.
And SPs like ubiquitin (76 AA, not including the pre-protein pep-
tide), which is highly conserved from fungi to mammals but only
sharing a similar structure with ubiquitin proteins in prokaryotic
cells, are also excluded by alignment-based approach (Bienkowska
et al., 2003).
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PURELY STATISTICAL ALGORITHMS
Purely statistical algorithms make gene prediction from multiple
features of gene-coding sequences. Methods on purely statisti-
cal grounds, using either probabilistic or pattern-based schemes
to score candidate genes, display high sensitivity for discovering
genes without a match. Most ab initio gene prediction programs
distinguish coding (CDS) and non-coding sequences (NCDS)
with their differences in nucleotide composition, intron splice
sites, promoters, translational start/stop sites, and polyadenyla-
tion signals. These signals are generally integrated for evaluating
the coding likelihood of a sequence. However, SPs prediction tools
could not take all the characteristics into consideration. The inte-
gration of multiple criteria decreases the chance that false exons
are predicted as true (low false-positive rate) but likely increases
the chance that true exons are not predicted (high false-negative
rate). The issue of false-negative prediction is particularly serious
for smaller CDSs (≤300 nucleotides) due to the difficulty in dis-
tinguishing the relatively few biologically meaningful sequences
from the very large pool of small ORFs (sORFs) (Basrai et al.,
1997). Noting the relatively high false-negative rate of current
gene finding algorithms and the difficulty to identify SP genes,
recent studies focus only one or two signals to predict sORFs and
they also take considerations from functional constraints in the
follow-up analysis. Hanada et al. developed the program package
sORF finder for identifying sORFs according to the nucleotide
composition bias among coding sequences and the potential
functional constraint at the AA level through evaluation of KA/KS
ratio, because a functional coding sORF is expected to undergo
stronger selective constraints on non-synonymous sites than for
synonymous ones. Yang XH et al. identified candidate sORFs
set by protein domain-scanning that is searching the InterPro
database for annotated protein domain/motifs (Yang et al., 2011).
The codon adaptation index (CAI), which is based on the sim-
ilarity of usage of preferred and a limited number of codons
for highly expressed genes, has been used to evaluate the coding
potential of a putative ORF (Sharp and Li, 1987). Hanada et al.
used this simple gene-finding method in a large-scale search for
sORFs encoding proteins of 30–100 AA in the intergenic regions
of the Arabidopsis genome (Hanada et al., 2007). On the basis of
this research, Hanada et al. developed the program package sORF
finder for identifying sORFs according to the nucleotide compo-
sition bias among coding sequences and the potential functional
constraint at the AA level through evaluation of synonymous and
non-synonymous substitution rates (Hanada et al., 2010). This
measurement becomes less robust for sORFs, because the param-
eter will fluctuate dramatically as ORF length decreases. Only
2% of un-annotated sORFs predicted by Hanada et al. (2007)
were confirmed by the Arabidopsis proteomic data (Castellana
et al., 2008). Later, Termier and Kalogeropoulos examined the
probability of functionality of sORFs and described computa-
tional techniques based on a combination of codon usage, AA
composition, and dipeptide frequencies in the encoded pro-
tein to distinguish coding and non-coding sequences (Termier
and Kalogeropoulos, 1996). In addition, Xiaohan Yang et al.
reported an integrative sORF discovery strategy based on tran-
scriptomics, proteomics, and computational biology, which was
validated by both bioinformatics (e.g., protein domain-scanning)

and experimental approaches (e.g., protein mass spectrometry)
(Yang et al., 2011). Although multiple criteria could minimize the
risk of considering a fortuitous ORF to be a meaningful protein-
coding gene, it is also hardly to achieve efficient designation of
small coding sequences from the very large pool of sORFs because
of the growing error of short sequence annotation.

EVIDENCE-BASED STRATEGIES
Many experimental strategies have been used as gene predic-
tion or validation tools and these methods have the ability to
predict novel genes that could not be identified in silico. Most
of them are based on gene expression data, such as RNA-Seq,
EST (Expressed Sequence Tags), DNA microarray, and SAGE
(serial analysis of gene expression). Although expression can-
not (at all) be used to validate the translation of a SP, it is still
the effective approach to address a SP candidate. Recent studies
show a squared Pearson correlation coefficient of ∼0.40, which
implies that ∼40% of the variation in protein concentration
can be explained by knowing mRNA abundances (Vogel and
Marcotte, 2012). Yamada et al. have used Arabidopsis thaliana
full-length cDNA data and EST data from A. thaliana, Brassica,
rice, and wheat to pinpoint transcribed, un-annotated genomic
regions to identify novel transcribed sequences in A. thaliana
(Yamada et al., 2003). Each plausible gene can be identified if it
matches with EST or cDNA sequence. But some coding sORFs
may be either expressed under specific conditions not covered or
tend to have significantly lower expression levels than long high
expressional genes leading to few evidence of sORFs to be found
in transcriptome experiments. Another approach that has been
developed is a microarray-based method, which is often used as
a gene validation tool. The core principle behind microarrays is
hybridization between two DNA strands. A single “chip” or array
contains probes to determine transcript levels for every known
gene in the genome of one or more organisms simultaneously.
Shoemaker et al. used microarrays to refine and validate com-
putational gene predictions for the human genome and define
full-length transcripts on the basis of co-regulated expression of
their exons (Shoemaker et al., 2001). It can provide more accurate
results and represents a powerful tool for identifying transcripts.
Nevertheless, this method requires explicitly designed chips and
some small transcripts might not be systematically defined to
allow the creation of the required chips. The serial analysis of
gene expression (SAGE) technique can provide quantitative gene
expression data without the prerequisite of a hybridization probe
for each transcript. The general goal of SAGE technique is sim-
ilar to DNA microarray and the difference between SAGE and
microarrays is that SAGE sampling is based on lists of short
sequence tags, not on hybridization of mRNA output to probes.
The tag-based gene expression profiling can measure the expres-
sion levels of known or unknown sequences. It has been designed
to catalog transcripts including a small number of unpredicted
sORFs on a genome-wide level in yeast genome studies (Basrai
et al., 1997; Velculescu et al., 1997; Basrai et al., 1999). Although it
has the advantage of greater sensitivity to low levels of expression,
the number of sORFs identified will be limited by the number of
tags analyzed, the physiological state from which they are isolated,
and the restriction enzyme used to define tags (Basrai et al., 1997).
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In addition to traditional transcriptional methods mentioned
above, next-generation sequencing refreshes the methodology of
transcriptomics that is, it directly sequences transcriptomes. By
using deep sequencing technologies to sequence cDNA, RNA-
Seq has been developed to transcriptome profiling quantitatively
(Wang et al., 2009). The expression levels determined by RNA-
Seq, which does not suffer from problems with background noise,
are more accurate than traditional cross-hybridization methods.
If the sequencing depth is sufficient, RNA-Seq would discover
novel transcripts especially for SPs, some of which are hardly
to be detected effectively in traditional expression-based meth-
ods. Despite of the individual advantages and limitations, all of
the expression-based methods have several potential problems to
identify SPs because sensitivity is contingent on the extent of the
expression datasets, which might exclude genes with little evi-
dence or expressed in uncovered specific conditions. For example,
only low-level expressors of the SP of DAP-5 could be selected by
the transfections with the original episomal-based vector or with
the bicistronic vector, because overexpression of the DAP-5 was
lethal to HeLa cells (Levy-Strumpf et al., 1997). Another SP is
negative p53, whose expression inhibits DEK RNA interference-
induced p53 transcriptional induction, as well as cell death, thus
directly implicating p53 activation in the observed apoptotic phe-
notype (Wise-Draper et al., 2006). Therefore, those low-level
expressed SPs are difficult to be verified by expression-based
methods. These problems would not be encountered by analy-
sis of a collection of transposon insertions, which can identify
genes expressed at different times in the life cycle and determine
the subcellular locations of the encoded gene products as well
as the phenotype of the disrupted strains. No cDNA is required
and the majority of new genes are either short or overlap a pre-
viously un-notated gene on the opposite strand. Smith et al.
described a genetic footprinting method based on the endoge-
nous yeast transposon Ty1 (Smith et al., 1996). This method
could be useful for identifying sORFs if primers against interfea-
ture regions (regions lying between known ORFs, tRNA genes, or
other sequence “features”). In gene-finding studies in yeast (Ross-
Macdonald et al., 1999; Kumar et al., 2002), candidate genes are
identified by means of large-scale shuttle mutagenesis (Seifert
et al., 1986) with a modified transposon as a simple gene trap.
However, genes encoding proteins below a 100 AA cutoff might
be under-represented in a mutational search because of the small
target size for mutagenesis and the number of insertions analyzed.
In addition to the expression-based method and mutagenesis,
mass spectrometry has allowed for large-scale surveys of the pro-
teome. Yang XH et al. identified highest-confidence candidate
sORFs set by proteomics data using protein mass spectrometry.
Proteomics has now advanced sufficiently to allow for the system-
atic quantification of proteins. But it also excludes large amounts
of protein-coding sORFs because of the fast and dynamic nature
of biological process.

INTEGRATED STRATEGIES
As for the prediction of short protein-coding genes, the chal-
lenge is that short non-coding ORFs are difficult to distin-
guish from real genes; the shorter the protein, the greater the
probability of error rate of detection. No single technique is

comprehensive. In order to predict short genes completely and
correctly, most studies combine both genome-wide searching
algorithms in silico and expression analysis. Kumar et al. inte-
grated methods of gene-trapping, microarray-based expression
analysis, and genome-wide homology searching for finding over-
looked sORFs and antisense sORFs in yeast (Ross-Macdonald
et al., 1999; Kumar et al., 2002). The 137 genes discovered using
this approach, including 104 SPs-coding genes, constitute 2%
of the yeast genome and represent a wealth of overlooked biol-
ogy. Yang et al. reported an integrative sORFs discovery strategy
based on experimental data (transcriptome), coding potential
prediction, evolutionary conservation, and gene family cluster-
ing (Yang et al., 2011). The sORF candidates predicted in this
study display a relatively high rate of proteomics support and pro-
tein mass spectrometry support. We provided an overview of the
integrated strategies for SPs prediction (Figure 2). In the compu-
tational stage, in silico programs could discover rarely expressed
sORFs or tightly regulated sORFs, which are hardly detected in
experimental methods. Homology searching methods are valu-
able for conserved SPs discovery but are not available for novel
SPs candidates and some SPs share similar structure. Pure sta-
tistically algorithms combine multiple parameters and generate
feature or pattern of SPs, which could be conducted from train-
ing set of SPs-coding genes in relative organisms. It is efficient for
the designation of non-conserved small coding genes excluded by
alignment-based methods. But computational methods include
many false positives, some of which could be validation in the
experimental stage. Expression-based approaches directly assess

FIGURE 2 | An overview of integrated strategies for small proteins

prediction. It is challenge to differentiate meaningful gene-coding sORFs
from inutile sORFs because the shorter the protein sequence, the greater
the probability of error rate of detection. First we suggest splitting the
annotation of SPs from other proteins. Second, it is better to combine both
in silico algorithms and evidence-based analysis. Then merge the two parts
of results and get two sets of SPs as follows. The strict validated SPs are
those validated by both methods, while other validated SPs are those only
validated by either in silico algorithms or evidence-based analysis.
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the gene expression level, which supplement to validate the
meaningfulness of predicted sORFs. Experimental methods could
also predict some new sORFs missed in computational stage.
This integrated strategy could improve the sensitivity and speci-
ficity of annotating SPs-coding genes in stringent genomes, but
the choice of each method applied and each parameter set is
contingent.

GENOME-WIDE PREDICTION IN SPECIES LEVEL
Because of the advances in experimental and computational
approaches, it has emerged that most studies (Table 2) are focused
on large-scale discovery of SPs in species rather than a small
number of SP families in specific organisms. In prokaryotes,
Peter performed systematic function analysis of potential pro-
teins, including 345 small polypeptide ORFs (of 85 codons or
less) in Bacillus subtilis, which is known to produce an abun-
dance of small polypeptides (Zuber, 2001). In single-cell eukary-
otes, e.g., S. cerevisiae, Marco used genome-wide comparative
analysis and identified 117 novel small genes, 84 of which are
transcribed (Kessler et al., 2003). Kastenmayer et al. used gene
expression-based analyses and homology searching and brought
the total number of un-annotated sORFs in S. cerevisiae to 299,
247 of which have been verified experimentally (Kastenmayer
et al., 2006). Earlier studies in plants showed that relatively lit-
tle is known about sORF genes except for a number of small
secreted proteins in A. thaliana (Cock and McCormick, 2001;
Butenko et al., 2003). Recent studies have revealed a large number
of novel coding sORFs. Lease and Walker predicted 33,809 un-
annotated Arabidopsis ORFs encoding SPs of 25–250 AA in length
(Lease and Walker, 2006); Hanada identified 3241 coding sORFs
with either evidence of transcription or purifying selection which
likely to be novel coding gene (Hanada et al., 2007). In animals,
Emmanuel and Vini identified nearly 600,000 sORFs in the puta-
tively non-coding euchromatic DNA of Drosophila melanogaster
(Ladoukakis et al., 2011); Frith et al. reported that ∼10% of
proteins in Mus musculus are <100 AAs, although the major-
ity of these are variants of proteins that are >100 AAs (Frith
et al., 2006). Despite the inherent difficulties of identifying sORFs,
these publications of large-scale discovery efforts may reveal addi-
tional sORFs with more valuable data and more advanced sORFs
discovery methods.

STRUCTURAL APPLICATION FOR SPs
Except for functional importance, many studies have demon-
strated that SPs containing <40 AAs with a compact, folded
structure provide simple model systems for studying protein fold-
ing and stability as well as serving as scaffolds for the rational
design of new functional motifs (Cunningham and Wells, 1997;
DeGrado et al., 1999; Imperiali and Ottesen, 1999), which benefits
both computational simulation and pharmaceutical studies.

In the simulation of protein folding, SPs are often used as
model systems to overcome folding speed limits and to pro-
vide insight into the complex architecture of proteins. Generally,
the polypeptide chains that are made up of thousands of atoms
and hence consist of millions of possible interatomic interac-
tions. It might be supposed that the resulting complexity would
make the accurate prediction of protein structure and protein-
folding mechanisms nearly impossible (Baker, 2000). However,
SPs and domains can be folded quickly and correctly as the
number of factors that influence folded state stability is reduced.
As a result, many studies have used small motifs for structural
simulation. Struthers et al. showed a metal-independent folded
structure (ββα) reproduced in a 23 AA peptide through an iter-
ative process (Struthers et al., 1996). Jennifer et al. designed a
discretely folded SP motif based on the toxin hand (TH) motifs
(Ottesen and Imperiali, 2001). Neidigh et al. have reported the
smallest stable structural Trp-cage motif, a 20 AA peptide that
adopts a well-defined globular shape, which provides a new tool
for elucidating protein conformational preferences (Gellman and
Woolfson, 2002; Neidigh et al., 2002; Qiu et al., 2002). The SP
motif rapidly and accurately provides an excellent model for
secondary structure simulation and provides the foundation for
understanding the structures of large proteins.

The engineering of novel functional SPs has the potential to
become a fundamental step toward the conversion of a protein
functional epitope or a flexible peptide lead into a classical phar-
maceutical. Such SPs represent a potential intermediate step in
the development of drugs targeted to a protein–protein inter-
face (Cunningham and Wells, 1997). The design of bioactive
small molecules for interaction at large protein–protein interfaces
remains a challenge and many studies are focused on minimizing
proteins into significantly smaller polypeptides via both rational
design processes and selection from vast combinational libraries

Table 2 | Summary of large-scale sORF studies in different organisms.

Organism Genome size Protein-coding sORFsa Verifiedb %c Source

(Mbp) genes

Prokaryotes Bacillus subtilis 4 4100 345 180 4 Peptides, 2001. 22(10)

Eukaryotes Saccharomyces cerevisiae 12 5865 299 247 4 Genome Res, 2003. 13(2);
Genome Res, 2006. 16(3)

Arabidopsis thaliana 120 29,157 7159 3241 11 Plant Physiol, 2006. 142(3);
Genome Res, 2007. 17(5)

Drosophila melanogaster 180 13,907 4561 401 3 Genome Biol, 2011. 12(11)

Mus musculus 2500 31,035 1240 1167 4 PLoS Genet, 2006. 2(4)

It describes studies focused on large-scale discovery of SPs in species and their results. aNumbers of coding or annotated sORFs (<100 AA); bNumbers of sORFs

with experimental evidence or known function; cThe fraction of verified sORFs relative to previously annotated protein coding genes.
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(Martin and Vita, 2000). To date, scientists have designed a few
SPs whose stability or instability has enhanced our understand-
ing of those rules. Both of the natural (e.g., α/β scorpion toxin
fold, protease inhibitors, leucine zipper, and zinc finger) and arti-
ficial SPs (TASP) have been used as structural scaffolds in the
engineering of novel binding activity (Martin and Vita, 2000).
Some of them can be used directly in therapy or exhibit a high
potential to serve as drugs. In all cases, they represent precious
structural intermediates that are useful as identification frame-
works for peptidomimetic design or lead directly to new small
organic structures, representing novel drug candidates.

EVOLUTION CHARACTERIZATION OF SPs
Proteins evolve under a variety of constraints, for example, as
specific functions, base or AA compositions (Knight et al., 2001)
and sequence length (Lipman et al., 2002). Studies of the evolu-
tionary characterization of SPs draw attention to the question of
how evolutionary trends affect variation of protein length. Two
obvious observations from the evolutionary characterization of
SPs are as follows. First, SPs are likely to change whereas long
proteins are likely to be conserved. Studies (Guigo et al., 2003;
Wei et al., 2005; Windsor and Mitchell-Olds, 2006) indicate that
computational gene prediction methods are not generally capable
of identifying SPs, which display elevated Ka/Ks ratios in inter-
specific comparisons, suggesting that SPs are generally rapidly
evolving sequences. Furthermore, Lipman et al. studied the rela-
tionship between length and conservation (Lipman et al., 2002)
and Zhao et al. analyzed SPs across eight Eukaryotes (Zhao et al.,
2012). It is found that SPs tend to be non-conventional proteins
and appear to have lineage-specific or tissue-specific function.
There appears to be a significant evolutionary trend favoring
shorter rather than longer proteins, possibly because of the need
to minimize the cost of protein translation and the cost of the
relationships that are required to fold longer, particularly multi-
domain, proteins (Hartl and Hayer-Hartl, 2002). Perhaps too
many changes in longer proteins would increase the risk of unde-
sirable side-effects; i.e., deleterious interactions with other cellular
components. The evolutionarily stable core of archaeal genomes
includes the great majority of genes coding for conserved pro-
teins involved in genome replication and expression, but only a
relatively small subset of metabolic functions (Makarova et al.,
1999). By contrast, the majority of SPs involve metabolic pro-
cesses, transcriptional regulation or cell communication rather
than essential roles in organisms. It is possible that vital func-
tional proteins are more conserved than regulatory proteins in
order to decrease side-effects, whereas poorly conserved proteins
appear to tend toward minimal domain size and retain lineage-
specific functions. Second, SPs are ancient and the origin of the
protein universe is highly likely to have arisen from SPs with
simple hydrogen-bonded, secondary structural elements instead
of the details of side-chains. There is a tendency toward greater
protein length along with increasingly complex genomes. Many
prokaryotes generally have shorter proteins, on average, than
eukaryotes (Makarova et al., 1999). Among the eukaryotes, pro-
teins of the microsporidium Encephalitozoon cuniculi, which has
an extremely compact genome, are smaller than the correspond-
ing proteins in organisms with larger genomes (Katinka et al.,

2001). There is evidence that a very small set of secondary struc-
tural elements, compacted from non-homologous representative
proteins in the Protein Data Bank (PDB) of 41–150 residues,
is complete for single-domain protein structures (Zhang et al.,
2006). Similarly, we found that a very small set of SPs in the NCBI
genpept cover a large number of domains in Pfam-A families
(Table S2). These results support that SPs contain the major-
ity, if not all, of the core secondary structural element, which
can be used as the starting template. As SPs evolve, some could
be folded into compact multi-domain proteins, whereas oth-
ers could prefer to remain as small as originally created; at the
same time, some new proteins are created along with species
differentiation.

Above all, these two observations suggest that SPs might
have important roles in evolutionary trends and give an possible
answer to why nature needs SPs, but some intriguing questions
that remain unanswered are focused on what a unique evolu-
tionary pattern of SPs is and how an SP could reveal additional
surprises.

CONCLUSIONS AND PERSPECTIVES
SPs generally consist of a simple domain and tend to be treated
as trivial molecules in biological processes. Large proteins have
become priority targets to be analyzed whereas study of SPs
is an almost untapped virgin territory in biological research.
Despite an increasing number of SPs to be identified and involved
in various biological functions, the vast majority of SPs are
annotated as hypothetical proteins or proteins with function
unknown. This is partly due to the limitations and challenges
in most current gene discovery techniques, which are not gen-
erally appropriate for SPs identification. SPs have largely escaped
detection and are hard to be differentiated from large amounts
of artifacts. The integrated strategies combing in silico algorithms
and evidence-based analysis could be more capable to discover
potential SPs to some extent, although these strategies require
improvements and it is also required more specific algorithms
and techniques in this aspect produced in the future. Recent
detection success suggests it is possible for large-scale identifi-
cation and systematic analysis of SPs or sORFs at the genome
level instead of only a limited number of SP families. The more
exciting thing is scientists are gradually paying more attention
toward solving exciting questions, such as why does nature need
SPs if there are functional characterizations or unique evolu-
tionary patterns for small peptides? The same question might
arise for micro RNAs or small RNAs. Besides, smaller motifs
have length advantages in iterative modeling, synthesis and struc-
tural characterization, prompting interest in discovering effi-
cient testing procedures for pharmaceutical design strategies or
principles.
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