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Abstract

The correlation of multivariate data is a common task in investigations of soil biology and in ecology in general. Procrustes
analysis and the Mantel test are two approaches that often meet this objective and are considered analogous in many
situations especially when used as a statistical test to assess the statistical significance between multivariate data tables.
Here we call the attention of ecologists to the advantages of a less familiar application of the Procrustean framework,
namely the Procrustean association metric (a vector of Procrustean residuals). These residuals represent differences in fit
between multivariate data tables regarding homologous observations (e.g., sampling sites) that can be used to estimate
local levels of association (e.g., some groups of sites are more similar in their association between biotic and environmental
features than other groups of sites). Given that in the Mantel framework, multivariate information is translated into a
pairwise distance matrix, we lose the ability to contrast homologous data points across dimensions and data matrices after
their fit. In this paper, we attempt to familiarize ecologists with the benefits of using these Procrustean residual differences
to further gain insights about the processes underlying the association among multivariate data tables using real and
hypothetical examples.
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Introduction

In multidimensional data analysis, ecologists often encounter

situations where they need to choose between two or more

numerical approaches that are able to tackle the same question of

interest. The preference between approaches is based, among

other factors, on the familiarity of the user with the method, which

in turn depends on the time a particular method has been

available in statistical packages and the ease in implementing and

interpreting its results. Another relevant factor to consider is

‘‘literature–induced use’’ in which renowned research groups

involved in the development, improvement and generation of

statistical ecological approaches have a strong influence on the

types of statistical approaches other ecologists use.

Determining the strength of the relationships between multi-

variate datasets is a routine analysis when trying to understand the

environmental factors driving the composition and structure of

ecological communities. Two approaches, the Mantel test [1] and

Procrustes analysis [2], though considered analogous by the

literature in the questions they can tackle [3], have not been used

to the same extent. Despite the advantages of Procrustes analysis

over the Mantel test [3] regarding greater statistical power in

detecting significant relationships (i.e., lower type II errors) and the

possibility of analyzing further the patterns of association between

multivariate matrices (visually and by further statistical analyses),

the Procrustean approach remains relatively unused in tackling

questions regarding the relationships between data matrices

involving plant and soil information or between soil matrices

(Fig. 1).

The Mantel test and the Procrustes approach can be both used

in many similar situations where the aim is to assess how

multivariate data matrices are associated (correlated), though for

unknown reasons they have been used in quite different ways in

the ecological literature. For example, while the Mantel test has

often been applied when testing the relationship between above

and below ground data matrices [4], [5], [6], [7], [8], [9], [10],

[11], [12], Procrustes analysis has predominantly been used to

contrast the results of different ecological ordinations on the same

data [13], [14], [15], [16], to compare fingerprinting tools for

assessing microbial communities [17], [18], [19] and for deciding

between methodological choices [20], [21]. Indeed the Procrus-

tean framework has been rarely used to make inferences about

plant and soil relationships [22], [23], [24], [25], [26] and other

types of ecological associations between data sets. However there

are instances in which the Procrustean and Mantel tests cannot be

used interchangeably. Unlike Mantel, the Procrustean approach

can be used to compare multiple data matrices. However, when

ecologists are interested in correlating distance (or similarity)
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matrices, rather than testing the association among data matrices

in their raw form (i.e., not transformed by the property of distance

measures), Mantel, rather than Procrustes, is more appropriate.

One particular case is the distance-decay of similarity in ecological

communities [27] in which one is interested in testing the

hypothesis that the similarity in community composition decreases

in relation to linear (or log transformed) geographic distance

between communities. The differences between raw-based and

distance-based approaches have been discussed extensively else-

where [28], [29].

Despite the relative merits of the Procrustean framework over

the Mantel test shown by the relatively well-cited paper by Peres-

Neto and Jackson [3], its potential has not yet been tapped.

Perhaps the reason for Procrustes analysis not being as popular as

the Mantel test among ecologists is the lack of a paper showing

that in many situations traditionally investigated by Mantel, the

Procrustean analysis can be equally well used. Here, we attempt to

familiarize ecologists with the use of Procrustes analysis by using

real and hypothetical examples where the Mantel test tends to be

preferred. Most importantly, we highlight little explored limits of

Procrustes by using its residual vector of association between data

tables, hereafter referred as to PAM, in three common statistical

approaches: multivariate ordination, variation partitioning and

ANOVA.

Procrustes analysis: a foundation for soil and
plant ecologists

In ancient Greek mythology there was a character named

Procrustes who was a resident of Eleusis Mountain, a known

travelers’ route. As a ‘‘good’’ host, Procrustes always invited

travelers to spend the night at his home; more specifically, he

invited them to lie down on his iron bed, which was tailored to fit

Procrustes’ own body. The guests who did not fit the dimensions of

his bed either had their limbs cut off or were stretched until their

dimensions approached those of Procrustes’s bed. Ironically, none

of the guests ever fitted the iron bed because Procrustes secretly

had two beds of different sizes [30]. One can easily make a parallel

here with ecological data in which data from different sources will

almost never easily compare or fit to one another.

Procrustes analysis is based on the search for the best fit between

two data tables, hereafter referred to as matrices, where one is kept

fixed (‘‘Procrustes’ bed’’ or target matrix), while the other

(‘‘Procrustes’ guest’’ or rotated matrix) undergoes a series of

transformations (translation, mirror reflection and rotation; [2]) to

fit the fixed matrix. Although in this paper we concentrate on

fitting two matrices, the extension of Procrustes analysis to

multiple matrices is straightforward [3] in which the reference

matrix can be either one of the original matrices or their averages

(or medians). Hereafter, the target matrix (target) will be referred

as to X, and the data matrix to be fitted as Y. X and Y are both

n6p matrices, where n is the number of rows and p is the number

of columns. The goal of the transformations in Y is to minimize

the residual sum of squared differences between the corresponding

n dimensions between X and Y; the sum of the squares of these

residual differences is termed m2 (Gower’s statistic), representing

the optimal fit between the two data matrices, such that the higher

the value of m2, the weaker the relationship between the two data

tables is. The significance of m2 can be estimated through a

permutation test (termed PROTEST after [31]; see [3] for further

details).

Procrustean association metric (PAM)

The least squares superimposition between the corresponding n

observations of X and Y is one of the main advantages (in addition

to the increased statistical power) of the Procrustean framework in

contrast to the Mantel test. The Procrustes superimposition

generates a (n6p) matrix of residuals that can be further used to

contrast the differences between homologous observations (rows)

across matrices in the form of a vector (PAM). Given that within

the Mantel approach differences between observations across all

dimensions are packed down into a single distance, it cannot be

used to assess differences across observations across dimensions.

Consistent small and large differences across homologous obser-

vations across matrices in regard to other factors of interest can

further assist in understanding how X and Y are related. For

example, we could use PAM to assess the degree of observation

matching between a plant function trait matrix and a composition

matrix and assess whether smaller or greater residual values are a

function of the time elapsed since some disturbance event.

PAM is simply a vector of residual differences between the

corresponding n observations. For example, assuming that an

ecologist wants to correlate two matrices of data X and Y, both of

which are formed by four rows (i.e. sites, plots, observational units),

Procrustes analysis will generate four residual differences between

the X and Y configurations. The compilation of these residual

differences between homologous rows (observations) across

dimensions in the form of a vector – PAM – represents a useful

way to represent information on the relationship between two

matrices and make it available for further statistical analysis, both

parametric and non-parametric; this feature is not offered by the

Mantel approach.

The use of the residual vector from Procrustes (PAM) has been

quite restricted in the plant and soil ecological literature. To our

knowledge the first study was by [32] who assessed the plant-

pollinator interaction during three consecutive summers in the

southeastern portion of California, USA. These authors employed

the PAM to identify which pollinating species exhibited the

greatest deviation between two consecutive years. Singh et al. [22]

used the PAM in a study on soil microbiology to verify the effect of

soil pH on the relationship between arbuscular mycorrhizal fungi

(AMF) and plant assemblages. These authors employed the

following strategy: 1) Procrustes analysis was applied between

Figure 1. Papers published using Mantel and Procrustes for
relating data matrices from soil or plant studies in the ten
years since [3] stated the advantages of Procrustes over the
Mantel approach. Data obtained using Thompson Reuters database
(May, 12, 2014). We searched for papers using uniquely the Mantel
approach, uniquely the Procrustes approach and papers using both
approaches. The search was based on Procrust* (Procrustean or
Procrustes) and PROTEST.
doi:10.1371/journal.pone.0101238.g001
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the matrices representing the AMF community and that repre-

senting the plant community; 2) after detecting a significant

relationship (m12 = 0.28; P,0.001), these authors extracted the

PAM and used it as a response in a simple regression analysis with

the soil pH. No effect of pH on the association between the AMF

and plant communities was detected, suggesting that neither the

pH nor the identity of the plant species that composed the

community affected the AMF community. Other applications can

be certainly found (e.g., [24], [25], [26][33]) but its flexibility and

general usage remains largely unexplored.

Constructing a practical roadmap for applying
PAM

There are few studies in the ecological literature that have used

PAM for analyzing relationships between plant and soil datasets.

The lack of examples partially explains the low popularity of

Procrustes analysis among plant and soil ecologists and ecologists

in general as an alternative tool to the more traditional Mantel

test. In order to make the possible uses of Procrustean residuals

more familiar, we will introduce a number of examples in the form

of schematic roadmaps for applying PAM in association with three

common statistical approaches: ordination, regression analysis and

ANOVA.

Plant and soil ecologists must keep in mind that Procrustes

analysis requires that the X and Y have the same number of rows

and columns, though the last dimension is less restricting (see

below). Given that the data for both matrices usually originate

from the same sites, it is most common in ecology that only the

number of columns (descriptors or variables) varies between the

two matrices. Therefore, the question arises of how to make the

number of columns equal across the two matrices, i.e., how to

reduce them to the same dimensionality. Although Procrustes

analysis can be performed between matrices having different

number of dimensions (i.e., the fit is based on a singular value

decomposition (svd) of XTY, where X and Y are scaled prior to svd

and T stands for matrix transpose), traditionally the matrix with

the fewer number of columns (‘‘missing columns’’) is made equal in

dimension to the larger matrix by adding columns of zeros in order

to keep (Fig. 2a; [2]). Although there are some criticisms related to

this practice and alternatives have been suggested [34], the

addition of zero columns does not affect the distances between

columns among observations and is a convenient device rather

than a hurdle [35].

Another convenient way to make X and Y have the same

number of columns is to represent most of the variation in their

raw data by matrices formed by the same number of orthogonal

axes (Fig. 2b; [3],[35, [36]), i.e., matrices formed by axes derived

through ordination methods such as Principal Components

Analysis (PCA), Non-metric dimensional scaling, Correspondence

Analysis (CA), Principal Coordinate Analysis (PCoA), the choice

being dependent on the nature of the data (continuous, presence-

absence data, abundance data). Moreover, raw data matrices can

be transformed prior to ordination (see [37] for different

transformations and their characteristics) or alternatively have

pairwise distance matrices calculated from the data matrices that

are then orthogonolized via PCoA to extract ordination axes based

on the chosen distance measure (e.g., Bray-Curtis, Jaccard,

Sorensen, Gower).

Here, for simplicity, we use a PCA in all applications. In cases,

where species data (presence/absence or abundance) was used, the

data was Hellinger-transformed and PCAs were extracted on

species correlation matrix calculated from the transformed data.

The Hellinger transformation alleviates the issue of double-zeros

in species data matrix transformed into correlation or Euclidean-

distance pairwise matrices prior to PCA in which sites sharing no

species in common can be found to be more similar than sites

sharing a reduced number of species in common (e.g., the horse

shoe effect in ordination plots).

The general strategy is as follows:

1) Subject the raw data matrices to an ordination method (here

PCA but see above for other strategies);

2) After ordinating X and Y, use the same number of ordination

axes for both matrices (Fig. 2b).

Given that the higher the number of ordination axes used, the

higher is the amount of variation explained in X and Y, it would

be interesting run the Procrustean analysis sequentially using

matrices made up of an increasing number of ordination axes. It

could help ecologists check the consistency of the relationship

between X and Y based on different numbers of ordination axes,

which will give more reliability to the results.

The use of PAM in ecological ordination
The first form of PAM shown here is based on ordination

methods. Ordination is the graphical representation of the

variation of objects (sites), descriptors (species/environmental

parameters) or both, in a reduced space formed by orthogonal

axes [38].

To illustrate the use of Procrustes analysis associated with

ordination we use data derived from Mitchell et al. [39]. This

study aimed to compare the plant communities and soil chemistry

in their ability to predict changes in the structure of the soil

microbial community in three moorland areas established in

Northern Scotland called Craggan, Kerrow and Tulchan. The

plant community matrices from each area were based on the

percent cover. Three matrices for the soil microbial community

were obtained for each site: one based on the fatty acid profile of

the soil (PLFA analysis), and the other two on the T-RFLP analysis

of the communities of fungi and bacteria, respectively. The matrix

representing the soil chemistry was based on the concentrations of

Na, K, Ca, Mg, Fe, Al, P, total C, total N in addition to pH, loss

on ignition and moisture.

There is some consensus that the variation in vegetation can act

as a proxy for changes in the soil microbial community, either

directly in the case of symbionts, for example, or indirectly via

changes in soil chemistry itself. We use Procrustes analysis

associated with ordination techniques to verify potential drivers

of the soil microbial community and to determine if plant

community and soil chemistry are equally related to the

microbiological variation. The sequence of analysis was as follows:

1) Ordination analysis: All data matrices (community plant, soil

chemistry and soil microbial communities) containing the

three chronosequences were subjected to separate PCAs based

on correlation matrix. The community plant was Hellinger-

transformed prior to PCA. Then, the first six PCA ordination

axes from each matrix were retained in order to assemble four

PCA matrices representing the variation summarized in the

first 3, 4, 5 and 6 PCA axes. Thus, four PCA matrices were

obtained from each dataset: plant community, soil chemistry

and soil microbial community (PLFA, bacterial and fungal T-

RFLP) (Fig. 3a).

2) Procrustes analysis: The PCA matrices of plant community

and soil chemistry were used to run Procrustean analyses with

the PCA matrices of soil microbial community based on

PLFA, and fungal and bacterial T-RFLP datasets.

Much beyond Mantel: Procrustes
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3) PAM extraction: Since all Procrustean relationships based on

PCA matrices with n axes were significant, for simplicity, only

the PAM obtained from relationships of PCA matrices with 6

axes were used for subsequent analyses. Six PAMs were

generated: PAM1 (soil chemistry on PLFA), PAM2 (soil

chemistry on bacteria), PAM3 (soil chemistry on fungi), PAM4

(plant on PLFA), PAM5 (plant on bacteria), and PAM6 (plant

on fungi) (Fig. 3c).

4) PAM ordination: The PAMs were assembled in a single

matrix (‘‘effect matrix’’) with one PAM per row (Fig. 3c).

Therefore, the effect matrix compiled the effects of plant

community and soil chemistry on soil microbial community

structure derived from the three methods. This effect matrix

was submitted to PCA ordination to verify whether the plant

community effect on soil microbial community structure

differed from the effect of soil chemistry (Fig. 3c).

The results showed that for all chronosequences the plant effect

on microbial structure was divergent in relation to the soil

chemistry effect, as suggested by the separation along the axis of

greatest variation (Fig. 4). Although we cannot apply a proper

statistical significance test in one-table based ordination methods

(PCA, NMDS, PCoA, etc), visual inferences can be made. For

example the Craggan area exhibited a clear distortion between

plant community and soil chemistry variation in terms of their

effects on the soil microbial community structure depicted by

PLFA, bacterial T-RFLP and fungal T-RFLP (Fig. 4a). Also in this

area, the response of the microbial community based on PLFA was

distant from the response based on molecular data (T-RFLP)

(Fig. 4a),

We expected that the effects of soil chemistry on microbial

structure were closer to the effect of plant community once the

plant community is considered to be a direct and indirect driver

for the biotic component of soil [39]. However, these results

suggest that plant communities and soil chemistry are acting

differently on the soil microbial community structure [24], [40].

They also suggest that the effects of soil chemical properties on the

microbial communities may be weakly mediated by above ground

alterations [24]. This example shows the usefulness of Procrustes

analysis to raise additional evidence in plant and soil ecology

studies. (See Text S1 containing the R code used for this example).

The PAM and regression analysis

In regression analysis, ‘response’ and ‘predictor’ are common

terms. In ecology, predictors can have different natures. Space,

time, organic matter and moisture, among other factors, are some

examples of predictors. On the other hand the microbial

communities are often used as a response variable because they

are considered better indicators of a given ecosystem.

Some authors familiar with soil microbial ecology have been

using the Mantel test to assess the individual contribution of

deterministic and stochastic processes on the soil microbial

structure variation [41], [42]. As an example of the utility of the

Figure 2. Roadmap for two alternative ways to reach the same dimensionality between matrices, and so relating it by Procrustes
analysis. a) Addition of columns containing zeros to the Y raw data matrix for matching the X raw data matrix dimension; b) Application of
ordination to raw data matrices to make matrices have equal dimensionality prior to Procrustes analysis.
doi:10.1371/journal.pone.0101238.g002

Much beyond Mantel: Procrustes
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Procrustes analysis in the context of variation partitioning we can

take a hypothetical scenario with four datasets from a given area,

corresponding to soil microbial community structure (PLFA), soil

microbial functioning (enzyme activities), soil properties and

spatial variation. Spatial variation can be represented, for

example, by 100 sampling points generated from a 10 m610 m

transects. The matrix of geographical coordinates of the sampling

points can be submitted to PCNM (principal coordinates

neighbour matrix) analysis generating a matrix of spatial

eigenfunctions termed PCNMs [34]. In this scenario, we can

assume that the ecologist aims to assess the relative contributions

of individual soil properties (deterministic processes) and spatial

variation (stochastic event) on the relationship between microbial

community structure and soil microbial functioning rather than on

these components individually. To use the Procrustean association

metric (PAM) in this context, one can use the following steps:

1) Ordinate the two matrices (i.e., the soil microbial community

and soil microbial functioning) via PCA (the soil microbial

community matrix was Hellinger-transformed) and select a

similar number of ordination axes. The multivariate scores of

the two matrices across the selected number of axes are

subjected to a Procrustes analysis and a PAM was then

calculated.

2) Use individual PAMs (based on 2, 3 or more PCA axes) as

response variable and soil properties and spatial variation as

independent (predictor) variables in a multiple regression

framework (Fig. 5b).

Figure 3. Roadmap for applying the Procrustes association metric (PAM) in the multivariate ordination context using data of [39]. a)
Assembling matrices with different ordination axes, through Procrustes analysis, soil chemistry (SC) and plant community with soil microbial
community (PLFA, and bacterial and fungal T-RFLP); b) Extraction of PAM from Procrustean relationships based on matrices with 6 ordination axes; c)
Assembling of PAM based PCA matrices with 6 axes as rows in a single matrix (‘‘effect matrix’’), and using it in an ordination technique (e.g., PCA,
PCoA, NMDS) to verify if the different effects diverge.
doi:10.1371/journal.pone.0101238.g003

Figure 4. Results from PCA ordination of the Procrustes association metric matrix (‘‘effect matrix’’) gathering the interactions of
soil chemistry and plant community with soil microbial matrices (PLFA, and bacterial and fungal T-RFLP). The filled symbols are the
Procrustes relationships between soil chemistry and soil microbial matrices, and the open symbols between plant community and soil microbial
matrices. Data from three chronosequences (Craggan, Kerrow and Tulchan) obtained by [39].
doi:10.1371/journal.pone.0101238.g004
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3) Finally, the independent contributions of soil properties

(independent of space) and unmeasured spatial process and/

or factors (spatial variation independent of soil properties) to

the microbial structure can be estimated via variation

partitioning [43] and represented by a Venn diagram

(Fig. 5c). (See Text S2 containing the R code for this example).

The PAM and Analysis of Variance

Although regression and analysis of variance are ultimately the

same analysis in which the response is either continuous

(regression) or ascribed to factors (ANOVA), we provide examples

for each of them in different sections given that often they are seen

as distinct forms of analyses. Evaluation of the effects of land use

on soil microbial communities has been a common case-study

issue in soil ecology. Some of these studies have been carried out

using the Mantel approach to assess how land use type effects soil

microbial structure and functioning [44], [45]. However, Mantel

does not yield a vector of structure – functioning relationship, that

is, a continuous variable, able to be partitioned by categorical

variables like land use types. In the following example we show

how to use PAM to evaluate the effect of land use type on the

relationship between microbial community structure and micro-

bial function in the form of PAM.

In a hypothetical scenario, a researcher is interested in studying

whether four different land use types within the Amazon biome

are affecting the relationship between microbial structure and

microbial functioning. In each of the land uses (original forest

fragment, silvipastoral system, improved pasture and unimproved

pasture) six plots (10 m610 m) were established and one

composite soil sample (0–10 cm) collected per plot (Fig. 6a). The

X dataset (soil microbial structure) was represented by PLFA data,

and the Y dataset (microbial functioning) by the abundance of

genes associated with microorganisms involved in greenhouse gas

emission processes, such as nitrifiers, denitrifiers and methano-

trophic organisms. The researcher’s hypothesis is that in the

original forest (non-altered environment) there is a better matching

between microbial structure and microbial function. Thus, in

anthropogenically disturbed environments (silvipastoral system,

improved pasture, and unimproved pasture) the change in

microbial structure relative to the original (forest) is not followed

by a change in the microbial functioning to the same magnitude.

This hypothesis can be tested using an integration of Procrustes

analysis and ANOVA through the following steps:

1) Reduce the datasets X (soil microbial structure) and Y (soil

microbial functioning) to similar dimensions using PCA.

Then, run the Procrustean analysis between the PCA matrix

of the soil microbial community structure and the PCA matrix

of soil microbial functioning and extract the PAM (Fig. 6a).

2) Run an ANOVA with land use type as fixed factor and the

PAM as the response variable (Fig. 6b).

3) If the F value of ANOVA is significant, a means test can be

performed to compare the mean PAMs of the land use types

(Fig. 6c). (See Text S3 containing the R code for this example).

Discussion

In this paper we have attempted to show the advantages of the

Procrustean analysis over the Mantel test, in which the former can

be used for gaining further information on underlying drivers of

data table associations. In particular we have shown how the

Procrustean association metric (PAM) constructed of the residuals

Figure 5. Roadmap for using Procrustes Association Metric (PAM) in a multiple regression analysis framework (variation
partitioning). a) Soil microbial community (SMC) and soil microbial functioning (SMF) matrices are submitted to an ordination to reach the same
dimensionality, and SMC and SMF matrices formed by 2, 3 and n axes related through Procrustes analysis in order to generate PAMs; b) PAMs
generated were used as response variables in a variation partitioning to verify the individual contribution of soil properties and spatial information
(PCNM eigenfunctions) on the SMC-SMF relationship; c) Venn diagram depicting the relative contribution of soil properties (niche processes [a]) and
unmeasured spatial factors (neutral processes [c]).
doi:10.1371/journal.pone.0101238.g005

Much beyond Mantel: Procrustes
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of the vectors after the Procrustes analysis. We concentrated on

showing how patterns of concordance between data matrices can

be displayed and individual observations contrasted separately

using the Procrustean framework, allowing further examination of

the common and different association patterns among multiple

data matrices. Given that in the Mantel framework, multivariate

information is translated into a pairwise distance matrix, we lose

the ability to contrast homologous data points across dimensions

and data matrices. It is important to notice that it was not our goal

to show the statistical advantages of Procrustes over Mantel as

done by previous work [3]. Instead, we concentrated on

generating different analytical schemes, especially for plant and

soil ecologists, to incorporate Procrustes into their statistical

toolbox.

What is unique about Procrustean framework? There are at

least four characteristics of the approach not shared by others.

First, because the approach is correlative rather than regres-

sive, the number of observations (e.g., sites) in the matrices

does not have to be greater than the number of columns as in

common regression approaches such as RDA and CCA.

Second, we can fit as many matrices as we have available;

this latter issue is particularly restrictive under a regression

approach given the limitation of number of rows versus

number of columns. Moreover, all matrices are treated in

equal footing as no matrix is treated as response or predictor.

Third, the relationships within (only across) matrix columns do

not affect the analysis. Fourth, residual values across observa-

tions and dimensions can be calculated and explored as shown

here. These characteristics should not be necessarily seen as

advantages per se over other methods but rather features that

are unique and may be useful in many situations. There are

certainly other tools that can be used to look at the associations

between data sets. RDA and CCA are well-established tools in

ecology and are based on regression (asymmetric) methods.

Traditionally these approaches may have been thought to be

more appropriate for analysis of the examples given in this

paper, since they establish relations of cause and effect.

However, because these analyses include a regression step,

they are limited to situations where the number of rows (sites)

in the environmental matrix X is higher than the number of

columns (variables) [36], [46]. This is not a limitation in

Procrustes analysis and moreover, it is not clear how residual

variation among homologous observations across dimensions

should be explored in the case of RDA and CCA.

At least two other symmetric approaches are similar to the

Procrustean approach, namely Co-inertia analysis [47] and

symmetric Co-correspondence analysis [48], a form of Co-inertia

analysis in which a correspondence analysis is applied to two

species matrices prior to the analysis. The main difference resides

in the fact that fit is influenced by all variables pairs in Co-inertia

analysis (within and between matrices), whereas fit is influenced

only by variation between matrices in Procrustean. Co-inertia is

always based on ordination within data matrices, whereas in

Procrustes either the raw data or their ordination axes can be

used. Co-inertia can also take into account row (e.g., sites) and

column (e.g., species) weights in the analysis, though the

standardization and fit processes in Procrustean analysis could

also take these into account [36]. Co-inertia and Procrustean

analysis are certainly related in the sense that they both treat

matrices as symmetrical during the fitting process, though more

studies are necessary to assess in which conditions (e.g.,

correlation within and across matrices, differences in dimension-

ality between matrices, outliers within and across matrices) they

differ. Finally Dray et al. [36] showed the advantages of merging

Co-inertia and Procrustean analysis, where the latter is used as a

precursor of the former. In reality, future studies are required to

contrast Co-inertia and Procrustean analysis, but in either form of

analyses we can produce residual vectors (PAM) that can be

further analyzed.

Figure 6. Roadmap for using Procrustes association metric (PAM) in an ANOVA context. a) PCA ordination of each SMC and SMF raw data
matrices, and then Procrustes correlation from 2 axes-based PCA matrices in order to generate the PAM depicting the SMC-SMF relationship. b) Table
showing results of a one-way ANOVA for using PAM as response and land use type as fixed factor. c) Multiple comparisons test (Tukey, 95%) for
means of the Procrustean relationship between soil microbial structure and functioning (PAM in 2 axes) across land use types.
doi:10.1371/journal.pone.0101238.g006
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Procrustes can be perhaps best justified when the number of

predictors is greater than the number of observations or when

X and Y matrices are equally applicable as explanatory and

response variables. In plant-soil ecology, for example, above-

and below-ground data matrices can be interchanged as

explanatory and response variables. Plant community variation

has been shown to be related to variation in below-ground

compartments [24]. In addition, soil components such as

fertility and the microbial community have been proven to

influence aspects of vegetation [49]. Thus, with the literature

showing that both types of datasets under analysis can

structure each other, the use of Procrustes analysis, as a

symmetric canonical analysis method, should be encouraged

among plant and soil ecologists and ecologists in general. We

hope that this paper has provided enough examples of the

potential for using the Procrustes framework as a precursor to

further explore ecological data.
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47. Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for
studying species–environment relationships. Freshwater Biol 31: 277–294.

48. Ter Braak, CJF, Schaffers AP (2004) Co-correspondence analysis: a new
ordination method to relate two community compositions. Ecology 85: 834–846.

49. van der Heijden MGA, Klironomos J, Ursic M, Moutoglis P, Streitwolf-Engel R,

et al. (1998) Mycorrhizal fungi determines plant biodiversity, ecosystem
variability and productivity. Nature 396: 69–72.

Much beyond Mantel: Procrustes

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e101238


