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ABSTRACT: Since soft computing has gained a lot of attention in
hydrological studies, this study focuses on predicting aeration
efficiency (E20) using circular plunging jets employing soft
computing techniques such as reduced error pruning tree
(REPTree), random forest (RF), and M5P. The study undertaken
required the development and validation of models, which were
achieved using 63 experimental data values with input variables,
such as angle of inclination of tilt channel (α), number of plunging
jets (JN), discharge of each jet (Q), hydraulic radius of each jet
(HR), and Froude number (Fr. No), to evaluate the aeration
efficiency (E20), which served as the output variable. To evaluate
the effectiveness of the developed models, three different statistical indices were used such as the coefficient of correlation (CC),
root-mean-square error (RMSE), and mean absolute error (MAE), and it was found that all of the applied techniques possessed
good forecasting ability since their correlation coefficient values were greater than 0.8. Upon testing, it was discovered that the M5P
model outperformed other soft computing-based models in its ability to predict E20, as demonstrated by its correlation coefficient
value of 0.9564 and notably low values of MAE (0.0143) and RMSE (0.0193).

1. INTRODUCTION
The use of plunging jets as aeration devices is highly preferred
due to their minimal energy requirements. Plunging jets do not
need compressed air stirring machinery or consideration
regarding obstruction or physical installation restrictions, in
contrast to commercially utilized aerators, which makes them
highly advantageous for many applications. For instance, the
utilization of plunging jet aerators has become prevalent in
industries such as chemical manufacturing, fermentation, and
wastewater treatment owing to their numerous benefits.
Therefore, it is evident that plunging jet aerators offer a highly
effective and efficient method for aeration, which is why they
have gained widespread adoption in various fields.
Numerous studies have been carried out on the subject of air−

water−oxygen transfer through the utilization of plunging jets.
Experimental studies were thoroughly examined and summar-
ized in a detailed review by Bin and Smith.1 Various experiments
have been conducted on the oxygen transfer achieved through
plunging water jets.2−5 It is clear that there is considerable
interest in the topic of air−water−oxygen transfer through the
employment of plunging jets, and as such, it is a topic that
continues to get a lot of interest from academics in the field.
The impact of artificial intelligence on various scientific

disciplines, including civil engineering, has been noteworthy.
Researchers have been able to approach complex systems in

innovative and diverse ways with the advent of new algorithms
and models, especially those based on soft computing. These
advances have unlocked fresh possibilities and approaches in
civil engineering applications, thereby making it a stimulating
and continuously evolving field to explore. The model tree
approach such as M5P has been thoroughly studied and applied
in different hydraulic applications, with the effectiveness of the
method demonstrated in several studies.6−8 Additionally, RF,
another tree-based regression approach, has been found effective
in various fields.9−13 These studies provide compelling evidence
of the efficacy of tree-based regression approaches in a range of
practical applications. Thus, it is important to consider these
approaches as potential solutions in various fields, where
prediction and forecasting are essential. Through the use of
LS-SVM, researchers successfully predicted the air entrainment
rate and E20 of diving over fall jets from weirs.14 Prediction
abilities of SVM regression and GP regression were compared
while modeling oxygen transport by several plunging jets.15 The
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SVM approach was found to achieve a higher level of predictive
accuracy. GEP and ANN modeling techniques were employed
to predict the KLa20, BPD, and oxygenation efficiency of plunging
water jets. The study revealed that GEP achieved improved
performance when compared with ANN.16 The present study
aims to study the efficacy of decision tree techniques in
predicting E20 in an open-channel flow system. Literature in
Table 1 shows the numerous machine learning algorithms,
including decision trees, which have been studied in the
prediction of E20 in closed system jet aeration using a variety of
input parameters, including jet length, thickness, diameter, and
fall height. However, the coagulation of the present study’s input
variables, includingα, JN,Q, HR, and Fr. No, to evaluate E20 in an
open channel is yet to be explored with machine learning/soft
computing such as REPTree RF and M5P decision trees due to
their efficacy in prediction. Keeping in mind the gap in research,
the objectives of the current study are listed as follows.

1. To determine the potential of decision tree techniques for
prediction of E20 in an open-channel flow system.

2. Optimization of applied decision tree techniques for
outperformance, based on statistical parameters.

2. DECISION TREE APPROACH
A DT is considered to be supervised machine learning, which
means the model is developed and validated on a data set that
comprises the desired categorization. It consists of a tree-based
structure where the information on the data set is shown by
internal nodes, the choice is represented by the branches, and
the outcome is each leaf node.
The DT models used in this study are discussed below.
2.1. M5P. The M5P tree is a DT that incorporates a linear

regression function at the leaf nodes to make predictions
regarding continuous numerical attributes.28 Developing a tree-
based model employs a partition-and-overcome strategy that
consists of two stages. During the first stage, a DT is made by
using separating criteria. The standard deviation of the class data
determines how the M5P tree model method splits the data and
entails assessment of each characteristic at each node. This
culminates in a reduction of the standard deviation of the
information present in the child nodes in place of the parent
node. Once the all-feasible splits have been examined, the M5P
algorithm selects the model that reduces the error to the utmost
degree. Notably, the resulting tree-like structure may be
excessively intricate, leading to overfitting. Pruning the tree
back is necessary to solve this problem, for example, by replacing
a leaf with a subtree. In the following stage of model tree
creation, the overgrown tree is trimmed, and subsets are
substituted by linear regression functions. By dividing the
parameter space into subspaces, this technique gives each one a
linear regression model structure. Ultimately, the M5P model
tree approach serves as an effective method for predicting
numerical attributes, particularly in the realm of machine
learning.

2.2. Random Forest. In the field of machine learning
research, ensemble learning methods have gained significant
attention due to their ability to produce multiple classifiers and
combine their outputs. Popular among these methods are
boosting, bagging, and Random Forests.29−31 Using input
vectors and random vector samples, RF is a potent classification
and regression algorithm that produces a collection of tree
predictors that is organized.32 The RF algorithm utilizes a hit-or-
miss strategy to select parameters based on the best split and

produces a set of random trees through the combination of
bagging and random subspace techniques. Weak classification
trees are integrated into the RF model, and a majority vote
determines the final decision. When forest trees are created, it is
important to consider the quantity of DTs (Ntree) to be
produced and the number of characteristics to be checked to
determine the best division. Due to the efficacy of the RF
classifier and the absence of overfitting, Ntree may be set at any
value.33 Each tree is developed using two-thirds of the training
data, with the remaining one-third being utilized as “out of bag”
(OOB) data to assess performance. The user may select any
value for this parameter, and the RF consists of k trees, where k is
the total number of trees to be produced. The forest trees are
developed using the CART algorithm without pruning. RF
regression enables trees to grow to the depth of all of the fresh
training data by using a number of factors. A training set of
values is selected at random to create specific trees, and the
amount of purity in the variables relative to the output is
determined by the Gini index. In order to create the best RF
model, variables are categorized according to their significance.

2.3. Reduced Error Pruning Tree. REPT is a machine
learning approach that streamlines the modeling processes. It
was introduced as the decision tree technique that is utilized
initially on the training data set to identify errors, which are then
minimized using REP, a variance, and the information gain
reduction technique.34 The REPT method aims to reduce the
intricacy of the tree structure to simplify the modeling process
when dealing with vast input data. This method is highly valued
by researchers as it yields a good subtree based on postpruning
outcomes. In REPT, two methods that employ the information
gain ratio are employed to split and prune decision trees. The
first step is the prepruning process that curtails tree expansion
when data building is in progress. The second stage is the
postpruning process, in which the tree develops until there are
no issues in the training set process. When prepruning and
postpruning phases are compared, the latter produces a more
accurate tree but takes more time, whereas prepruning produces
trees faster.

3. METHODOLOGY
With the goal of predicting E20 by circular plunging jets, the
models used in this study were developed and tested based on
five input variables: α, Q, JN, HR, and Fr. No. The model
development and validation were done using software called
WEKA 3.9. Each model needs to have a few user-defined
variables set in order to be optimized. Table 4 contains a list of
each model’s user-defined parameters for the research at hand.
The studies were carried out to produce data sets for E20 from
each machine learning algorithm. The data set and the method
for conducting experiments are included in the sections that
follow.

3.1. Data Set.The input variables, including α (varying from
0 to 3°),Q (varying from 3.41 to 4.75 l/s), and JN (varying from
1 to 64), were utilized for predicting E20. The three DT models
adopted for the current investigation are RF, M5P, and
REPTree. Utilizing the seven acrylic sheets, each having JN of
1, 2, 4, 8, 16, 32, and 64 (Figure 2), comprising 63 experimental
readings for E20 (eqs 1−3) were obtained. Out of the complete
data set, the training data set was randomly chosen comprising
42 readings, which was used for model development. The
remaining data set was considered for model validation with 21
data points. Table 2 shows the characteristics of training and
testing data sets.
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3.2. Experimental Procedure. A tilting flume was
employed for the present study to conduct experimental
procedures (Figure 1) having dimensions of 0.45 m × 0.25 m
× 5 m. The aeration device (Figure 2) was equipped in the
channel such that water could transfer purely via hollow jets,
which were impinged onto the screens. To begin the tests, tap
water was used to fill the water tank, and the water was allowed
to circulate in the channel with the help of a “2 HP” motor. In
order to decrease the concentration of DO in the water tank,
sodium sulfite (Na2SO3) and a catalyst, cobalt chloride (CoCl2),
were added in the water collected in the tank. For each test run, it
was required to collect two samples of water, one being the
deoxygenated water that was collected from the upstream
location of the screen. The other sample (oxygenated water) was
collected from the downstream location after a time of 2min had
elapsed. The concentration of dissolved oxygen in each sample
of water collected was calculated using the Winkler test.35 The
water temperature of the two samples was measured by using a
lab thermometer. Equations 1− 3 were used to calculate E20.
To determine E20, the following equations were used.

36

= = =
*

*

*
E

C C

C C

C C

C C r
1 1

1y x

S x

S y

S x (1)

whereCx,Cy,CS*, and r are the oxygen levels in the upstream and
downstream points, the concentration of saturated oxygen, and
the oxygen aeration deficient ratio, respectively.
The E20 is 1 when all of the oxygen is delivered to the water,

whereas a 0 value indicates that no amount of dissolved oxygen
can be transported. Using the following formula, the results from
multiple temperature tests are normalized at 20 °C to maintain
uniformity in measured experiments.37

=E E1 (1 ) f
20

1/ (2)

The following time-independent formula can be used to
determine the oxygen aeration efficiency (E) at water temper-
atures aside from 20 °C, where E20 denotes the transfer efficiency
of oxygen at 20 °C, f denotes the exponent of aeration, and T
denotes the water temperature.

= + × + ×f T T1 2.1 10 ( 20) 8.25 10 ( 20)2 5 2

(3)

4. RESULTS
4.1. Experimental Result. The correlation matrix among

governing variables was calculated using Pearson’s method and
is shown in Figure 3. Figure 3 reveals that Fr. No has a higher
correlation of 0.859 with E20 followed by α, JN, Q, HR, and Fr.
No. The parameters Q and HR show a negative correlation as
they are based on the property of each jet section. The
cumulative effect of these parameters culminates in a positive
correlation.
The following equations (eqs 4 and 5) are used to calculate

the Fr. No as a function of the discharge rate and jet area

=
*
v

g
Fr. No

HR (4)

Here, v is the discharge velocity and g is the accelerated gravity
(g/cm3).

= * *D J
HR

flow area

N (5)

Table 2. Statistics of Training and Testing Data Sets

Training Data set

α (0) Q (l/s)
JN

(number)
HR
(cm) Fr. No E20

mean 1.50 3.94 18.14 0.69 5.84 0.18
median 1.50 3.84 8.00 0.55 5.46 0.20
std. dev. 1.23 0.54 21.49 0.46 2.11 0.05
kurtosis −1.53 −1.25 0.46 −0.66 −1.20 −0.59
skewness 1.14 0.61 1.33 0.76 0.26 −0.49
minimum 0.00 3.41 1.00 0.19 2.83 0.07
maximum 3.00 4.75 64.00 1.56 9.37 0.29

Testing Data set

α (0) Q (l/s)
JN

(number)
HR
(cm) Fr. No E20

mean 1.50 4.10 18.14 0.69 6.09 0.19
median 1.50 3.84 8.00 0.55 6.37 0.18
std. dev. 1.25 0.55 21.49 0.49 2.47 0.55
kurtosis −1.57 −1.25 0.47 −0.73 0.44 0.36
skewness 7.36 0.64 1.38 0.79 1.09 −0.07
minimum 0.00 3.41 1.00 0.19 3.79 0.09
maximum 3.00 4.75 64.00 1.56 11.15 0.32

Figure 1. Experimental setup.
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Here, the flow area is 30.75 cm2, JN = jet count, and D is the
diameter of each jet section.

4.2. Decision Tree Modeling-Based Results. 4.2.1. As-
sessment of REPTree and RF Models. The study generated
predictive models, namely, REPTree and RF, and determined
their performance evaluation parameters, CC,MAE, and RMSE,
using eqs 6−8 as shown in Table 3, with training and testing data
sets. To get the optimized model, certain user-defined values are
given. The user-defined values for this research are listed in
Table 4. The RFmodel displayed superior predictive capabilities
for both data sets as compared to the REPTree model, as

evidenced by the higher CC values. Specifically, the model
development and validation data sets had CC values of 0.9922
and 0.9461, respectively, while the testing data CC value for the
REPTree model was 0.8998, which is only marginally
satisfactory (Table 5). The results for both models, obtained
from Figures 4(a,b) and 5(a,b), showed that the RF model
outperformed the REPTree model in predicting E20, with the
points in Figure 5(a,b) being close to the line of perfect
agreement, signifying the accuracy of the RF model. In contrast,
the points in Figure 4(a,b) were more scattered, indicating less
accuracy of the REPTree model. In conclusion, the RF model

Figure 2. Circular jets fabricated on acrylic jets with different numbers.

Figure 3. Pearson’s correlation matrix of input parameters.
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proved to be more effective than the REPTree model in
predicting E20.
4.2.2. Assessment of the M5P Model. The study presented

here utilized theM5Pmodel to predict E20. To train and validate
the M5P model, both training and testing data sets were used.
Table 4 lists the parameters defined by a user in this research to

optimize the M5P model. The accuracy of the model is higher
when the projected value of the slope of the line of agreement is
closer to unity when compared to the measured data, as
demonstrated in Figure 6(a,b). The statistical results obtained
from the M5P model are presented in Table 5, which show fair
results with agreeable CC values of 0.9728 and 0.9564 for the
model development and validating stages, respectively. Addi-
tionally, it was found that the observations of RMSE and MAE
were lower during the training stage but slightly increased during
the testing stage.

4.3. Comparison of Models. This section pertains to the
evaluation of various models employed in the present study.
REPTree, RF, and M5P models were utilized to predict E20,
using α, Q, JN, HR, and Fr. No. as input parameters. To analyze
the outperforming model, statistical parameters were used as
shown in Table 3, of which results of evaluating each model
against three statistical indices are presented in Table 5. The
consistency of each model with experimental data is depicted in
Figure 7, which indicates that the prediction of E20 can be done
effectively with the DT models employed in this study. In order
to obtain conclusive results, it is also important to observe the
errors associated with models, the results of which are illustrated
in Figure 8. It is observed that the REPTree model has higher
errors when compared to the other models, in both model
development and validation stages. The M5P model exhibited
better consistency both before and after training. Figure 9
displays the box plot of model outcomes for the testing stage.
The actual and M5P model median and maximum values are
quite close. The IQR range of the actual data is 0.122, while

Table 3. Model Evaluation Parameters

S.no parameter range equation

1 = =

= =

k k l l

k k l l
correlation coefficient(CC)

( )( )

( ) ( )

i
N

i i

i
N

i i
N

i

1

1
2

1
2

(6)
−1 to +1 (6)

2 = | |
=N

k lmean absolute error(MAE)
1

i

N

i i
1 (7)

0 < MAE < ∞ (7)

3 =
=N

k lroot mean squre error(RMSE)
1

( )
i

N

i i
1

2

(8)
0 < RMSE < ∞ (8)

Table 4. Parameters Defined by the User for the Present
Study to Optimize the Models

DT models parameters defined by the user

RF • batchSize: 100
• numIterations: 100
• seed: 1

REPTree • batchSize: 100
• numFolds: 3
• seed: 4

M5P • batchSize: 100

Table 5. Statistical Indices Used for Model Evaluation

DT models CC RMSE MAE

training data set
REPTree 0.9405 0.0178 0.0126
random forest 0.9922 0.0083 0.0068
M5P 0.9728 0.014 0.0112

testing data set
REPTree 0.8998 0.0293 0.0258
random forest 0.9461 0.0226 0.0185
M5P 0.9564 0.0193 0.0143

Figure 4. Observed and predicted value of E20 using REPTree during (a) training and (b) testing.
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Figure 5. Actual and predicted values of E20 using the RF model during (a) training and (b) testing.

Figure 6. Actual and predicted values of E20 using the M5P model (a) training and (b) testing.

Figure 7. Comparison of decision trees with actual data.
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those of REPTree, M5P, and RF are 0.112, 0.103, and 0.083,
respectively. The difference in mean between the actual and
observed values is the minimum for the M5P model, at
0.000476. The Q2 values obtained from the box plot of the
actual data set is 0.187. The Q2 values for the models REPTree,
M5P, and RF are 0.181, 0.179, and 0.189, respectively. The
mean values of M5P (0.185381) and RF (0.183524) are very
close to the observed data set (0.187905).
As observed from Table 5 and Figure 10, it is concluded that

M5P is the outperforming model followed by RF and REPTree,
respectively.

5. DISCUSSION
A supervised machine learning method called a DT is capable of
performing tasks such as regression and classification. The DT
method pulls key information from databases and arranges them
into a tree-like structure with internal and terminal nodes
exhibiting splits and leaves, respectively. By combining different
trees, each of which has its own unique set of rules, a collection of
rules that would be used during the regression stage is beginning
to take shape. As DT combines fundamental inquiries regarding
the availability of the data, occasionally it might be simpler to
understand than classifiers like NN and SVM. Additionally,
there have been successful techniques for eliminating decision

rules from decision trees. Due to their versatility, DTs can
handle items with a mix of real-valued and category character-
istics as well as those with certain features missing.38 They are
expressive enough to represent a range of data partitions, as
opposed to classifiers that depend on only one limit, such as
logistic regression or SVM. Due to how closely these models
resemble human thinking and how simple they are to
comprehend, DT approaches have been frequently used to
create categorization models.39

In this study, the focus is on predicting E20, which is essential
for the effective management of densely polluted water
resources. The study aims to evaluate the effectiveness of
decision trees, including M5P, RF, and REPTree, to estimate
circular jet aeration in an open-channel flow. To analyze E20, five
input parameters are used, which include α, Q, JN, HR, and Fr.
No. The models’ effectiveness is evaluated using several
statistical criteria, and it is found that during the training stage,
the CC value of RF was 0.9922, but it declined in the testing
stage to 0.9461. The results demonstrate thatM5P is an accurate
model for predicting E20 based on the current data set with the
highest CC of 0.9564 and the least errors during the testing stage
as compared to the other models. On the other hand, REPTree
acquired the least CC values among other applied DT models
during testing, making it the least-performing model for the
current data set. The correlation matrix (Figure 3) results
showed that the parameter Fr. No has a significant impact on
output. It has acquired the highest correlation among other
parameters with E20.
Decision trees such as RF, M5P, and REPTree have been used

globally.40−42 M5P and ANFIS were used to predict E20 at
modified small Parshall Flume. The comparison among these
two models showed that M5P was the outperforming model.43

To predict the aeration performance of weirs, machine learning
techniques such as M5P (pruned and unpruned) and GP (PUK
and RBF) were used. The study’s findings demonstrated that the
M5P pruned tree had similar observations as experimented data,
and hence, the M5P pruned tree can be very well used to predict
the E20.

44 The efficacy of artificial intelligence models, namely,
M5P and EPR, was tested to predict E20 at stepped weirs. It was
observed that both the EPR and M5P methods provided

Figure 8. Error values of REPTree, RF, and M5P during the training and testing stages.

Figure 9. Box plot with actual and applied decision tree techniques.
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satisfactory predictions for the aeration efficiency. However, it
was also noticed that for each regime the M5 model provided
multiple equations, whereas the EPR method gave a single
equation for each turn.45 The potential of soft computing
techniques such as RF, M5P, MARS, and GMDH was observed
in an aeration study of Parshall and modified venturi flume.
Results of the analysis showed thatMARS had better predictions
when compared to other models.46 Another study investigated
the modeling performances of soft computing techniques such
as RF and ANN to predict the E20 of gabion stepped weirs. The
comparison of performance of these two techniques suggests
that ANN outperformed RF.47 In an open-channel flow, RF,
reduced error pruning tree, ANN, GP, and support vector
machine were tested to predict circular and square jet aeration
efficiency (E20).

48

Due to the simplicity of DT models, many researchers have
been using them in various other fields other than predicting E20.
One such study was to predict the daily water level of the Zrebar
lake in Iran. The authors compared the efficacy of applied
models, i.e., M5P (pruned tree), RF, RT, and REPTree. Their
findings showed that each constructed model had a high level of
accuracy. M5P exceeded other models, followed by RT and RF
equally and then REPTree.49 M5P and ANN were used in
another study to predict SPI and meteorological draft. The
models were compared, and M5P was found to be a better-
predicting model than ANN with a higher R value and fewer

errors.50 The predictive models for the dynamic modulus of
asphalt concretes were also created by using theM5Pmodel tree
approach. The findings showed that models created using the
M5P method performed better than models created before.51

Therefore, from the above discussion, it can be concluded that
the DT plays a vital role in predicting the output parameters, for
example, E20, etc. In this study, the M5Pmodel outperformed all
of the other applied models.

6. CONCLUSIONS
The findings of the current study may be summed up as follows.

1. The focus of the present study was to analyze the efficacy
of decision tree techniques to predict E20. It was found
that all of the applied techniques (M5P, RF, and
REPTree) showed considerably good results as they all
had CC values higher than 0.8; this indicates that decision
tree techniques can be used to predict the dissolution of
dissolved oxygen, i.e., aeration efficiency (E20) in water in
an open channel.

2. When comparing the techniques, it was observed that
M5P achieved the highest CC value in the testing stage,
which showed the compatibility of M5P with the current
data set. It was also found that REPTree has the least CC
value.

Figure 10. Pearson’s correlation among decision tree techniques.
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7. FUTURE SCOPE
This study is based on circular jet aeration in an open streamflow
system. The authors recommend increasing the number of jets
and exploring the effect of different jet configurations on
oxygenation in an open channel. Also, the study only focuses on
one output parameter, i.e., E20. Other parameters can be used
such as the OTE and kinetic energy of the system pertaining to
an open channel.
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