
1274  |  A. Zaritsky	 Molecular Biology of the Cell

Sharing and reusing cell image data

ABSTRACT  The rapid growth in content and complexity of cell image data creates an 
opportunity for synergy between experimental and computational scientists. Sharing micros-
copy data enables computational scientists to develop algorithms and tools for data 
analysis, integration, and mining. These tools can be applied by experimentalists to promote 
hypothesis-generation and discovery. We are now at the dawn of this revolution: infrastruc-
ture is being developed for data standardization, deposition, sharing, and analysis; some 
journals and funding agencies mandate data deposition; data journals publish high-content 
microscopy data sets; quantification becomes standard in scientific publications; new analytic 
tools are being developed and dispatched to the community; and huge data sets are being 
generated by individual labs and philanthropic initiatives. In this Perspective, I reflect on shar-
ing and reusing cell image data and the opportunities that will come along with it.

BACKGROUND
Molecular cell biology and microscopy have undergone a revolution 
that led to an explosion in complex, dynamic, high-dimensional im-
aging data (Reynaud et al., 2015; Ouyang and Zimmer, 2017). The 
lack of computational methods to extract information from such rich 
and high-content data is now becoming a critical bottleneck, and 
thus the field of cell imaging is in great need of computational sci-
entists. However, there is a huge gap between biologists who pro-
duce, analyze, and hold the data, and computational scientists 
whose technical and analytical skills can enable extraction of more 
information from it (Figure 1). This gap is caused by differences in 
culture, communication, academic motivation, and reward.

One key step toward filling this gap is making cell image data 
publicly available. Data availability will attract computational scien-
tists by exposing them to fresh and challenging problems at the in-
terface of computer vision, data science, and cell biology. Just as in 
the emergence of bioinformatics, data availability will likely first en-
gage computational scientists in development of tools and methods 
for analysis and data mining, before diving into deeper biological 
waters: integrating multiple data sets and examining “old” data 
from new perspectives to make new discoveries. Data depositors 

will profit from increased academic credit in publications, citations, 
and new collaborations. Cell biologists will enjoy the availability of 
new computational methods and complementary data sets to re-
produce and validate their findings. This synergy will benefit all par-
ties and move cell biology forward.
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FIGURE 1:  The gap between cell biology and computer science has 
roots in different cultural aspects and lack of cross-discipline 
communication. Availability of large-scale data sets will make a 
significant step toward bridging this gap. Scientists with 
computational backgrounds (CS, computer science) will be motivated 
to exercise their skills in data integration, mining, and tool 
development to benefit cell biology (BIO) through availability of new 
computational tools to analyze and interpret cell image data. Credit: 
Dorit Kochavi.
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Deposition of data in public repositories upon publication has 
become the standard in many fields such as gene expression, three-
dimensional protein structure and proteomics. Sharing enables re-
analysis of the data by other scientists for replication, computational 
tool development and turning data to discovery. This is not the case 
for cell image data, where the complexity, multidimensionality, vari-
ability in experimental settings, lack of standardization and huge 
content complicate sharing and reuse. Here, I discuss the barriers 
toward open cell image data, the steps that are required to enable 
effective sharing and reuse, and the expected benefits to follow.

THE IMPACT OF IMAGE DATA SHARING
Public availability of cell image data is essential for improving repro-
ducibility, assessment, and validation of new computational methods; 
integration and mining multiple data sets; and quantitatively examin-
ing previously published data from new angles to facilitate discovery 
(Pasquetto et al., 2017). First and most obvious, deposition of image 
data in public repositories can help with what is referred to as the 
“reproducibility crisis” (Baker, 2016). Open data can reduce data 
cherry picking, enable independent validation of previous research 
outputs, simplify replication studies and allow generalization of con-
clusions to additional cell or experimental systems.

Most computational scientists in the field of cell imaging are fo-
cused on developing analytic tools for common universal computa-
tional problems such as preprocessing steps, registration, detection, 
segmentation, tracking, feature extraction, and classification (Meijer-
ing et al., 2016). A critical aspect when presenting a new method is 
comparing its performance to alternative approaches. Accordingly, 
most current examples of reusing cell image data are aimed at the 
validation and assessment of new computational tools. For example, 
the Mitocheck project created a resource of genomewide pheno-
typic profiling (Neumann, Walter, et al., 2010). Its image and image-
derived data were reused to develop multiple methods such as in-
ferring gene networks (Failmezger, Praveen et al., 2013b), predicting 
gene function from RNAi-induced phenotypic similarities (Serrano-
Solano et al., 2017), unsupervised phenotyping (Failmezger et al., 
2013a), quantification of single cell motility in high-throughput time-
lapse screening data (Schoenauer Sebag et al., 2015), and cell track-
ing (Lou and Hamprecht, 2011) (that also reused data from Li et al., 
2010). WND-CHARM, an image classification framework (Orlov 
et al., 2008), used published cell images for benchmarking (Boland 
et al., 1998; Boland and Murphy, 2001), and CP-CHARM, a CellPro-
filer-based image classification method (Uhlmann et al., 2016), was 
validated also with additional data sets from the Broad Bioimage 
Benchmark Collection (Ljosa et  al., 2012). AveMap, a method to 
quantify monolayer migration (Deforet, Parrini, et  al., 2012) was 
verified on data from Simpson et al. (2008). Osokin et al. (2017) ap-
plied deep learning to infer the localization of one protein based on 
the spatial pattern of another protein; to train their model they 
used an existing data set (Dodgson, Chessel, Vaggi, et al., 2017). 
Community competitions and benchmarking efforts, using curated 
standardized data, ground-truth annotations, and performance met-
rics, have proven effective at objectively comparing methods for 
particle tracking (Chenouard, Smal, De Chaumont, Maška, et  al., 
2014), single molecule localization (Sage et al., 2015), cell tracking 
(Ulman, Maška, et al., 2017), nucleus detection (www.kaggle.com/c/
data-science-bowl-2018), and other methods (Meijering et  al., 
2016). The benefit of competitions is twofold: users can more effec-
tively select an existing method that is likely to perform well for their 
specific data, and method developers can demonstrate superiority 
of their method—a critical aspect for publication in the fields of 
applied computational sciences.

Secondary analysis of data can also produce new biological in-
sight. In this mode, researchers extract new information from raw 
image data or image-derived features (e.g., cell/molecular trajecto-
ries, segmentation masks) by applying new analyses that were not 
considered in the original study. For example, data from the First 
World Cell Race (Maiuri et al., 2012), a large-scale comparison of cell 
motility across 54 different adherent cell types, was reused by the 
same group to confirm an association between cell speed and per-
sistent migration and then extended by a set of new experiments 
and theory to reveal a universal coupling that is mediated by actin 
flows (Maiuri, Rupprecht, Wieser, et al., 2015). Lavi et al. (2016) intro-
duced theory for competition between cell motility machinery and 
microbial antigen capture for myosin II. Their prediction that cells 
switch from persistent migration to unidirectional self-oscillation was 
validated by reanalyzing cell trajectories from Chabaud, Heuzé, 
et al. (2015). Meyers, Craig, and Odde (2006) tested their theoretical 
predictions linking cell size and shape to signaling by new analyses 
of previous data of Cdc42 activation in fibroblasts (Nalbant, Hodg-
son, et al., 2004). Ji et al. reanalyzed raw dual-channel time-lapse 
imaging (Hu, Ji, et al., 2007) to dissect the relationship between pre-
dicted adhesion forces and F-actin-vinculin interactions (Ji et  al., 
2008). Abdullah et al. segmented individual cells in an epithelial tis-
sue reusing time lapse images of developing Drosophila pupae from 
Besson, Bernard, et al. (2015). They demonstrated that the probabil-
ity of cell division increases exponentially with the number of cell 
edges and developed theory to propose that this is responsible for 
the observed cell-edge distribution (Abdullah et al., 2017). Thurley 
et al. developed “response-time modeling” as a framework to unify 
and interpret knowledge on intra- and intercellular signaling path-
ways (Thurley et al., 2018) and applied it to published experimental 
and simulated cytokine secretion data (Dorner, Dorner, Zhou, et al., 
2009; Busse et al., 2010; Han, Bagheri, et al., 2012; Thurley Gerecht, 
Friedmann, and Höfer, 2015). Yang and Svitkina carefully reassessed 
published electron tomography data from Urban et al. (2010) and 
reported the existence of numerous branched actin filaments in la-
mellipodia that have been overlooked in the original study reporting 
their absence (Yang and Svitkina, 2011).

In my own research, I reanalyzed data from Serra-Picamal, 
Conte, et al. (2012) to test plithotaxis—the tendency for each in-
dividual cell within a collectively migrating monolayer to migrate 
along the local orientation of the maximal principal stress (Tambe, 
Hardin, et al., 2011). I found that plithoatxis is a property attrib-
uted to a small subgroup of cells that migrate more effectively 
(Zaritsky et al., 2015b). By designing new algorithms, I discovered 
that coordinated stress precedes coordinated motion and by re-
analyzing published data from another group (Das et al., 2015), 
proposed that several tight-junction proteins play a role in trans-
mission of aligned stress to aligned motion (Zaritsky et al., 2015b). 
I also used the same data to validate a new method developed for 
quantification of colocalization and coalignment data (Zaritsky 
et al., 2017).

Integrating data sets from multiple sources have the potential to 
discover patterns that are not possible to infer from individual stud-
ies (Lahat et  al., 2015). Williams, Moore, Li, et  al. (2017) recently 
illustrated the benefit of image-derived data integration. By com-
bining information from three independent data sets (Fuchs, Pau, 
et al., 2010; Rohn et al., 2011; Graml, Studera, Lawson, Chessel, 
et al., 2014), the authors suggested a new gene-network controlling 
cell shape that could not be inferred from single studies. This first 
example is setting the stage for future ambitious “meta-analysis” 
studies, for example, integration of imaging and omics-based data 
sets for system-level genotype-phenotype mapping.
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Current advances in cell biology resemble the famous parable of 
the blind men and an elephant, in which each blind man inspects a 
different part of the elephant body, revealing a limited aspect of real-
ity. Conceptualizing the elephant requires integration of all partial 
observations. Similarly, the ultimate impact in opening cell image 
data could come from the integration of partial observations to a 
complete understanding of the “biological scene.” This will be 
achieved by the integration of complementary data and by the use of 
complementary tools that examine data from different perspectives.

BARRIERS AND SOLUTIONS TOWARD OPEN CELL 
IMAGE DATA
Cultural conventions and the lack of infrastructure are the main hur-
dles limiting image data sharing and reuse. In recent years we have 
witnessed independent seeds of infrastructure building, generation 
of high-content data sets and a growing appreciation of interdisci-
plinary and collaborative science. Together these seeds mark a be-
ginning of a time to open cell image data and import concepts of 
“big data” science to cell biology.

Convincing biologists to open their data is not trivial. Historically, 
cell biology lacks a culture of data sharing, and experimentalists are 
still accustomed to holding on to their image data. For example, in 
response to my request for published image data (in a “glamour” 
journal with a “data availability on request” statement), the corre-
sponding author refused with the argument that “This might not be 
the best way to optimize scientific progress, but given the current 
rules of the game, it is what it is.” This is apparently a more general 
problem, not limited solely to cell image data, as implicated by a re-
cent notorious editorial that raised the concern that “the system will 
be taken over” by what they called “research parasites” (Longo and 
Drazen, 2016). As a nice response, Casey Greene (Pennylvania State 
University) has initiated a “Parasite Award” (http://researchparasite 
.com/) for scientists practicing secondary data analysis and the “Sym-
biont Award” (http://researchsymbionts.org/) for experimentalists 
who shared their data.

Although the vast majority of experimentalists agree with the 
general concept that data produced from public funds should be-
come publicly available for general reuse, many feel genuinely 
frustrated about the idea of putting in the extra work to allow oth-
ers to benefit from the expensive and labor-intensive data they 
generated. More specific concerns are that the lack of detailed 
understanding of the primary research could lead to erroneous 
conclusions and competition with others when additional analyses 
were planned (Longo and Drazen, 2016). Rewarding the sharing of 
primary research data could be key in changing this paradigm 
(Wallis et al., 2013). For example, it is established that papers with 
open data receive more citations over long time frames (Piwowar 
and Vision, 2013); funding agencies could credit researchers 
whose data are reused by others. To reach solid conclusions, data 
scientists must understand the full extent of the biological com-
plexity in the data (Zaritsky, 2016), which almost always require 
direct communication with the data generators. Such interaction 
could even lead to closer partnerships and sought-after experi-
mental validations of hypotheses that emerged from the second-
ary analyses. Thus, researchers who practice secondary analyses 
should strive to involve the primary data generators as collabora-
tors and share credit.

Image data sets with potential for reuse have scientific value on 
their own and so deserve direct academic credit. Accordingly, on 
deposition, data sets are assigned a unique identifier (doi) that can 
be later referenced independently of the scientific study. BMC Re-
search Notes was the first journal to identify the potential impact, 

introducing “data format” as a new article type (O’Donnell et al., 
2008). Since then, many journals introduced Resources or Tools/
Methods/Software article types. GigaScience was the first to focus 
on data and other research products as its main publication entity, 
also providing means for data deposition (Sneddon et  al., 2012) 
(http://gigadb.org/). This initiative was followed by Nature’s Scien-
tific Data. Data sets that are selected for publication must follow the 
findable, accessible, interoperable, and reusable (FAIR) principles 
(Wilkinson et al., 2016) and be assessed based on their soundness 
and potential for future reuse. Examples of cell-image-based data 
sets include Zaritsky et al. (2015a), Bray et al. (2017), Pascual-Vargas 
et al. (2017), and Lukeš et al. (2018).

It is not only a change of culture that is needed. The size, com-
plexity, variability, and lack of standardized formats and metadata 
make the deposition process labor intensive and tedious, thus dis-
couraging experimentalists. Data curation and deposition should be-
come as simple and straightforward as possible and ideally provide 
academic reward to encourage experimentalists to share their data.

Unlike omics data, until very recently there was no public re-
pository dedicated for large-scale imaging data (Lemberger, 2015). 
The Image Data Resource (https://idr.openmicroscopy.org/about/) 
(Williams, Moore, Li, et al., 2017) is an open online platform for pub-
lishing, visualizing, and mining high-content cell image data sets. It 
contains curated large-scale data sets with raw and processed 
image data, together with phenotypic annotations, standardized 
vocabulary, and software infrastructure to allow straightforward que-
rying and visualization. Earlier image repositories did not provide a 
complete suite to enable these functionalities. These include Yale 
Image Finder (Xu et al., 2008), retrieving images based on their tex-
tual description; PhenoImageShare (Adebayo et al., 2016), the first 
to provide infrastructure linking annotated ontologies-based tags to 
phenotypic-based user queries; the JCB Data Viewer (http://jcb 
-dataviewer.rupress.org/) (Hill, 2008); The Cell Image Library (http://
www.cellimagelibrary.org/) (Orloff et al., 2013); and the Systems Sci-
ence of Biological Dynamics database (http://ssbd.qbic.riken.jp) 
(Tohsato, Ho, et al., 2016). The Broad BioImage Benchmark Collec-
tion (https://data.broadinstitute.org/bbbc/) (Ljosa et al., 2012) is a 
resource for methods benchmarking. It includes raw data sets, 
ground-truth annotations for benchmarking and criteria for evaluat-
ing each data set.

The complexity and costs of storing and managing large-scale 
image data cannot be overemphasized. In the near future, storage 
requirements, even at a single institution level, will easily exceed the 
petabyte (1 PB = 1000 TB) scale (Ouyang and Zimmer, 2017). Such 
content poses great challenges in terms of storage, retrieval, and 
mining. In a recent white paper, Ellenberg, Swedlow, et al. (2018) 
proposed a two-layered model where a data archive is used for data 
and metadata storage and access and added-value databases, a 
subset of the data archive, is identified as having greater potential 
for reuse by the community and provided with additional curation, 
annotation, and standardization. Obvious data sets that fit these cri-
teria include atlases and high-content genetic phenotypic screens. 
Recent advances in molecular biology, microscopy, and automation 
enable the generation of such data sets even at individual labs (e.g., 
Cai, Hossain, et al., 2017). However, large-scale imaging consortia, 
community efforts, and philanthropic projects have the potential to 
produce larger-scale and more controlled image-data resources. 
One example is the Allen Institute of Cell Science, having the 
ultimate goal of building an integrated model of cell structure, 
organization, and function. Toward this goal, they genome-edited 
human stem cells (Roberts, Haupt, et  al., 2017) and made highly 
standardized microscopy raw data and image-derived features 
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publicly available through their Cell Explorer (www.allencell.org/
image-data-downloads.html) (Horwitz, 2016). Other examples 
include Euro-Bioimaging (www.eurobioimaging.eu/), the Chan Zuck-
erberg initiative (https://chanzuckerberg.com/) (Bargmann, 2018), 
MultiMOT (https://multimot.org/) (Masuzzo and Martens, 2015), and 
the Human Cell Atlas (www.humancellatlas.org/) (Regev et al., 2017). 
The reuse potential of more specific imaging studies is less obvious 
and archiving would be determined per-case based on the commu-
nity priorities (Ellenberg, Swedlow, et al., 2018). Infrastructure such 
as SourceData (Liechti, George, Götz, El-Gebali, et al., 2017), which 
links published figures to their underlying source data, can improve 
reproducibility in cases where the raw data are not archived. Storage 
costs and personnel (software engineers, data curators, and high 
performance computing specialists) are the major financial expenses 
essential to build and maintain large data repositories. Involvement 
of government support, funding agencies, industrial partners, and 
philanthropy is crucial, especially for the recognition and support of 
software development and high-performance computing needed to 
embed informatics as an integral part of advancing cell biology and 
for long-term maintenance of large-scale repositories and tools 
(Cardona and Tomancak, 2012; Prins, De Ligt, et al., 2015).

A key aspect toward successful data dissemination and mining 
is organizing the metadata for flexible retrieval and interrogation, 
while keeping data deposition simple and fast. This fine balance 
poses challenges in data standardization, storage, and retrieval 
even more prominently in the complex landscape of cell imaging. 
Standardized data formats, community reporting guidelines, 
Application programming interfaces (APIs, which are software infra-
structure to simplify use to technologies in developing applica-
tions), and visualization tools must be defined and developed 
toward this goal. Standard domain terminology, formally termed 
controlled vocabulary, enables harmonized data representation, 
which is necessary for querying across data sets. Many of the terms 
in a controlled vocabulary can be borrowed from existing ontolo-
gies, which are formalized hierarchical descriptions of a specific 
domain. Several ontologies describing experimental assays, cell 
types, and their phenotypes and behavior were recently defined 
(Visser et al., 2011; Hoehndorf et al., 2012; Sarntivijai et al., 2014; 
Sluka et al., 2014; Jupp et al., 2016), and new ontologies can be 
constructed on need.

The minimal reporting requirements define the smallest set of 
metadata required to enable future data querying and integration. 
These include information on the model system, experiments, and 
microscopy used to generate the data, all in terms of the controlled 
vocabulary. Deciding on the minimal set tunes reuse possibilities 
with ease of data submission and should be carefully determined. 
Cell image data come in a wide range of proprietary and open file 
formats (Linkert et al., 2010). Controlled vocabularies can also aid in 
standardizing these data formats and implementing APIs to handle 
this data harmonization (Orchard et al., 2005). A successful example 
is the Open Microscopy Environment (Goldberg et al., 2005), pro-
viding the software infrastructure to store, share, and query image 
data from different sources.

Distribution of image-derived features along the raw image data 
can be extremely beneficial in terms of reuse. The Cell Migration 
Standardization Organization (CMSO), a community effort toward 
the development of community standards for the field of cell migra-
tion that I am part of, has currently taken the challenge of defining 
and implementing data formats to harmonize routine analyses 
outputs, starting with a data format for trajectories of cells or mole-
cular events (https://github.com/CellMigStandOrg/biotracks). Simi-
lar steps have been made by Rigano and Strambio-De-Castillia, who 

just released a cross-platform data management infrastructure for 
particle tracking data (http://omega.umassmed.edu/) (Rigano et al., 
2018), using their minimal reporting requirements (Rigano and De 
Castillia, 2017). Efforts have been also made in the arena of mathe-
matical modeling (Macklin and Friedman, 2018), for example, Multi 
Cellular Data Standard, a new data format for multicellular data 
(Friedman et al., 2016).

Altogether, the emerging infrastructures of data-rich reposito-
ries, controlled vocabularies, minimal reporting requirements, and 
APIs will enable data-focused exploratory or hypothesis-driven que-
ries that will lead to new discoveries.

RECRUITING COMPUTATIONAL SCIENTISTS TO CELL 
BIOLOGY THROUGH OPEN DATA
The question of how far secondary analysis can take us has already 
been answered in other fields. For example, in the omics fields, 
computational scientists who never held a pipette can be the ones 
driving the biological interrogation. They, of course come along 
with others who develop computational tools and who provide 
bioinformatics services in core facilities, as a range of individuals 
contributing in different ways to the field. For cell imaging, even 
when the data become widely available, cultural barriers still stand 
in the way of attracting computational scientists, including apprecia-
tion of secondary-analysis research by the cell biology community, 
adequate academic reward and career opportunities, and cross-
disciplinary training.

Development of tools facilitate access to information previously 
unattainable and so can be more scientifically impactful than mak-
ing a scientific discovery. In the past few years we have seen Nobel 
laureates who developed cryoelectron and superresolved fluores-
cence microscopy. We have also witnessed how software tools, such 
as BLAST (sequence analysis) (Altschul et al., 1990), changed the 
way that science is performed and greatly helped in the emergence 
of bioinformatics as an independent field. Public data and bench-
marks are necessary to make this leap in what is called bioimage 
informatics (Peng, 2008), but this is not sufficient. Adaptation of ex-
isting algorithms to cell image data, dealing with the inherent vari-
ability and noise in experimental biology and paying attention to 
software engineering and usability usually lacks the mathematical 
rigor and novelty sought in top-tier computer science, while also 
lacking the biological novelty sought in cell biology (Cardona and 
Tomancak, 2012). Another discrepancy comes from the underlying 
motivation: for applied computer scientists elegant math and out-
performing the state of the art (even by a margin) are the goals, 
whereas studies in cell biology are motivated by better understand-
ing of a specific biological process, using whatever available tech-
niques (Meijering et  al., 2016). We have seen multiple success 
stories in the past 15 years—bioimage analysis tools that are used 
by thousands of scientists around the globe (e.g., Carpenter et al., 
2006; Sommer et al., 2011; de Chaumont et al., 2012; Schneider 
et al., 2012). A positive action was made by journals offering new 
article types focusing on tool and software development, for exam-
ple, PLoS Biology’s “Meta-Research” section on data-driven and 
meta-analytic research (Kousta et al., 2016). Another positive sign is 
the growing community of bioimage analysts (in Europe, NEUBIAS, 
http://neubias.org/), as a bridge between tool developers and biol-
ogy end users.

Roles of computational scientists in cell biology can go beyond 
number crunching, statistical analyses, and tool development. The 
mass and complexity of microscopy data create an opportunity for 
computational scientists to decipher fundamental biological pro-
cesses by analyzing image data. Of course, discovery of complex 
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dynamic patterns requires deep domain knowledge of the biologi-
cal process, the experimental possibilities, the type of information 
that can be extracted, and the computational tools to extract it. This 
notion was shouted out in several recent opinion pieces. Markowetz 
(2017) argued that “computational biologists are just biologists us-
ing a different tool,” and I introduced the “dry cell biologist” and its 
role in promoting interdisciplinary team science (Zaritsky, 2016), 
which was also proposed as an evident mode of performing modern 
cell biology by Horwitz (2016). To facilitate this type of research, re-
sults should not be assessed based on the amount of new data gen-
erated but instead on the findings and biological insight extracted 
from the data regardless of the purpose for which they were origi-
nally generated. This problem was evidently stated by an anony-
mous reviewer of one of my manuscripts, “…a major criticism of the 
current manuscript, which identifies real and important relations, is 
using previously published data instead of independently perform-
ing the experiment.”

Big data are not the end of hypothesis-driven science (Mazzocchi, 
2015). It is true that mining through massive cell image public data 
sets, extracting complex patterns and turning it to new biological 
insight, is going to become a more prevalent mode of science in the 
near future. However, the concern that discovery-driven data sci-
ence may find spurious correlations with no biological interpretation 
is real and must be addressed by a careful examination of different 
experimental methods and systems. For a dry cell biologist, this can 
be achieved by engaging an experimentalist collaborator to jointly 
decipher a pattern discovered via mining existing data or, alterna-
tively, by finding independent existing data sets and developing 
new analyses to test the hypotheses from different angles.

After all is said and done, the most influential “carrots and 
sticks” toward open data and engaging scientists with solid com-
putational background in cell biology are in the hands of journals 
and funding agencies. Similarly to the omics fields, they should 
become more involved: funders should require the sharing of cell 
image data, and journals must enforce public dissemination to en-
sure reproducibility. Funding agencies should promote collabora-
tive projects, fund software solutions for cell imaging big data, and 
explicitly support maintenance of such projects and experts in 
high-performance computing and software engineering (Cardona 
and Tomancak, 2012; Prins, De Ligt, et al., 2015). New multidisci-
plinary education and training programs must be established to 
bridge the technical and cultural gap between the disciplines 
(Meijering et al., 2016).

NOW IS THE TIME!
New techniques in genome engineering and microscopy facilitate 
the generation of high-content cell image data. At the same time, 
cell biology is advancing to more physiologically relevant and com-
plex systems. Together, the content and complexity of this new gen-
eration of cell image data are making visual assessment impossible. 
Data scientists are needed to develop tools to quantify these data 
and decipher the complex patterns that are encapsulated in them. 
One key step toward engaging scientists from a computational 
background to cell biology is to open data. These issues were dis-
cussed in a special interest subgroup that I organized last year at 
the American Society for Cell Biology (ASCB)|EMBO annual meet-
ing (https://assafzar.wixsite.com/ascb2017-subgroup), during which 
three key components were highlighted (Figure 2): 1) changing cul-
tural barriers regarding sharing primary research data, rewarding 
depositors, recognition of results derived by secondary analysis 
and scientists who specialize in it, and improving communication 

between the fields; 2) building infrastructure to enable easy data 
deposition and mining: repositories, standardized data formats, 
APIs and visualization tools; and 3) developing new computational 
methods to deal with the inherent complexity and variability of 
these data. Although many encouraging signs suggest that the 
field is moving in this direction, there are still plenty of challenges 
ahead. Cell image data science is expected to face similar compu-
tational challenges to those of other “big data” fields, such as 
genomics, experience in data acquisition, storage, distribution, and 
analysis (Stephens et  al., 2015). Exciting times lie ahead of us—
come and join in!
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