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Abstract: Flow cytometry is widely used within the manufacturing of cell and gene therapies to mea-
sure and characterise cells. Conventional manual data analysis relies heavily on operator judgement,
presenting a major source of variation that can adversely impact the quality and predictive potential
of therapies given to patients. Computational tools have the capacity to minimise operator variation
and bias in flow cytometry data analysis; however, in many cases, confidence in these technologies
has yet to be fully established mirrored by aspects of regulatory concern. Here, we employed syn-
thetic flow cytometry datasets containing controlled population characteristics of separation, and
normal/skew distributions to investigate the accuracy and reproducibility of six cell population
identification tools, each of which implement different unsupervised clustering algorithms: Flock2,
flowMeans, FlowSOM, PhenoGraph, SPADE3 and SWIFT (density-based, k-means, self-organising
map, k-nearest neighbour, deterministic k-means, and model-based clustering, respectively). We
found that outputs from software analysing the same reference synthetic dataset vary considerably
and accuracy deteriorates as the cluster separation index falls below zero. Consequently, as clusters
begin to merge, the flowMeans and Flock2 software platforms struggle to identify target clusters
more than other platforms. Moreover, the presence of skewed cell populations resulted in poor
performance from SWIFT, though FlowSOM, PhenoGraph and SPADE3 were relatively unaffected in
comparison. These findings illustrate how novel flow cytometry synthetic datasets can be utilised to
validate a range of automated cell identification methods, leading to enhanced confidence in the data
quality of automated cell characterisations and enumerations.

Keywords: flow cytometry; automated data analysis tools; ATMP manufacturing; regulatory compliance

1. Introduction

Flow cytometry is a single-cell analytical technique widely applied within manufac-
turing of advanced therapy medicinal products (ATMPs) and tissue engineered products
to measure cell product characteristics, in accordance with Good Manufacturing Practice
(GMP) and quality guidelines laid out by regulatory authorities such as the European
Medicines Agency (EMA) and the US Food and Drug Administration (FDA) [1,2].

Typical ATMP drug product critical quality attributes (CQAs) evaluated by flow
cytometry include identity, purity, potency, quantity, and viability [3]. These CQAs are
usually measured from initial sample reception, and at each substantial manipulation step
until final characterisation for product release.

Since flow cytometry plays a critical role in ATMP manufacture, the need for continual
development of best practice, along with standardisation within the field is well recog-
nised [4]. For instance, the British Pharmacopoeia recently prioritised the preparation of
authoritative guidance on the application of flow cytometry for its cell and gene therapy
stakeholder communities [5]. Such guidance documents cover the major sources of varia-
tion in flow cytometry, these being: starting materials and reagents, equipment, sample
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preparation, and data analysis. The lattermost factor, data analysis (manual gating), is a
significant source of variation, and its removal from the analytical process has been shown
to reduce inter-laboratory variation by as much as 5–20% [6]. Manual setting of gates is
difficult to reproduce, subjective [7,8], and potentially biased in favour of a value that aids
product release and a successful manufacturing run.

The data analysis aspect of flow cytometry has rapidly evolved in recent years with
the development of a wide array of automated cell population identification software that
implement unsupervised and supervised machine learning algorithms [9]. These include
tools for dimensionality reduction (e.g., t-SNE and UMAP), clustering (e.g., FlowSOM,
SPADE and SWIFT), scaffold maps, trajectory inference, and classification and regression
(reviewed in [10]).

Previous work from benchmarking studies have suggested certain automated methods
were able to reliably replicate manual gating. For example, the FlowCAP competitions saw
several algorithms (ADICyt, SamSPECTRAL, and flowMeans) score highly on accuracy in
cell identification challenges [11]. Similarly, a comparison of clustering methods focussed on
high-dimensional data identified FlowSOM, X-shift, PhenoGraph amongst others as high
performing [12]. However, datasets used for these critical assessments often come from a
limited range of cell or disease models. Efforts from the recently launched National Institute
of Standards and Technology (NIST) Flow Cytometry Standards Consortium to develop
biological reference materials, reference data and reference methods are not yet applicable
to address the sources of variability from automated data analysis software [13]. Although
uptake of these advanced automated data analysis tools within ATMP manufacturing is
largely unknown, a recent survey of the clinical community suggests that 20% of clinical
laboratories sometimes or usually use them [9], and this number is expected to increase as
the toolsets available mature.

Related machine learning-based computational technologies intended for patient
diagnostic, treatment or preventative purposes are authorised by the FDA under Software
as a Medical Device (SaMD) regulations [14], with a further proposed Artificial Intelligence
and Machine Learning (AI/ML)-based SaMD regulatory framework [15]. To date, it
appears that no such software focussed on analysis of flow cytometry data have been
approved [16]. Relevant ISO/IEC standards for SaMDs include IEC 62304:2006, which
defines the life cycle requirements for medical devices software to ensure safety and
effectiveness, and ISO 14971:2019, which establishes the application of risk management to
medical devices [17,18]. New guidance and efforts to standardise AI/ML in health care are
beginning to emerge [19,20], but there is a lack of specific regulatory guidance on their use
in the manufacturing of medicines.

The biomanufacturing community faces a challenge on how to compliantly adopt
automated flow cytometry data analysis software in ATMP biomanufacturing process
controls. While these automated analysis tools have the potential benefit to improve
the quality of ATMPs and the capacity to minimise operator variation, in many cases,
confidence in these nascent technologies has yet to be fully established. Specifically, a gap
currently exists in the toolsets available for standardisation and testing of automated flow
cytometry data analysis methods, potentially leaving manufacturers unable to demonstrate
a method is fit for its intended purpose, and limiting the trust and transparency of these
software tools among users and regulators.

In order to address these issues, synthetic flow cytometry datasets have been previ-
ously developed to aid validation of automated cell population identification tools and
were shown to successfully mimic real cell data [21]. These synthetic datasets demonstrated
clear similarities in cell distribution characteristics when compared against real-world flow
cytometry data (Figure 1), and therefore can be used as credible substitutes to represent
actual experimental data.
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Figure 1. Inter-comparison between synthetic and real flow cytometry data showing clear similarities
among cell distribution properties.

Synthetic datasets are used in this research because: (1) they simplify the complexities
of real-world data, enabling the separation of interacting factors that cloud the understand-
ing and assessment of automated software, (2) they provide a ground truth that allows
measurement accuracy to be explicitly determined (something that is difficult to achieve
using real cell data), and (3) they overcome challenges in the acquisition of biological
samples related to time, cost, scarcity of rare samples, and data privacy concerns.

Within the research reported here, the novel synthetic datasets containing controlled
separation between clusters with normal or non-normal probability distributions are ap-
plied to a selection of flow cytometry computational tools that utilise different classes of
clustering algorithms. We compare the performances of these different software using
accuracy and repeatability evaluation metrics for showing trends in performance between
software when analysing clusters with specific degrees of separation, and with skewed
cell populations.

This research is intended to provide flow cytometry users in the biomanufacturing
community with a better understanding of the characteristics, opportunities and limita-
tions of automated data analysis software, ideally leading to enhanced confidence in the
data quality of cell characterisations. In addition, it shows how a framework for bench-
marking toolsets can be specifically designed for selection/validation of automated data
analysis software.

2. Materials and Methods
2.1. Datasets

In order to perform a fair comparison between different automated data analysis
software, synthetic flow cytometry reference datasets were designed and generated (as
described in [21]). Out of the commonly recognised data characteristics or potential statisti-
cal attributes identified, we targeted the separation and the skew characteristics to control
and modify in our datasets, because these properties had not been addressed in previous
work and/or the designs had not been approached in a systematic manner. To retain the
focus on these properties, non-target characteristics such as cluster sizes and the number of
dimensions were kept constant, and the element of noise relating to real data was excluded.
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2.1.1. Separation Dataset

The purpose of these datasets was to evaluate software performance in identifying
and partitioning cell populations as the clusters came close together.

Separation datasets were prepared using the R clusterGeneration package [22] with the
following parameters:

• Number of clusters: 2 or 3,
• Cluster size: 1000 points per cluster,
• Separation index (SI) values: from −0.3 to +0.3, at 0.1 intervals, and
• Cluster covariance matrices: eigenvalues between 1 and 5.

This approach generated datasets with different degrees of separation between neigh-
bouring clusters ranging from well separated to merged. Nine random normally distributed
cluster replicates were generated at each SI value. Parameters were selected to give a range
of variability in the diameter and shape of clusters similar to those seen in exemplar real
flow cytometry data. Datasets were converted to FCS 3.1 format using the R package
flowCore [23].

2.1.2. Skew Dataset

The purpose of this skew dataset was to evaluate software performance in identifying
and partitioning cell populations as the clusters displayed different levels of non-normal dis-
tributions.

Skew datasets were built in multiple stages. First, individual skew clusters were
prepared with the function rmsn in the package sn [24], using the following parameters:

• Number of clusters: 1 (clusters later joined together),
• Cluster size: 1000 points per cluster,
• Mean vector: [0, 0],
• Covariance matrix: values between 1 and 5, and
• α skew value: values between 2.5 and 10, at intervals of 2.5.

of which the α parameter regulated asymmetry. Likewise random cluster replicates were
generated at each skew direction (left and right) along the x-axis.

During cluster generation, it was found that applying the skewing parameter (α)
caused the diameter of the elliptical cluster to reduce along the x-axis. To compensate for
this, clusters were elongated to obtain a pre-skew diameter using the R package scales [25].
The skewness of the clusters before and after rescaling were identical (measured using the R
package psych [26]) determined by the asymmetry around the mean remaining unchanged.

Next, two clusters were joined together. A new level of complexity was introduced
compared to normally distributed clusters because asymmetric clusters could be orientated
in three ways: head to head, head to tail, and tail to tail (assuming the skew is introduced
only along the x-axis). Clusters with the same α skew values were paired together (i.e.,
clusters with different skews were not combined).

Finally, one cluster was shifted further away from the other through vector opera-
tions in R. The distance between two clusters was measured with the clusterGeneration
package [22]; datasets with a SI value between −0.25 and −0.15 were selected for further
processing. Files were again converted to FCS 3.1 standard using flowCore [23].

This approach generated a library of two-cluster synthetic datasets in two dimensions
with 1000 datapoints per cluster, with different levels of skew and skew–direction pairs.

2.2. Software Runs

The synthetic datasets were processed through six flow cytometry automated data
analysis software (Table 1), each of which implement different unsupervised clustering
algorithms: Flock2 [27] (via ImmPort Galaxy [28]), flowMeans [29], FlowSOM [30], Pheno-
Graph [31] (R implementation [32]), SPADE3 [33,34] and SWIFT [35,36].

It is recognised that many supervised techniques for automated cell population identi-
fication are available (e.g., FlowDensity [37]); however, these tools have not been included
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in this study because a significantly different approach in actual methodology of synthetic
dataset design/application would be needed, mainly the need for extensive pre-training
and training datasets containing meta-labelled data, and specific design of testing datasets.

Table 1. Description of computational tools used in this study.

Computational
Tool Description Reference

Flock2

FLOw Clustering without K; grid-based density clustering
algorithm, where the data are divided into hyper-regions,
then dense regions are identified, merged and points as-
signed to their nearest centroids.

[27]

flowMeans
k-Means-based clustering that allows multiple clusters to
model a single population, with overlapping clusters later
being merged.

[29]

FlowSOM
A workflow that reads the data, builds a self-organising
map (SOM), builds a minimal spanning tree then computes
a meta-clustering output.

[30]

PhenoGraph
Constructs a k nearest neighbour graph from high-
dimensional data, then uses the Louvain community detec-
tion algorithm to partition the graph into sub-populations.

[31]

SPADE3

Spanning-tree progression analysis for density-normalised
events; performs deterministic density-dependent down-
sampling, then k-means -based clustering, followed by min-
imal spanning tree construction. A tree partitioning algo-
rithm aids semiautomated interpretation of data.

[33,34]

SWIFT

Scalable Weighted Iterative Flow-clustering Technique;
Gaussian mixture model-based clustering, followed by split-
ting and merging steps to obtain final clusters that are uni-
modal but not necessarily Gaussian.

[35,36]

2.3. Statistics and Performance Evaluation Metrics

Methods used for statistical analysis included the mean, sample standard deviation,
and coefficient of variation (CV).

The software outputs were recorded, and the absolute difference between cell pop-
ulations of cluster 1 to the reference value was calculated in percentage terms, as in
Equation (1).

Difference to reference % =
|A− B|

Total events
× 100 (1)

where A is the reference cluster 1 count, and B is the software cluster 1 count.

3. Results
3.1. Output Number of Clusters

We assessed the performance of the six automated data analysis software, each of
which implement different clustering algorithms to identify and quantify cells: Flock2,
flowMeans, FlowSOM, PhenoGraph, SPADE3, and SWIFT (density-based, k-means, self-
organising map, k-nearest neighbour, deterministic k-means, and model-based clustering,
respectively).

We first investigated whether the software could partition the datasets to give the same
number of clusters originally designed into them. We found that returning the desired
number of clusters was straightforward for tools such as flowMeans, where the input
number of clusters (k) directly determined the output. Obtaining the desired number of
clusters from other software was more complex. In SWIFT, the input k served as an initial
estimate which sometimes varied from the final output cluster number after subsequent
cluster splitting and merging processing steps. In SPADE3, the default user settings
automatically over-clustered the data into a minimum spanning tree with hundreds of
nodes, with a subsequent ‘semi-automated’ feature to suggest tree partitioning to the user.
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Here, the tree partitioning step was applied until the desired number of clusters were
produced. PhenoGraph, and occasionally Flock2 and SWIFT, tended to over-cluster the
data, so additional manual steps were performed to merge sub-clusters together.

In general, the manual workload increased in proportion to the number of clusters
generated by a software above the desired amount, illustrating a paradox of increased
human intervention in a supposedly automated process designed to reduce operator
variation. We also found that flowMeans and FlowSOM did not permit outputs of two
clusters, so processing of two-cluster datasets returned a minimum cluster number of three,
thus again requiring a manual merging step.

Overall, strategies to obtain the desired output number of clusters varied significantly
between different software, with some requiring repeated tuning of input parameters
and/or post-clustering manual interpretation steps, suggesting a high level of operator
training required, as opposed to casual use.

3.2. Clustering Characteristics

The different software tools tested here all utilised different clustering algorithms,
and certain data partitioning characteristics became particularly noticeable with overlap-
ping clusters as the data became unstructured. Reference cluster designs are depicted
in Figures 2A and 3A, along with the raw software clustering outputs, before manual
intervention was performed to merge sub-clusters together from, e.g., Flock2, flowMeans,
FlowSOM and PhenoGraph. Scatterplots of the software clustering results show how
neighbouring clusters from Flock2 and flowMeans were separated with hard straight line
boundaries often radiating from a central region (Figures 2B,C and 3B,C), whereas divisions
among FlowSOM, PhenoGraph and SPADE3 clusters resembled meandering twisting lines
that had echoes of underlying merged sub-clusters (Figures 2D–F and 3D–F). Clusters from
SWIFT had softer boundaries, with the fitted Gaussian models visible that slightly overlap
each other (Figures 2G and 3G).

3.3. Two-Cluster Separation

To assess the performance of software as cell populations come closer together, syn-
thetic two-cluster datasets were generated with multiple replicates at each separation index
condition (as described in Section 2.1.1).

While clusters remained separate and distinct with a SI ≥ 0.1, all software outputs
were similar to the reference value (differences ranged from 0.01% to 0.97%), and strong
repeatability was observed (all standard deviations below 0.8). However, as the two clusters
came closer together and the SI approached and fell below 0.0, all six software platforms
displayed a decrease in performance; the differences between the software values and the
reference value widened, and repeatability deteriorated as demonstrated by the extent of
the error bars (Figure 4). The critical SI region appeared to be around −0.1, and any further
overlapping of clusters resulted in sharp reductions in software performance and erratic
outputs. To place this in the context of real data, the identification of chimeric antigen
receptor (CAR)-T cells (e.g., on the basis of the CD19 protein) routinely requires the analysis
of less well-separated clusters that fall into this SI region of −0.1 [38]. Overlapping clusters
appeared to have the most detrimental effect on Flock2 performance, with differences
to the reference value widening from (3.0 ± 4.1)% at SI −0.1 to (11.9 ± 9.6)% at SI −0.2.
flowMeans showed similar trends of reduced performance, with difference to reference
of (6.1 ± 4.0)% at SI −0.1 and (9.6 ± 4.3)% at SI −0.2 . In contrast, the smaller differences
in SWIFT outputs to reference from (1.4 ± 0.73)% to (5.7 ± 2.6)% at SI −0.1 and −0.2,
respectively, indicated somewhat better detection of overlapping normally distributed cell
populations. However, SWIFT was not able to return two clusters at SI −0.3.
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Figure 2. Clustering examplesfrom different software on a two-cluster synthetic flow cytometry
dataset with different degrees of separation between clusters.
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Figure 3. Clustering examplesfrom different software on a three-cluster synthetic flow cytometry
dataset with different degrees of separation between clusters.
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Overall, application of the synthetic two-cluster separation dataset revealed that
SWIFT performed better compared to FlowSOM, followed by SPADE3 and PhenoGraph in
terms of accuracy and repeatability.

Figure 4. Performance of different software with a two-cluster separation dataset.

3.4. Three-Cluster Separation

Evaluation of the effect of cluster separation on software performance was extended
by introducing another cluster to the dataset. The three-cluster dataset added an additional
level of complexity as the software now had to make two partitions in the dataset rather
than one. Having three clusters also negated issues such as FlowSOM giving a minimum
cluster of three for the two-cluster dataset. After causing each software to return three
clusters, the number of points per cluster was recorded and the population of cluster 1 was
arbitrarily selected to compare against the reference percentage of population value of 50%.

The results displayed similar trends in accuracy and precision to the two-cluster
dataset (Figure 5). All of the software maintained good accuracy and repeatability at
SI ≥ 0, with the exception of FlowSOM at SI 0.1, which displayed lower performance than
others. As the SI decreased below 0, software performance again began to deteriorate.
The reduction in performance for all software was again particularly noticeable from SI−0.1
to−0.2. Below SI−0.2, the deterioration of performance appeared to plateau for flowMeans,
PhenoGraph and SPADE3. Given that it showed consistently smaller differences to the
reference value at SI ≥ 0 than other software, flowMeans appeared to be less affected by
overlapping clusters; however, whether this was a merit of the software or a consequence
of ‘random’ equal partitioning of the dataset will require further investigation. Flock2 did
not identify three clusters at SI −0.2, and SWIFT at SI −0.3, further highlighting regions of
the separation index dataset where clusters became difficult to resolve. Again, it is noted
that three-cluster partitioning is prevalent in manual cell analysis.
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Figure 5. Performance of different software with a three-cluster separation dataset.

3.5. Skew

To understand whether the behaviours of software were limited to clusters with
normal distributions, datasets containing clusters ranging from normal symmetrical to more
asymmetrical skewed distributions were generated and processed through the software.
Initial runs were performed on skew cluster pairs with a tail-to-tail orientation used here as
an exemplar of real flow cytometry data.

The results showed that, once again, different software returned different clustering
outputs and partitioning characteristics from the same dataset (Figure 6). Obtaining the
desired output number of clusters, two, was straightforward with Flock2, flowMeans,
SPADE3 and SWIFT. FlowSOM gave a minimum output of three clusters, resulting in the
appearance of a horizontal bisect of one of the two populations. PhenoGraph outputs
partitioned the data into approximately eight clusters as a result of the k value that was
selected as a compromise between excessive manual intervention and long computational
run times (see Supplementary Materials). It is noted that the PhenoGraph algorithm may
not be appropriate for analysis of the low-dimensional datasets applied here, however
previous work have tested PhenoGraph performance using artificial two-dimensional
data [39], and its inclusion in this comparison study here remains useful for users.
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Figure 6. Clustering examples from different software on a two-cluster dataset with skew distribu-
tions. Two levels of skew are shown, light skew (α = 2.5) and heavy skew (α = 10), with cluster
orientations all facing tail to tail.
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Software responded to increasing levels of skew in different ways. In clusters with
heavy skew, Flock2, FlowSOM and SPADE3 appeared to partition the data in a more similar
manner to the reference dataset compared with flowMeans, PhenoGraph and SWIFT
(Figure 6). In this tail-to-tail configuration, Flock2 outputs showed improved accuracy
and repeatability as the levels of skew increased, going from a difference to reference
of (23.5 ± 16.1)% at no skew (α = 0) to (4.2 ± 3.0)% at heavy skew (α = 10) (Figure 7).
The opposite effect was observed for PhenoGraph, with the gap to reference widening from
(5.2 ± 3.9)% at skew α = 0 to (9.7 ± 8.4)% at skew α = 10. In comparison, other software
outputs showed no significant differences in performance as illustrated in Figure 6. A weak
trend was observed for SPADE3 to have better accuracy and repeatability as the level of
skew in the datasets increased, and the opposite trend (slight decrease in performance) was
observed for SWIFT (Figure 7).
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Figure 7. Performance of different software on a dataset with skew cluster orientations facing tail to tail.

3.6. Skew Orientation

It was thought that as well as the level of skewness, the orientation of skew clusters
to each other could be a factor affecting a software’s ability to identify cell populations.
To investigate this further, the two-cluster skew dataset (initially orientated tail to tail),
was extended to include cluster pairs facing both head-to-head and head-to-tail directions
(Figure 8). Again, it was seen that whilst most software were able to return two clusters,
FlowSOM returned three clusters, and PhenoGraph overclustered the data.

The extension of the skew dataset revealed SWIFT to be the software most affected
by skew clusters. In the head-to-head configuration, the gap to reference declined from
(2.6 ± 2.2)% at skew α = 0 to (35.7 ± 21.6)% at skew α = 7.5 (Figure 9). Furthermore,
SWIFT failed to return any output at skew α = 10. The head-to-head pairings also showed
flowMeans decreased in performance with increasing skew, with difference to reference
going from (9.8 ± 4.5)% at skew α = 0 to (18.0 ± 4.5)% at skew α = 10.
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Figure 8. Clustering examples from different software on a two-cluster dataset with skew pairs facing
different orientations. All clusters shown with heavy skew (α = 10).
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Figure 9. Performance of different software on a dataset with skew cluster orientations facing head
to head.

Comparison across all software suggested that FlowSOM and SPADE3 were least
affected by skew distributions, both outperformed Flock2 and flowMeans in terms of
accuracy and repeatability.

In the head-to-tail orientation, SWIFT’s performance was noticeably lower than other
software at every level of skew above 0 (Figure 10). For instance, the difference to refer-
ence of (21.3 ± 3.0)% at skew α = 7.5 was worse than the average of all other software
(7.5 ± 3.8)%. This suggested that the strategy SWIFT utilises to fit data to Gaussian distri-
butions followed by splitting and merging steps may be challenged by the processing of
non-Gaussian distributions.
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Figure 10. Performance of different software on a dataset with skew cluster orientations facing head
to tail.

An alternative visualisation of the results from the skew dataset runs suggests that
most of the software tested showed a decline in accuracy and repeatability as the orientation
shifted from tail to tail, to head to tail and then head to head, respectively (Figure 11). This
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pattern was generally observed at all levels of skew tested. The changes in performance
was likely due to the reduction in the density of events in between the two clusters moving
between one orientation to the other, i.e., the higher density of interface events in the
head-to-head orientation made data partitioning more difficult. An interesting exception to
this pattern was observed with PhenoGraph, where analysis of tail-to-tail skew clusters
appeared to slightly reduce in accuracy and repeatability compared with the head-to-head
orientated skew clusters. This was possibly because of characteristics of the PhenoGraph
algorithm, or more likely that the significant manual intervention required to merge output
clusters together to achieve final outcomes artificially improved PhenoGraph results.
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Figure 11. Performance of different software on a dataset with skew cluster orientations facing head
to head, head to tail, and tail to tail.

Taken together, automated analysis of our synthetic skewed dataset revealed the
effects of skew on software performance were largely software dependent, and affected
different classes of clustering algorithms in varying ways. Software that model Gaussian
distributions onto data were the least well performing (flowMeans and SWIFT). Density-
based clustering software appeared to be unaffected by skew characteristics in the data
(Flock2). FlowSOM, SPADE3 and PhenoGraph performed well against other software tested
here, potentially because they implement overclustering steps that break up the data into
smaller populations that each differ in skew properties from the main major population.

4. Discussion

Characterisation of ATMPs by automated flow cytometry data analysis software have
the potential to improve the quality, repeatability, and robustness of biomanufacturing
processes by reducing operator variation as a function of subjective manual gating of
clustered data. However, the lack of clarity in how these software derived outputs from
inputs, coupled with the absence of toolsets for software validation and standardisation,
potentially restricts their implementation by the manufacturing community. In addition, it
presents challenges from a clinical and regulatory perspective.

Our previous work on the inter-comparison between synthetic and a real dataset
showed clear correlation among cell distribution characteristics examples [21]. Conse-
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quently, for this particular cross-platform comparison we are confident that the synthetic
data mirrors, to an appropriate level, the key characteristics of low dimensionality cluster
data, demonstrates design flexibility and application, and allows for traceable benchmark-
ing (absolute accuracy and repeatability), without the further need to run the platforms
through further real data.

In this study, synthetic datasets have been designed and applied to test the perfor-
mance of six automated flow cytometry cell population identification computational tools.
Our use of synthetic datasets with controlled distances between clusters demonstrated
similar patterns of behaviours between different software, in which accuracy and repeata-
bility deteriorated as clusters came closer together, particularly below the separation index
value of −0.1. These software responses were expected given that overlapping clusters
change from multi-modal to unimodal distributions, progressively becoming one large
cluster with merged cell populations. The skew datasets implemented here identified con-
siderable variation in outputs between software when processing non-Gaussian distributed
clusters, reflecting the different mathematical approaches employed by software to identify
cell populations.

Among the six automated tools assessed here, the SWIFT algorithm was found to
display better accuracy and repeatability compared to other tools as normally distributed
clusters began to overlap and their separation index shifted below 0. However, when
assessed further with skewed clusters, SWIFT performance noticeably declined more than
others as the skew levels increased. Insights such as these can give operators unfamiliar
with computational tools and algorithms a deeper understanding of the potential optimal
working ranges of these tools, and the variations in performance that can arise between
them depending on the data structures. Furthermore, it could support upstream assay de-
sign to ensure data outputs are fit for automated analysis, such as switching to fluorophores
leading to more optimised separation, or acquisition settings.

The synthetic dataset approach applied in this study to evaluate automated cell pop-
ulation identification tools extends on, but cannot be directly compared with findings
from previous comparison studies, because of the differences in datasets (synthetic and
real world) and dataset characteristics used. For example, studies have previously identi-
fied FlowSOM as high performing based on high-dimensional datasets [12]; however, in
this study, SWIFT outperformed FlowSOM in the low-dimensional, normally distributed
dataset, although further testing in the presence of skewed clusters saw SWIFT perfor-
mance deteriorate.

Compared with previous software comparison studies, the datasets applied here
reduce the dependence on narrow cell model examples. Further strengths of this approach
include the use of measurable distances between clusters through the separation index,
as well as controllable skew parameters, with the benefit of allowing computational tools
to be tested one factor at a time, on controlled sets of criteria not feasibly generated from
experimental conditions. Of note, the synthetic datasets allow comparisons of software
outputs away from subjective manually gated reference values that lack a ‘ground truth’
thus providing explicit statements of accuracy and repeatability.

This study specifically targeted the variation arising from data analysis within the flow
cytometry analytical process. Upstream sources of variation from starting materials, sample
processing, and instrumentation would require separate comparison studies designed
around those factors as variables (e.g., conditions such as lysis, wash, and staining) and
with the data analysis software tool kept constant. With regards to the relevance of this data
to biological samples analysis, the synthetic datasets here have been designed with essential
properties that simulate their equivalent biological counterparts. Therefore, software runs
that fail on encountering such data characteristics would directly infer on the (lack of)
credibility of results from similar biological samples.

A recognised limitation of this work is that the number of markers simulated is lower
than those in real data (usually > 3-colour panels) because a priority in this study has been
to understand and benchmark how algorithms behave with two or three clusters before
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introducing further complexities into the datasets. Noting the successful referencing and
correlation study we have already completed between synthetic and real data [21], overall,
real data have been excluded from this initial research because they are significantly more
complex, containing sources of variation from upstream processes and noise components
that cannot be controlled to transparently understand the ‘black box’ nature of the algo-
rithms investigated. Additionally, it is very difficult to achieve absolute cell counts for real
data, so defining measurement accuracy (a critical component of this study) would not
be possible. This research here has applied clearly defined synthetic datasets to establish
the base functionality of software at lower numbers of parameters before escalating to
higher-dimensional datasets (i.e., we cannot run before we can walk). Having achieved
this, building more complex datasets is the next key area for further work, and once at that
stage, further comparisons between real datasets will illustrate even greater relevance.

The results presented here open up further work to explore more data properties in
synthetic dataset design, such as inclusion of more cell populations, higher dimensionality,
noise parameters, and in particular, rare cell populations—assessment of which will be
a subject for further work within our research. To address the potential for a more het-
erogeneous cell population mix rather than the homogeneous ones depicted here, further
work could model cell subsets within the bulk-component of the skewed population with
changing phenotypes (e.g., stem cells undergoing differentiation, T cells in response to
cytokine activation), in line with the escalation of various components of complexity within
the synthetic dataset design.

Overall, the results of this study suggest that benchmarking of automated flow cytom-
etry software platforms will be possible with a high level of testing integrity using synthetic
cluster datasets. The goal of this work was initially to enable biomanufacturers to make
better informed decisions about whether or not to implement automated data analysis tools
in their workflow instead of/in addition to manual gating methods, based on their own
cytometry data—although it is clear that it is also relevant to the clinical community and
would potentially impact regulatory science.

Where advanced analysis methods are deemed necessary, the clustering characteristics
of different analysis tools illustrated here will facilitate the selection of ones that are fit for
purpose. For users, these toolsets can be used to validate and verify installed software and
confirm that working ranges match the specifications of their own data. For regulators
inspecting process validation documentation, the inclusion of these datasets to provide
assurances in automated cell characterisation measurement processes would potentially be
desirable. There is potential for the development of synthetic digital reference materials
to provide assurances in advanced analytical methods, leading to enhanced measurement
confidence in ATMPs.
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