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The quantification of changes in the trabecular bone structure induced bymusculoskeletal diseases like osteoarthritis, osteoporosis,
rheumatoid arthritis, and others by means of a texture analysis is a valuable tool which is expected to improve the diagnosis and
monitoring of a disease.The reaction of texture parameters on different alterations in the architecture of the fine trabecular network
and inherent imaging factors such as spatial resolution or image noise has to be understood in detail to ensure an accurate and
reliable determination of the current bone state.Therefore, a digital model for the quantitative analysis of cancellous bone structures
was developed. Five parameters were used for texture analysis: entropy, global and local inhomogeneity, local anisotropy, and
variogram slope. Various generic structural changes of cancellous bonewere simulated for different spatial resolutions. Additionally,
the dependence of the texture parameters on tissuemineralization and noise was investigated.The present work explains changes in
texture parameter outcomes based on structural changes originating from structuremodifications and reveals that a texture analysis
could provide useful information for a trabecular bone analysis even at resolutions below the dimensions of single trabeculae.

1. Introduction

Quantitative computed tomography (QCT) is an advanced
method to measure bone mineral density (BMD) in vivo
at various skeletal sites [1]. However, to date the in vivo
quantitative analysis of the trabecular bone network remains
challenging. For peripheral locations such as the distal radius
or tibia dedicated high resolution peripheral QCT (HR-
pQCT) equipment with an isotropic spatial resolution of
about 130 𝜇m exists [2], but long scan times result in frequent
motion artifacts and disturb the analysis of trabecular bone
structure [3, 4].

Analysis of the trabecular network imaged with in vivo
techniques, predominantly not only with CT but also with
MRI or X-ray films, has received a fair amount of attention
in the past. In the majority of reported studies, binarization

methods were used to separate bone from soft tissue prior
to the calculation of histomorphometric parameters [5–7].
However, the spatial resolution of almost all in vivo imaging
modalities exceeds the diameter of single trabeculae of about
100 𝜇m to 200𝜇m [8–10]. Therefore, binarization techniques
were avoided in the present work. Instead, texture parameters
directly calculated from the gray value distribution of datasets
were used.

The texture analysis of trabecular bone is not a new topic
and a variety of texture parameters have been used [11–
13]. However, a systematic validation of accuracy was rarely
included in those studies. Such a validation should include
the examination of the dependence of texture on different
aspects like structure, BMDmodifications, image resolution,
and noise. In existing studies usually only the aspect of image
resolution was discussed. Textural features were compared
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Figure 1: Basic trabecular bone model. For clarity the 3D view only shows a detail of 5 × 5 × 5 rods.

among datasets with different spatial resolutions acquired
either from different imaging systems like micro-CT (𝜇CT)
and HR-pQCT [14], from MR acquisitions with different
resolutions [15], or by downsampling of high resolution
datasets [16].

In the present work, a digital trabecular bone model
consisting of rods and plates is introduced to examine quan-
titatively the ability to assess the trabecular bone structure at
spatial resolutions obtainable with CT, HR-pQCT, and 𝜇CT
scanners. The model is generic and can be used to simulate
typical architectural alterations occurring in osteoporosis or
arthritis including the effects of noise and image resolution.
As an example in this contribution, we apply the model
to quantify entropy, global and local inhomogeneity, local
anisotropy, and variogram slope [17]. The aim of the present
work is not to simulate architectural changes for a particular
disease.

The basic question investigated in the present work is
whether variations in bone architecture can be quantified
by the use of texture parameters. For this purpose, various
structural modifications were applied to the digital bone
model. The influence of noise and spatial resolution was
included in the investigation. A key topic in the use of texture
parameters is their ability to distinguish differences in trabec-
ular architecture from those in BMD. Differences in BMD
can easily be measured in vivo using DXA (reproducibility
error: 1%-2% [18, 19]) or QCT (reproducibility error: 1%–4%
[20–22]) techniques but these techniques cannot differentiate
whether BMD changes are caused by changes in tissue min-
eralization or bone architecture. Thus, two further questions
are as follows: Can the use of texture parameters differentiate
changes in BMD from changes in BV/TV? And can their use
differentiate variations in trabecular architecture that result
in the same BV/TV?

The hypothesis of this study is twofold. First, the use
of texture parameters is useful to characterize trabecular
bone structure using clinical CT equipment, where the
spatial resolution is typically inadequate to separate indi-
vidual trabeculae and, second, based on the dependence of
texture parameters on structure at a voxel size of 10 𝜇m, the
corresponding characteristics at larger voxel sizes, that is,
lower spatial resolution, can be derived.

2. Materials and Methods

2.1. Basic Trabecular Bone Model. The basic trabecular bone
model consists of 1000 × 1000 × 1000 isotropic voxels with
an edge length of 10 𝜇m, resulting in a total volume of 1 cm3.
The edge length of 10 𝜇m represents the typical voxel size
obtainable in 𝜇CT datasets. A CT value of 800HU is assigned
to bone voxels and a value of −50HU to soft tissue voxels.
These values are realistically found in trabecular bone. For
comparison also CT values of 200HU were assigned to bone
to investigate the texture accuracy at low bone to soft tissue
contrasts. The CT value of soft tissue is between CT values
of fat (−100) and water (0) [23], as soft tissue surrounding
cancellous bone consists mostly of fat and tissue with water
equivalent absorption characteristics.

The basic model was built as a combination of rods
and plates representing an average human trabecular bone
structure [10, 24]. It consists of 11 × 11 cylindrical rods with
a diameter of 200𝜇m and a spacing of 700 𝜇m. The rods are
equidistantly interleaved by nine parallel plates with a thick-
ness of 200 𝜇m and a spacing of 1000 𝜇m, which are arranged
perpendicular to the rods. Some of the cylinders were cut in
half (Figure 1) in order to partially break the symmetry of the
structure and to make the model more realistic. This resulted
in a bone to tissue volume ratio (BV/TV) of about 20%,
which is a typical value found in human epiphyses [25, 26].
Obviously, this model is a simplification of human trabecular
bone. However, a more detailed model would not provide
generality, limiting its applicability.

Different spatial resolutions (here voxel sizes) were sim-
ulated by resampling the structure using a bilinear interpo-
lation implemented in ImageJ [27]. Subsequently, Gaussian
noise with a standard deviation of 30HU, a typical noise level
found in in vivoCT acquisitionswithmedium reconstruction
kernels [23], was added to the model. The effect of different
reconstruction kernels was simulated by varying spatial
resolution and image noise.

2.2. Variation of Structure. The structure of the basic model
wasmodified in four fundamental patterns. All modifications
were simulated at voxel sizes of 10 𝜇m, 90𝜇m, and 250 𝜇m,
respectively, matching typical voxel sizes of 𝜇CT, HR-pQCT,
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Figure 2: Examples of modifications of the basic model. PLM: 60% of rods are deleted; BFM: rod diameter and plate thickness of 300𝜇m
each; RLM: six plates remaining; SMM: surface irregularities with a width of 80𝜇m.

and whole body clinical CT scanners.The four patterns are as
follows.

(1) A more plate-like structure was simulated. Five
models (PLM2–PLM6; PLM: plate-like model) were
created in addition to the basic model (PLM1 = basic
model) with decreasing numbers of rods (Figure 2
PLM): 20%, 40%, 60%, 80%, and 100% of the rods,
respectively, were removed from the models. The
trabeculae being removed were chosen randomly
(uniform distribution), separately for each layer. Plate
thickness was increased with decreasing rod number
to keep the overall BV/TV constant. This loss of
trabeculae oriented in a specific direction resembles
the situation in osteoporosis where in the vertebrae
greater bone loss occurs in horizontal compared to
vertical trabeculae [28].

(2) An increased bone formation with increased BV/TV
was simulated. Five models (BFM2–BFM6, BFM1 =
basic model, and BFM= bone formationmodel) were
built with dilated rods and plates (Figure 2 BFM).
With every newmodel, plate thickness and rod diam-
eter were increased by 20𝜇m, leading to an increase

in BV/TV from 20% of the basic model to 32% of the
most dilated model (Table 1) with plate thicknesses
and rod diameters of 300 𝜇m each. As the global
appearance pattern of the bone structure remains
quite unchanged, these alterations are expected to
have only a little effect on the outcome of the tex-
ture parameters, except those which predominantly
depend on BV/TV. An increase in BV/TV has been
found in osteoarthritis [29].

(3) Amore rod-like structure was simulated. Five models
(RLM2–RLM6, RLM1 = basic model, and RLM: rod-
like model) were created with decreasing numbers of
plates and increasing rod thickness (Figure 2 RLM),
while BV/TV was kept constant. For the first new
model, the central plate was removed and the diame-
ter of all rods was increased. For themodels with even
fewer plates, the twonext central plateswere removed.
In this way, five additional models with 8, 6, 4, 2, and
no plates, respectively, and rod diameters between
200𝜇m and 500 𝜇m were created. Transformations
between plate- and rod-like trabecular structures are
present in a variety of musculoskeletal diseases.
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Table 1: BV/TV for BFM and SMM structures.

Model number
1 2 3 4 5 6 7

BFM 20.41% 22.44% 24.37% 27.78% 29.62% 32.03%
SMM 20.41% 20.64% 20.86% 21.08% 21.30% 21.52% 21.74%

(4) Trabecular surface irregularities were simulated. Four
cuboids with a length similar to the rod length, a
thickness of 30 𝜇m, and a varying width from 20𝜇m
to 120 𝜇m in steps of 20𝜇m were attached to each
rod in 90∘ steps (Figure 2 SMM: structure mod-
ification model). The plates remained unchanged.
This resulted in six further models (SMM2−SMM7
and SMM1 = basic model) with increasing surface
coarseness and slightly increasing BV/TV (Table 1).
The remodeling of trabecular bone is highly load
driven (Wolff ’s law [30]). As changes in loading are
a fundamental factor in bone diseases, the detection
of superficial trabecular changes may improve the
understanding of the bone state during the disease
progress.

2.3. Variation of Tissue Mineralization. BMD is an important
parameter, in particular, as it can be measured in vivo. The
underlying causes for BMD changes are a change in trabec-
ular architecture characterized by BV/TV or a change in the
mineralization of the trabeculae (tissuemineralization). Both
effects can be simulated in our model. It is easy to change
the mineralization. In the basic model, CT values for bone
were varied between 200HUand 1200HU in steps of 200HU.
Generally, tissue mineralization is measured in mg/cm3, but
in this work we stick to HU values to be consistent with the
values used in the basic model.

2.4. Variation of Noise. Pixel noise is a fundamental feature of
imaging techniques like CT. Noise increases with increasing
absorption by high-attenuating objects, lower mAs settings,
and smaller slice thicknesses and highly depends on the
reconstruction kernel [23]. As noise strongly affects texture,
different noise levels, defined here by the standard deviation
of a Gaussian distribution, were applied to the basic model
ranging from 5HU to 50HU in steps of 5HU.

2.5. Texture Analysis. Five different 3D texture parameters
were calculated directly from the gray value distributions of
the datasets: entropy, global and local inhomogeneity, local
anisotropy, and variogram slope. The inhomogeneity and
local anisotropy parameters were already described in [21]
but are added here for completeness.

2.5.1. Entropy. Here, the term entropy refers to the Shannon
entropy [31], which measures the information content and is
given in bits:

𝐸 = − ∑
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⋅ log
2
𝑝
𝑧
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where 𝑍 is the gray value range of the image which is
divided into 100 equally distributed partitions (𝑍), called
bins, between the minimum and the maximum gray value.
With 𝑍 = 100 the number of empty bins or bins with just
a few voxels is probably small. This may not be the case for
considerably higher 𝑍 as the gray value range of imaging
datasets is high (12 bits in our case). 𝑝

𝑧
is the probability of
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2.5.2. Global Inhomogeneity. Global inhomogeneity
(Inhomglobal) measures gray value (𝑔) fluctuations and
is equal to the standard deviation of 𝑔 [21]:
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where 𝑔 is the mean gray value and 𝑖 iterates over all 𝑛 voxels.

2.5.3. Local Inhomogeneity. In contrast to global inhomo-
geneity, local inhomogeneity (Inhomlocal)measures local gray
value variations which are calculated in a 6-neighborhood
[21]:
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2.5.4. Local Anisotropy. Local anisotropy (𝐴) represents the
variance of directedness in a local neighborhood [21]. It
measures the mean angle difference between the gray value
gradient ]⃗
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of a single voxel and the mean gray value gradient of its 26-
neighborhood. Therefore, a local mean gray value gradient
]⃗local,𝑥,𝑦,𝑧 has to be calculated first:
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The local anisotropy is then given by
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2.5.5. Variogram Slope. The variogram Var(𝑑) describes the
mean gray value difference between voxels in a distance 𝑑 to
each other [32]:

Var (𝑑) = 1
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For every voxel V
𝑖
with gray value 𝑔

𝑖
, the absolute gray

value difference to all 𝑁Nei,𝑖 neighbor voxels V
𝑗
with gray

value 𝑔
𝑗
is calculated. The total sum of absolute gray value

differences over all voxels V
𝑖
is finally normalized by twice the

total number of neighbors as all neighbor pairs are considered
twice. The variogram is calculated as a function of increasing
voxel distance 𝑑. The analyses of several CT datasets revealed
a plateau of the variogram for 𝑑 > 3. Therefore, here, the
slope of Var(𝑑) is calculated from linear least squares fit in
the interval 1 ≤ 𝑑 ≤ 3 voxels. Obviously, in case of smaller
voxel sizes, for example, in 𝜇CT data, higher distances can be
used. Nevertheless, as the ultimate aim of the present work
was the validation of texture parameters measured in clinical
CT data d was kept constant even when analyzing data with
different resolutions. Moreover, the consideration of larger d
rapidly exceeds acceptable calculation times.

According to their definition and concerning only struc-
tural but not mineral changes, it can be expected that entropy
and global inhomogeneity mainly depend on BV/TV rather
than on the spatial distribution pattern of the trabeculae.
Local inhomogeneity, local anisotropy, and variogram slope
on the other hand are expected to be rather independent of
BV/TV and almost exclusively describe the pattern of the
structure.

These five texture parameters remained after a preselec-
tion of a higher amount of parameters (e.g., fractal dimen-
sion and lacunarity). Excluded parameters showed irregular
behavior and high sensitivity on small structure variations.

3. Results

3.1. Dependence on Structure. Figure 3 shows the effects of
structural modifications on texture parameters at a voxel size
of 10 𝜇m and a noise level of 30HU. Results for the basic
model are encircled. Obviously, for a given parameter, the
basic model values are identical in all graphs, for example,
4.14 for entropy. For better comparison, for a given texture
parameter, the scaling is kept the same for all models. The
results look almost identical if bone HU values of 200 instead
of 800 are used, although absolute values differ.

For each graph in Figure 3, a linear regression was calcu-
lated. An insignificant slope or a nonmonotonic dependency
of a texture parameter on structural variations indicates
that this parameter may not be suited to pick up structural
changes.

The regression slopes of entropy and global inhomo-
geneity do not significantly differ from zero for PLM and
RLMmodelmodifications, inwhichBV/TVwas constant. All

other regression slopes fromFigure 3 significantly differ from
zero. Consequently, and in accordance with their definitions,
entropy and global inhomogeneity are independent of struc-
ture as long as BV/TV is constant. However, as can be seen
from the BFM results, these two texture parameters change
with varying BV/TV. There is also a small but significant
increase of entropy and global inhomogeneity in the SMM
models, in which BV/TV also slightly increases.

In contrast, local inhomogeneity, local anisotropy, and
variogram slope depend less on BV/TV as is obvious from
the variations for the BFM models. They reflect structural
changes for which BV/TV is constant. Slopes are significant
for all models but the change is much smaller for the BFM
models for which BV/TV changes are the highest. Therefore,
there is evidence for the predominant dependence of these
three parameters on structure patterns rather than on BV/TV.
Consequently, they are able to differentiate differences in
trabecular architecture that result in the same BV/TV. Of
course, the regression slopes of the fourmodel changes (PLM,
BFM, RLM, and SMM) are not directly comparable with each
other because their independent variables are different.

Further, a decrease (increase) in local inhomogeneity
is always accompanied by an increase (decrease) in local
anisotropy and a decrease (increase) in variogram slope.
This redundancy suggests the use of only one of these three
parameters for the texture analysis of cancellous bone.

3.2. Dependence on Tissue Mineralization. Texture results for
varying tissue mineralization for the basic model at a voxel
size of 10 𝜇m are shown in Figure 4. For better comparison,
% changes between results for 800HU and 1200HU are
added to each graph in Figure 4. All parameters show an
almost linear dependence on tissue mineralization. Entropy
decreases with increasing mineralization and global and
local inhomogeneity as well as variogram slope increase.
Local anisotropy remains almost constant, whereas global
inhomogeneity and variogram slope change very strongly.

3.3. Dependence on Spatial Resolution. Figures 5 and 6 show
the same graphs as Figure 3 but at voxel sizes of 90𝜇m
corresponding to in vivo HR-pQCT and 250𝜇m correspond-
ing to in vivo QCT datasets. At larger voxel sizes, that is,
at lower spatial resolutions, the absolute values of texture
parameters change. Values for entropy, local inhomogeneity,
and variogram slope increase in comparison to 10 𝜇m for all
models whereas values for global inhomogeneity and local
anisotropy decrease.

One important question that can be addressed with the
digital model is, Is there a limit in spatial resolution for
the applicability of texture parameters and, if yes, where?
The answer to this question depends on whether (1) the
interpretation of texture results shall be independent of
spatial resolution or whether (2) an interpretation of texture
at a given resolution suffices.

In order to better understand scenario (1), the results
of the texture parameters obtained at voxel sizes of 90 𝜇m
and 250 𝜇m were plotted against the results obtained at
the reference voxel size of 10 𝜇m. This was performed for
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Figure 3: Structure modifications at a voxel size of 10 𝜇m and a noise level of 30HU. On the x-axis, the following measures are plotted. PLM
(plate-like model): ratio of rods being deleted in %/100; BFM (bone formation model): BV/TV; RLM (rod-like model): number of plates
remaining; SMM (surface modification model): width of surface irregularity in voxels. Results for the basic model are highlighted by circles.
% changes between values at the basic model and maximal structure change are given as Δ.

all graphs of Figures 5 and 6. Figure 7 shows one example
for anisotropy using the PLM model. If the relationship
is not monotonic, the corresponding textural parameter is
not suited to detect differences in texture at lower spatial
resolutions. Thus, for scenario (1), high R2 values obtained
from a linear regression applied to the graphs exemplified
in Figure 7 are a prerequisite though not being sufficient for
an appropriate interpretation of the texture results calculated
from datasets with lower spatial resolutions.

R2 values are shown in Table 2. The table also lists the
ratio of slopes obtained from the linear regressions of a given
graph in Figure 5 or Figure 6 and the corresponding graph
in Figure 3. This is a figure of merit to investigate whether
a decrease in spatial resolution causes a stronger or weaker
dependence of texture on structure differences.

A stringent requirement to apply a resolution indepen-
dent interpretation of texture results would entail that not
only the relative change within a given structure modifica-
tion, that is, for one specific graph in Figure 3, was resolution

independent but also the relation among different types of
changes, that is, for multiple graphs, was resolution inde-
pendent. In other words all fields in Table 2 should indicate
significance and all slope ratios should be positive. Obviously,
this requirement is not fulfilled for any parameter. As a
consequence only the resolution dependent interpretation of
texture parameters can be used. At different spatial resolu-
tions, different texture parameters or different combinations
of texture parameters must be used to characterize or differ-
entiate changes in BV/TV, mineralization, and structure.

3.4. Dependence on Noise. The effect of image noise on
texture parameters is shown in Figure 8 for the basic model
at a voxel size of 10 𝜇m. The corresponding graphs for
the voxel sizes 90 𝜇m and 250 𝜇m are qualitatively sim-
ilar. Entropy, global and local inhomogeneity, and local
anisotropy increase with increasing noise with the noise
impact being much higher on local compared to global
inhomogeneity. Variogram slope decreases with increasing



Journal of Medical Engineering 7

3.5

4

4.5

5

5.5

En
tro

py

0 200 400 600 800 1000 1200

CT value of bone (HU)

Δ = −10.02%

G
lo

ba
l i

nh
om

.

0

100

200

300

400

500

0 200 400 600 800 1000 1200

CT value of bone (HU)

Δ = 47.06%

24

26

28

30

32

34

36

Lo
ca

l i
nh

om
.

0 200 400 600 800 1000 1200

CT value of bone (HU)

Δ = 10.88%

0

1

2

3

4

5

6

7

Va
rio

gr
am

 sl
op

e

0 200 400 600 800 1000 1200

CT value of bone (HU)

Δ = 49.01%

A
ni

so
tro

py

83.7

83.75

83.8

83.85

83.9

0 200 400 600 800 1000 1200

CT value of bone (HU)

Δ = −0.01%

Figure 4: Dependence of texture parameters on tissue mineralization for the basic model at a voxel size of 10𝜇m and a noise level of 30HU.
Percentage changes between values at 800HU and 1200HU are given as Δ.

Table 2:𝑅2 values of the linear regression analyses for the voxel sizes 90 𝜇mand 250 𝜇mrelative to the reference voxel size (10𝜇m). Significant
linear correlations (𝑃 < 0.05) are highlighted in bold. In parenthesis: slope ratios obtained from the linear regressions of a given graph in
Figure 5 or Figure 6 and the corresponding graph in Figure 3.

Model changes PLM BFM RLM SMM
Voxel size/𝜇m 90 250 90 250 90 250 90 250
Entropy 0.00 (−4.4) 0.54 (−7.7) 0.97 (0.6) 0.99 (0.8) 0.48 (−0.9) 0.57 (−0.5) 0.98 (0.2) 0.97 (0.7)
Global inhomogeneity 0.48 (0.2) 0.80 (0.0) 1.00 (1.1) 1.00 (1.6) 0.86 (0.3) 0.98 (0.2) 0.97 (4.0) 0.95 (6.2)
Local inhomogeneity 1.00 (−0.1) 0.71 (1.0) 0.16 (0.0) 1.00 (0.0) 0.57 ( 0.1) 0.87 (0.0) 0.99 (−0.7) 0.96 (0.8)
Local anisotropy 0.82 (1.1) 0.99 (−0.4) 0.98 (0.0) 0.90 (0.1) 0.92 (−0.2) 0.90 (0.1) 0.99 (0.3) 0.96 (−0.6)
Variogram slope 1.00 (−0.4) 0.99 (0.2) 0.99 (0.0) 0.98 (0.0) 0.18 (0.1) 0.02 (0.0) 0.95 (1.6) 0.94 (−13.1)

noise. Local inhomogeneity and variogram slope also linearly
depend on noise. Regarding percentage changes, the impact
of noise is the lowest on local anisotropy and global inhomo-
geneity.

3.5. Combination of Structural Variations with ChangingNoise
and Mineralization. In this section several characteristics of
the bone models are considered simultaneously. Specifically,

the effects of varying structure on texture parameters were
quantitatively compared to those caused by noise and
by changes in tissue mineralization. As examples, BFM
modifications were investigated for entropy and global
inhomogeneity and PLM modifications for local inhomo-
geneity, local anisotropy, and variogram slope.

First, polynomial trend lines (up to 4th order) were fitted
to the dependence of texture on noise (Figure 8) and tissue
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Figure 5: Structure modifications at a voxel size of 90 𝜇m and a noise level of 30HU. On the x-axis, the following measures are plotted. PLM
(plate-like model): ratio of rods being deleted; BFM (bone formation model): BV/TV; RLM (rod-like model): number of plates remaining;
SMM (surface modification model): width of surface irregularity.

mineralization (Figure 4). All corresponding R2 values were
high (>0.99). Then entropy and global inhomogeneity were
calculated for the basic model, BFM3 and BFM6, and local
inhomogeneity, local anisotropy, and variogram slope for
basic model, PLM3 and PLM6. For all parameters, absolute
differences with respect to the basic model were derived.
Finally, those deviations in noise (Δ noise) relative to a noise
level of 30HUand in tissuemineralization (Δmineralization)
relative to 800HU that would result in the same effect as the
structural changes above were calculated. Results are given in
Table 3. If numbers are high, then the corresponding texture
parameter can pick up structural changes pretty independent
of changes in noise and/or mineralization.

4. Discussion

The quantitative analysis of the trabecular bone structure
increasingly attracts attention in osteoarthritis [33, 34], osteo-
porosis [12, 35], rheumatoid arthritis [36], and other muscu-
loskeletal diseases. However, it remains unclear what texture
parameters really quantify cancellous bone, in particular, if
they are applied to lower resolution datasets. Therefore, the
aimof the presentworkwas to investigate the ability of texture
parameters to quantify trabecular bone changes at different
levels of spatial resolution. In contrast to the hypothesis, the
results show that the interpretation of texture parameters
depends on spatial resolution, because their characteristic



Journal of Medical Engineering 9

PLM (BV/TV const.) BFM SMM

6.3

6.1

5.9

220

180

140

100

80

60

82

74

66

40

30

20

0 0.5 1 20 22 24 26 28 30 0 2 4 6 8 10 0 2 4 6 8 10

41.07%

12

−0.95%

34.29%

−2.22%

3.05%

3.22%

5.7

11.60%

−4.04%

18.89%

14.62%

0.50%

0.98%

2.91%

1.23%

−0.38%

−3.39%

0.74%
30.24% 20.30%

5.41%

RLM (BV/TV const.)
En

tro
py

A
ni

so
tro

py
Va

rio
gr

am
 sl

op
e

Lo
ca

l i
nh

om
.

G
lo

ba
l i

nh
om

.

Figure 6: Structure modifications at a voxel size of 250 𝜇m and a noise level of 30HU. On the x-axis, the followingmeasures are plotted. PLM
(plate-like model): ratio of rods being deleted; BFM (bone formation model): BV/TV; RLM (rod-like model): number of plates remaining;
SMM (surface modification model): width of surface irregularity.
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Figure 7: Example of linear regression analysis. Local anisotropy at
PLM (plate-like model) changes. Linear correlation between results
from voxel sizes (250 𝜇m) and reference voxel size (10 𝜇m).

response to a change in trabecular structure at 10 𝜇m differs
from that at 250 𝜇m.Without a simulation of this response at

the spatial resolution under consideration, that is, without a
priori knowledge of the expected response, measured texture
results cannot be interpreted, as an increase or decrease of
the value of a texture parameter can have multiple causes. As
a consequence, the use of a realistic digital trabecular bone
model is vital for this differentiation task.

The main aim of a texture analysis is to provide informa-
tion on trabecular structure in addition to BMD, which alone
can easily be quantified by DXA and QCT. That implies the
question of how strong texture parameters depend onBV/TV,
which is the main determinant of BMD as newly formed
bone mineralizes up to 70% of its final value within a few
days [37, 38]. A strong dependence would limit the additional
value of a texture analysis.

At a voxel size of 10 𝜇m, a change of entropy or global
inhomogeneity indicates a change in BV/TV but not in
structure. As entropy is more noise sensitive global inho-
mogeneity may be the preferred parameter but it cannot
differentiate between changes in BV/TV and mineralization.
For this task both parameters must be used in combination
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Figure 8: Dependence of texture parameters on image noise for the basic model at a voxel size of 10 𝜇m. Percentage changes between values
at noise = 5HU and noise = 50HU are given as Δ.

Table 3: Deviations in noise and tissue mineralization (both in HU) resulting in identical changes of the texture parameters as the structure
variations between the basic model and BFM6 (entropy and global inhomogeneity) or between basic model and PLM6 (local inhomogeneity,
local anisotropy, and variogram slope). In parentheses: difference between the basic model and BFM3 or the basic model and BPM3,
respectively.

Entropy Global inhomogeneity Local inhomogeneity Local anisotropy Variogram slope
Δ noise (10𝜇m) 4.7 (2.4) 5570.9 (3708.4) 2.2 (0.9) 148.4 (85.3) 149.5 (60.5)
Δ noise (90 𝜇m) 10.4 (5.0) 350.2 (208.8) 16.8 (6.9) 6.2 (1.7) 37.0 (14.9)
Δ noise (250 𝜇m) 12.4 (5.6) 174.2 (109.7) 1.8 (0.4) 32.7 (15.6) 55.1 (20.1)
Δmineralization (10 𝜇m) 124.1 (59.7) 283.5 (126.0) 209.3 (84.7) 290.7 (138.7) 168.9 (68.3)
Δmineralization (90 𝜇m) 475.8 (171.3) 333.3 (129.0) 220.3 (90.2) 132.7 (43.3) 69.5 (28.0)
Δmineralization (250 𝜇m) 218.8 (73.6) 298.0 (132.7) 7.6 (1.6) 334.3 (195.8) 146.3 (53.4)

as entropy decreases but global inhomogeneity increases
with mineralization (see Figure 4). Local anisotropy and
variogram slope and to a lesser degree local inhomogeneity
are all capable of differentiating two trabecular networks
with identical BV/TV but different structure. The variations
simulated by the PLM models, more plates and fewer rods,
can be better detected than variations simulated by the RLM
models, less plates and thinner rods. These are difficult to

differentiate from those caused by artificial surface modifica-
tions in the SMMmodels. While a more quantitative analysis
is required, probably the measurement of one of these three
texture parameters will suffice to allow for the statement that
trabecular structure is changed but BV/TV is not. As local
inhomogeneity is very sensitive to noise (see Table 3) and its
dependence on BFM and RLM variations is somewhat sim-
ilar, the other two parameters are preferable measurements.
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If the dependence on mineralization (see Figure 4) is added
to the variety of possible modifications, local anisotropy
remains the parameter of choice because its variation with
mineralization is small compared to those shown in Figure 3.
If on the other hand changes in mineralization need not be
differentiated from those in BV/TV variogram slope may be
a better choice as its percentage variation is much higher than
that of local anisotropy.

With increasing voxel size, structure details disappear and
the response of texture parameters changes (Figures 5 and 6).
The dependence of texture parameters on spatial resolution
is affected by the coarseness of the structure. A rather fine
structure leads to amore inhomogeneous appearing structure
at small voxel sizes, whereas, at large voxel sizes, it leads
to a more homogeneous structure due to the resampling
process. These homogeneity changes in global appearance
strongly affect all texture parameters. As a consequence, with
a change in spatial resolution several of the patterns shown
in Figure 3 such as variogram slope for the PLM variations
or entropy for the RLM variations fundamentally change
(compare to corresponding graphs, e.g., in Figure 6) and the
question remains, which texture parameters carry structural
information at low spatial resolution? In the following only
the voxel size of 250𝜇m will be discussed.

At 250 𝜇m, entropy and global homogeneity still strongly
depend on structure independent BV/TV changes; however,
in contrast to a voxel size of 10 𝜇m, now entropy also changes
with RLMmodifications and global inhomogeneity increases
with PLM modifications. An increase in entropy or global
inhomogeneity is no longer uniquely caused by a BV/TV
increase. However, for example, for a concurrent increase
of entropy, global and local inhomogeneity, and variogram
slope, PLM variations are excluded because this would cause
entropy (regarding PLM variations) to decrease. RLM varia-
tions are also excluded because local inhomogeneity would
decrease. Thus, even at 250𝜇m, a structure independent
change of BV/TV should be identifiable, but a combination
of texture parameters has to be measured.

In order to further differentiate changes in tissue min-
eralization from changes in BV/TV, the information in
Figure 6 has to be combined with dependence on noise
and mineralization. As can be seen from Figure 4, which
looks similar at 250 𝜇m, increases in mineralization increase
global and local inhomogeneity and variogram slope; only
for entropy the regression slope is negative. Thus, the use of
the former three texture parameters would not really allow
separating BV/TV and mineralization changes and this may
only be possible by carefully analyzing the entropy results in
combination. In principle, the data presented in Table 3 are
required for this purpose but these are examples only for PLM
(local inhomogeneity, local anisotropy, and variogram slope)
and BFM (entropy and global inhomogeneity).

Apart from changes in mineralization and BV/TV,
changes in texture parameters caused by surface modifi-
cations (SMM) are small in relation to other structural
changes. At a spatial resolution of 250𝜇m, these superficial
modifications cannot be detected and will not further be
considered. Therefore, only two different scenarios remain:
a trabecular structure becomes more plate-like (PLM) or

more rod-like (RLM). Local anisotropy is well suited to detect
transitions to a more rod-like structure (RLM), especially if
the transition starts from a hybrid structure (e.g., from RLM
1 in Figure 6, point at the right, to RLM 4) and not from a
structure that already contains very few plates (e.g., RLM 4 to
RLM 6). Also, local anisotropy is rather stable with respect
to changes in noise and tissue mineralization. In order to
quantify changes in BV/TV and transitions to a more plate-
like structure originating from a hybrid structure (PLM),
local inhomogeneity and variogram slope are well suited.
Changes in both parameters indicate changes in BV/TV,
whereas an exclusive change in variogram slope indicates a
transition to a more plate-like structure.

The present study has several limitations. First, a given
disease may cause multiple concurrent structural variations.
In this case a more complex multivariate analysis will be
required. Moreover, real bone structures were not incorpo-
rated in the study. Their investigation would complement
the simulated data. Also, only five texture parameters were
examined. A variety of other parameters exist.

In conclusion, a digital bone model was presented, with
which texture parameters for the analysis of cancellous bone
in human joints affected by musculoskeletal diseases can be
simulated and validated. The presented texture parameters
are capable of quantifying changes in the trabecular bone
structure even at large voxel sizes of 250 𝜇m achievable
in in vivo CT acquisitions. The interpretation of texture
parameters strongly depends on spatial resolution.The trends
of local inhomogeneity, local anisotropy, and variogram slope
vary with different resolution levels. Furthermore, changes
in noise and tissue mineralization have to be considered
when comparing the texture analysis results among different
datasets. Nevertheless, the present work demonstrates that in
QCT datasets a texture analysis can complement the BMD
analysis to improve the diagnosis and monitoring of patients
with musculoskeletal diseases by quantifying changes in the
fine trabecular network.
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