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Genome‑wide screening for differentially 
methylated long noncoding RNAs identifies 
LIFR‑AS1 as an epigenetically regulated lncRNA 
that inhibits the progression of colorectal 
cancer
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Abstract 

Background:  Aberrant DNA methylation is an epigenetic marker that has been linked to the pathogenesis of 
colorectal cancer (CRC). Long noncoding RNAs (lncRNAs) have been increasingly identified to be associated with 
tumorigenic processes of CRC. Identifying epigenetically dysregulated lncRNAs and characterizing their effects during 
carcinogenesis are focuses of cancer research.

Methods:  Differentially methylated loci and expressed lncRNAs were identified by integrating DNA methylome and 
transcriptome analyses using The Cancer Genome Atlas database. Bisulfite sequencing PCR (BSP) was performed to 
analyze LIFR-AS1 promoter methylation status. The functional roles of LIFR-AS1 in CRC were determined by in vitro 
and in vivo experiments.

Results:  We identified a novel hypermethylated lncRNA, LIFR-AS1, that was downregulated and associated with 
tumorigenesis, metastasis, and poor prognosis in CRC. High methylation burden of LIFR-AS1 indicated a poor survival 
of CRC patients. Promoter hypermethylation of LIFR-AS1 in tumor tissues was confirmed by BSP. Functional assays 
revealed that LIFR-AS1 could competitively bind to hsa-miR-29b-3p, and repressed colon cancer cell proliferation, 
colony formation and invasion. LIFR-AS1 also inhibited tumor growth in a mouse xenograft model of CRC.

Conclusions:  Our results showed that the identified DNA methylation-dysregulated lncRNAs may be potential bio-
markers and highlighted a role for LIFR-AS1 as a tumor suppressor in CRC.
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Introduction
Colorectal cancer (CRC) is the third most common 
malignancy and the second highest cancer-related cause 
of death in the world [1]. CRC is caused by the accumu-
lation of multiple genetic and epigenetic alterations in 
the genome [2, 3]. Over the past decade, research has 
focused on better understanding of cancer epigenet-
ics, particularly regarding aberrant DNA methylation, 
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microRNA and long noncoding RNA (lncRNA) deregu-
lation, to identify prognostic and predictive factors for 
cancer [3]. DNA methylation is a reversible and regula-
tory modification, and changes in DNA methylation can 
occur in the early stage of cancer development. DNA 
methylation has also been shown to be a candidate bio-
marker in cancer [4]. For example, SEPT9 gene methyla-
tion has been implicated as a biomarker for predicting 
CRC [5]. Methylated SEPT9 gene in serum is closely 
related to the advanced stage of CRC [6]. Increasing stud-
ies have revealed cancer-linked aberrant methylation of 
protein-coding gene promoters. However, the genome-
wide identification of differential DNA methylation and 
expression of lncRNAs with functional importance in 
CRC is still lacking.

LncRNAs are crucial regulators at the transcrip-
tional and post-transcriptional levels and are involved 
in diverse biological functions [7]. Aberrant lncRNA 
expression in cancers can be caused by alteration of epi-
genetic patterns, such as changes in DNA methylation. 
For instance, Lin et al. reported that lncRNA DLX6-AS1 
hypermethylation was present in colorectal neoplasms at 
all stages and increased during colorectal carcinogenesis 
[8]. Hypermethylation of DLX6-AS1 was also detected 
in cell-free DNA samples from CRC patients. Mamivand 
et  al. identified an epigenetically deregulated lncRNA 
OBI1-AS1 with decreased expression in glioblastoma 
multiforme. Hi-C and ChIP-Seq analysis showed that 
methylation of the CTCF binding site blocked the expres-
sion of OBI1-AS1 by influencing chromatin interactions 
[9]. LncRNAs also function as a scaffold for the recruit-
ment of chromatin modifiers to target promoters. In 
CRC cells, linc00337 recruited DNA methyltransferase 1 
(DNMT1) to the promoter region of CNN1 and restricted 
its transcription, promoting tumor growth and angio-
genesis [10]. DNA methylation aberrations in cancer 
and the crosstalk with lncRNAs are research hotspots. 
The availability of high-throughput sequencing technol-
ogy has facilitated the exploration of epigenetic changes 
across the genome. Therefore, here we used a reannota-
tion strategy to construct the DNA methylation profile of 
lncRNAs in CRC. In this study, we screened and identi-
fied methylation-driven differentially expressed lncRNAs 
in CRC, with the aim of improving diagnosis and person-
alized treatment of CRC patients.

Methods
Data and patient selection
The DNA methylation array data (Illumina Infinium 
Human Methylation 450 BeadChip) and level 3 RNA-
sequencing data (HTSeq-Counts and HTSeq-FPKM-UQ) 
along with clinicopathological information were down-
loaded from the UCSC Xena browser (https://​xenab​

rowser.​net/). Level 3 miRNA-seq data were obtained 
through TCGA Genomic Data Commons portal (GDC). 
We also downloaded RNA sequencing data of CRC from 
the Gene Expression Omnibus (GEO, www.​ncbi.​nlm.​
nih.​gov/​geo) database (GSE156451). An in-house data-
set including 92 CRC tissues and 43 normal tissues from 
patients who underwent surgery at Nanjing Drum Tower 
Hospital (The Affiliated Hospital of Nanjing University 
Medical School, Nanjing, China) was also used for analy-
sis. All patients were pathologically diagnosed with colon 
adenocarcinoma following the American Joint Commit-
tee on Cancer’s criteria. None of the patients received 
preoperative chemotherapy or radiotherapy. The adja-
cent normal tissues were collected > 5 cm from the tumor 
margins. All patients provided written informed consent, 
and this study was approved by the Research Ethics Com-
mittee of Nanjing Drum Tower Hospital.

Integrated analysis of DNA methylation and lncRNA 
expression
To identify differentially expressed lncRNAs, RNA-seq 
read count tables mapped on the hg38 human genome 
with GENCODE v22 as gene annotation were imported 
into three statistically-based expression analysis tools 
(edgeR [11], limma [12], and DESeq2 [13]). Differentially 
methylated CpG sites between CRC samples and adja-
cent tissues were identified using the “minfi” package. 
Conjoint analysis of the methylome and transcriptome 
of lncRNAs was performed as previously described [14]. 
Briefly, the genomic coordinates of each CpG site and 
individual lncRNA were extracted from hm450.hg38.
manifest and GENCODE v22 files, respectively [14]. We 
combined both information using the above genomic 
location, taking the differentially methylated loci within 
promoter regions (DNA sequences between −2500 and 
1000  bp relative to the putative transcription start site) 
into account.

Bisulfite sequencing PCR (BSP)
Cellular genomic DNA was isolated from fresh frozen 
tissues using the Genomic DNA extraction kit (TIAN-
amp Genomic DNA Kit, DP304). The purified DNA was 
bisulfite-treated using the EpiTect Fast DNA Bisulfite 
Kit (Qiagen) following the manufacturer’s protocol. The 
bisulfite-modified promoter regions were amplified by 
BSP primers (forward primer: GGA​GGA​AAA​ATT​TTA​
TTT​TAT​TAA​GA, reverse primer: ACC​RAA​CCC​AAA​
CAA​ATC​CTC). Amplified sequences were cloned into 
the pMD18-T vector and sequenced. The sequencing 
results were compared to the original sequence using the 
QUMA website (http://​quma.​cdb.​riken.​jp/). To deter-
mine the methylation rate, 10 clones were required for 
each sample.

https://xenabrowser.net/
https://xenabrowser.net/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://quma.cdb.riken.jp/
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Reverse transcription quantitative polymerase chain 
reaction (RT‑qPCR)
Total RNA was extracted from tissues or cells using 
TRIzol reagent (Invitrogen, USA), and reverse tran-
scription was conducted with the Primescript RT Rea-
gent Kit (TaKaRa, Japan) following company protocols. 
RT-qPCR was performed on the 7900 Real-Time PCR 
System (Applied Biosystems, USA) using the SYBR 
Premix Ex Taq Kit (TaKaRa, China). The primers used 
for amplification were as follows: F: 5′- AAG​TTT​CAG​
GCT​CCT​GAC​AGC -3′ and R: 5′- TTC​GCC​CAC​GTT​
CTT​CTC​GC -3′ for LIFR-AS1, F: 5′- TGG​AAC​GAC​
AGG​GGT​TCA​GT -3′ and R: 5′- GAG​TTG​TGT​TGT​
GGG​TCA​CTAA -3′ for LIFR, and F: 5′- AGA​AGG​CTG​
GGG​CTC​ATT​TG -3′ and R: 5′- AGG​GGC​CAT​CCA​
CAG​TCT​TC -3′ for GAPDH.

Cell culture and construction of stable cell lines
The human colon cancer cell lines LOVO, HCT116, 
SW480, SW620, DLD-1, HT-29 and T84 were pur-
chased from the Chinese Academy of Sciences, China. 
Cells were cultured in RPMI 1640 medium (Gibco, 
USA), and supplemented with 10% fetal bovine serum 
(FBS) and 1% penicillin/streptomycin. For overexpres-
sion of LIFR-AS1, the sequence of LIFR-AS1 was syn-
thesized and subcloned into the pcDNA3.1 plasmid. 
HT-29 and T84 cells were transfected with the LIFR-
AS1 expression plasmid (oe-LIFR-AS1) or the empty 
vector (NC) as control using Lipofectamine 3000 
(Invitrogen, USA). Overexpression was evaluated by 
RT-qPCR.

Luciferase reporter gene assay
Amplification of cDNA fragments of LIFR-AS1 wild 
type (WT) and mutant (MUT) containing binding sites 
of hsa-miR-29b-3p were cloned into a psiCHECK-2 
vector (Promega, USA). The LIFR-AS1_WT vector or 
LIFR-AS1_MUT vector and hsa-miR-29b-3p mimics 
were co-transfected into HT-29 and T84 cells by Lipo-
fectamine 3000 (Invitrogen, USA). After 24  h of cul-
ture, the luciferase intensity was assessed by Promega 
Dual-Luciferase Reporter Assay System.

Colony formation, cell viability and invasion assays
For colony formation assays, approximately 1 × 103 
cells in DMEM medium supplemented with 10% FBS 
were cultured at 37 °C and 5% CO2 for two weeks. Cell 
colonies were photographed and counted.

For CCK-8 assays, transfected cells were plated into 
96-well plates (approximately 1 × 104/well) and incubated 
with CCK-8 solution (Dojindo, Japan) for 1  h at 37  °C. 
The optical density value at 450 nm was measured.

For invasion assays, cells at a density of 1 × 105 cells/
ml were seeded in the upper chambers of 24-well 
transwell systems (Corning, USA) coated with a poly-
carbonate membrane, and 600  ml DMEM medium 
containing 15% FBS was added into the lower cham-
ber. Cells were cultured for 24 h. After removing non-
invading cells, the remaining cells were fixed with 4% 
paraformaldehyde and stained with 0.1% crystal violet 
(Beyotime, China) at room temperature for 30  min. 
The invaded cells were counted under five randomly 
selected views using a phase-contrast microscope 
(Nikon, Tokyo, Japan).

Xenograft tumor model
Transfected HT-29 cells (1 × 107/ml) were injected 
into 6-week-old female BALB/C nude mice. Tumor 
growth (determined by measuring length and width) 
was monitored and recorded. Tumor volume was calcu-
lated by the formula (length × width2 × 1/2). The mice 
were euthanized after 4  weeks, and the tumors were 
extracted and analyzed. This study was approved by 
the Animal Ethics Committee of Experimental Animal 
Center of Nanjing Drum Tower Hospital.

Bioinformatics analysis
The R package ClusterProfiler was used to perform 
Gene Set Enrichment Analysis (GSEA) and plot the 
results [15]. The input data was ranking metric using 
the value of log2 (Fold Change) calculated by “DESeq2” 
package. The reference gene sets were retrieved from 
the C2 collection in the Molecular Signatures Database. 
Single-cell RNA-sequencing (scRNA-seq) data for CRC 
(GSE144735) were obtained from the GEO database 
[16]. Seurat package was used for downstream analysis, 
and the t-SNE algorithm was used for nonlinear dimen-
sion reduction of the scRNA-seq data [17].

Statistical analysis
The Student’s t test or Mann–Whitney test (for con-
tinuous variables) and Pearson’s χ2 test (for categorical 
variables) were used to examine differences between 
two groups. Kaplan–Meier method and log-rank test 
were employed to evaluate gene expression or meth-
ylation level on the survival of patients. Multivariate 
Cox regression analysis was used to estimate adjusted 
hazard ratios and 95% confidence intervals for LIFR-
AS1 expression. All statistical analysis was conducted 
on R programming language v4.1.2, and two-sided and 
P < 0.05 was defined as statistically significant.
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Results
Integrative analysis of differential methylation and lncRNA 
expression data in CRC​
We first performed differential expression analysis for 
lncRNAs using RNA-seq data of 471 primary colon 
tumors and 41 normal tissues from The Cancer Genome 
Atlas (TCGA). Using three algorithms (edgeR, limma and 
DESeq2), a total of 1137 lncRNAs (825 upregulated lncR-
NAs and 312 downregulated lncRNAs) were identified 
using the criteria of false discovery rate (FDR) < 0.05 and 
absolute fold change (FC) ≥ 2 (Fig.  1A, B). Long inter-
genic noncoding RNAs (lincRNAs) accounted for most 
(45.03%) of all differentially expressed lncRNAs, fol-
lowed by antisense transcripts (36.59%) (Additional file 1: 
Fig. S1).

To explore the DNA methylation pattern of lncRNAs 
in CRC, we then compared the differentially methylated 
CpG sites in 309 tumor and 38 normal tissues. A total of 
16,266 CpG sites with FDR < 0.05 were obtained in the 
promoters of lncRNAs (Fig.  1C). We further identified 

432 differentially methylated regions from the follow-
ing parameters: resamples = 100, cut-off = 0.2, and probe 
number ≥ 2. These two omics data (methylome and tran-
scriptome) were combined for further analysis. By associ-
ating the 16,266 CpG sites to 1137 lncRNAs, 276 pairs of 
methylation-driven lncRNAs were identified (Additional 
file 2: Table S1). The top five hypermethylated lncRNAs 
(BVES-AS1, ZNF582-AS1, FGF14-AS2, NOVA1-AS1 
and LIFR-AS1) and top five hypomethylated lncRNAs 
(AC017002.2, LINC00152, RP1-140K8.5, LINC00460 and 
RP11-474D1.4) in CRC are shown in Fig. 1D.

Downregulation of LIFR‑AS1 in CRC and its functional 
characteristics
The highest levels of methylation were observed in 
LIFR-AS1. Therefore, we performed further analy-
sis to explore its biological function. Ten CpG sites in 
the LIFR-AS1 promoter (cg05923785, cg08392199, 
cg12587766, cg20699036, cg18174928, cg03723506, 
cg12602374, cg11841722, cg18848688 and cg01369082) 
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Fig. 1  Conjoint analysis of the methylome and transcriptome of lncRNAs in CRC. A Volcano plot of differentially expressed lncRNAs between 
tumors and normal tissues. B Venn diagram displaying the overlap of lncRNAs identified using three algorithms (edgeR, limma and DESeq2). C 
Manhattan plot of CpG sites in the promoter regions of lncRNA genes; dots above the blue line indicate CpG sites with P value < 0.05. D Heatmap 
of top five up- and downregulated lncRNAs between tumors and normal tissues and the hierarchical clustering heat map of 10 lncRNA-related CpG 
sites. Color scale represents the relative expression level or methylation level for each lncRNA
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were significantly correlated with LIFR-AS1 expression 
via MEXPRESS (correlation coefficients from − 0.159 
to − 0.246, Fig.  2A, Additional file  3: Fig.  S2). Colon 
tumors exhibited significantly higher levels of hyper-
methylation compared with normal tissues (Fig.  2B). 
Among the above 10 CpG sites, cg12587766 showed 
prominent methylation with a mean delta beta value 
of 0.559. Kaplan–Meier curves showed that four CpG 
sites (cg12587766, cg18174928, cg12602374, and 
cg18848688) were associated with the overall 5-year 
relative survival rate of CRC patients, which indicated 
that high methylation burden group had significantly 
poor survival (Fig. 2C).

LIFR-AS1 is located on chromosome 5 (38,556,786–
38,671,216) and encodes two different transcripts: 
NR_103554.1 is 3386  bp in length with nine exons and 
NR_103553.1 is 3803  bp in length and contains three 
exons. RNA-seq is widely used for transcript quantifi-
cation of gene isoforms. We used RNA expression data 
available from GSE156451 to identify the products tran-
scribed from this locus in CRC [18]. Consistent with 
our previous results, the expression of LIFR-AS1 was 
downregulated in CRC (Fig.  3A). As shown in Fig.  3B, 
most aligned reads were mapped within the exons in 
NR_103554.1. We thus chose this sequence for further 
analysis.
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Fig. 2  Association of LIFR-AS1 methylation and clinical characteristics in CRC using TCGA database. A The relationship between LIFR-AS1 
methylation and its expression using MEXPRESS. B LIFR-AS1 promoter hypermethylation in CRC tumors compared with normal tissues. C 
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We ranked 18,524 genes from CRC samples in the 
TCGA dataset by their relative LIFR-AS1 expression in 
the top 10th percentile vs. the bottom 10th percentile for 
GSEA. The “MIKKELSEN_IPS_ICP_WITH_H3K4ME3_
AND_H327ME3”, “NABA_CORE_MATRISOME” and 
“SABATES_COLORECTAL_ADENOMA_DN” sets were 
enriched in the LIFR-AS1 high expression group, which 
implied that this lncRNA might be involved in colorectal 

carcinogenesis (Fig. 3C). Using the threshold selection of 
absolute correlation coefficient > 0.1 and P value < 0.05, 
we found that 7681 genes were positively correlated and 
3387 genes were negatively correlated with the expres-
sion of LIFR-AS1 (Fig.  3D). As scRNA-seq technology 
could not detect the expression of LIFR-AS1, we then 
investigated the expression of LIFR-AS1-related genes 
(LIFR, EDIL3, EPHA3, MRPS5, LETM1 and SNRPF) in 

0.0

0.1

0.2

0.3

0.4

0.5

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re MIKKELSEN_IPS_ICP_WITH_H3K4ME3_AND_H327ME3

NABA_CORE_MATRISOME

SABATES_COLORECTAL_ADENOMA_DN

0

10

20

5000 10000 15000

Rank in TCGA Dataset

R
an

ke
d 

lis
t m

et
ric

High LIFR-AS1 expression                Low LIFR-AS1 expression

LIFREDIL3
EPHA3

MRPS5
LETM1
SNRPF

0

10

20

30

−0.2 0.0 0.2 0.4
Correlation Coefficient

-L
og

10
(P

 v
al

ue
)

tSNE_1

tS
N

E_
2

Tumor
Normal

−40

−20

0

20

−20 0 20 40
tSNE_1

tS
N

E_
2

0.0

0.5

1.0

1.5

2.0

EDIL3

−40

−20

0

20

−20 0 20 40
tSNE_1

tS
N

E_
2

0.0

0.5

1.0

1.5

2.0

LETM1

−40

−20

0

20

−20 0 20 40
tSNE_1

tS
N

E_
2

0

1

2

3

SNRPF

A B

DC

chr5:38,556,786-38,671,216

N
or

m
al

Tu
m

or
LIFR-AS1

LOC105374735

tumor normal
0.0

0.1

0.2

0.3

0.5

1.0

1.5 ****

LI
FR

-A
S1

  r
el

at
iv

e 
ex

pr
es

si
on

 (F
PK

M
)

E

F

GSE156451

NR_103554.1NR_103553.1

Fig. 3  Functional annotation for the differentially expressed lncRNA LIFR-AS1. A The expression of LIFR-AS1 between CRC tumors and normal 
tissues in the GSE156451 dataset. B Representative RNA-sequencing results of mapped reads for two LIFR-AS1 isoforms in the GSE156451 dataset. 
C Gene set enrichment analysis of LIFR-AS1 in The Cancer Genome Atlas (TCGA) dataset. D Volcano map shows the co-expression genes associated 
with LIFR-AS1 expression in TCGA dataset. E The t-distributed stochastic neighbor embedding (t-SNE) plot of epithelial cells from CRC in the KUL3 
dataset. F The t-SNE plots color-coded (gray to blue) to represent the expression levels of EDIL3, LETM1 and SNRPF
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1678 epithelial cells from CRC (Fig.  3E). Interestingly, 
despite a low level of expression overall, EDIL3 was highly 
expressed in normal epithelial cells compared with CRC 
cells. In addition, elevated levels of LETM1 and SNRPF 
were detected in malignant epithelial cells (Fig. 3F).

The LIFR-AS1 sequence overlaps with the LIFR gene 
(Fig.  4A). LIFR was downregulated in CRC tumors 
compared with paired normal tissues in TCGA dataset 
(Fig.  4B). Both TCGA and GSE156451 databases analy-
ses showed that the expression level of LIFR-AS1 in CRC 
tissues was positively correlated with LIFR expression 
(Fig.  4C). The 10 CpG sites were also negatively corre-
lated with the expression of LIFR (correlation coefficients 
from − 0.020 to − 0.385, Fig.  4D). However, overexpres-
sion of lncRNA LIFR-AS1 did not affect the mRNA level 
of LIFR in colon cancer cells (Fig. 4E). Analysis of scRNA-
seq data revealed that LIFR was markedly increased in 
stromal cells and its expression was apparent in epithelial 
cells (Fig. 4F).

LIFR-AS1 also harbors a microRNA, miR-3650, that is 
transcribed in an antisense orientation. We speculated 
whether miR-3650 suppressed LIFR; whereas miR-3650 
was not detected in CRC (Fig. 4G). Based on the differen-
tial analysis by the Wilcoxon test, we identified 517 miR-
NAs (202 upregulated miRNAs and 315 downregulated 
miRNAs) as significantly differentially expressed in CRC 
tissue compared with the normal samples in TCGA data-
base (Additional file  4: Fig.  S3). Then the downstream 
upregulated miRNAs targeted by LIFR-AS1 in CRC were 
determined using StarBase [19]. Correlation analysis 
showed that the expression levels of six target miRNAs 
(hsa-miR-30b-5p, hsa-miR-30e-5p, hsa-miR-4677-3p, 
hsa-miR-374b-5p, hsa-miR-29b-3p and hsa-miR-144-3p) 
were negatively correlated with LIFR-AS1 (Fig. 4H, Addi-
tional file 5: Fig. S4). We selected the most significantly 
associated miRNA (hsa-miR-29b-3p) into the further 
study. As expected, hsa-miR-29b-3p mimic prominently 
decreased luciferase activity in LIFR-AS1_WT group in 
comparison with LIFR-AS1_MUT group in both HT-29 
and T84 cell lines, which indicated that hsa-miR-29b-3p 
is a target of lncRNA LIFR-AS1 (Fig. 4I).

Validation of the hypermethylation status for LIFR‑AS1
The CpG island and 33 CpG sites were also predicted 
by MethPrimer (Fig.  5A). Therefore, the BSP approach 
was applied to determine the methylation status of the 

LIFR-AS1 promoter region in 18 colorectal tumor tissues 
and adjacent normal tissues (Fig.  5B, C). We observed 
markedly elevated average DNA methylation levels with 
a mean of 36.1% in CRC specimens compared with 5.5% 
in paired adjacent normal tissues. Consistent with our 
bioinformatic analysis, the LIFR-AS1 promoter region 
was significantly hypermethylated (P < 0.001, Fig. 5D). To 
determine the diagnostic potential of LIFR-AS1 promoter 
methylation status, ROC curve analysis was performed. 
The optimal cut-off of LIFR-AS1 promoter methylation 
(12.3%) was defined by maximizing the Youden index 
(sensitivity + specificity − 1). This cut-off discriminated 
between CRC and normal tissues with a sensitivity of 
77.8%, a specificity of 88.9%, and an area under the curve 
(AUC) value of 0.872 (Fig.  5E). Moreover, we found a 
potential correlation between DNA methylation in the 
promoter region of LIFR-AS1 and LIFR with their mRNA 
expression, respectively (Fig. 5F).

LIFR‑AS1 is clinically relevant in CRC​
We measured LIFR-AS1 expression in our cohort of 
43 tumor and paired adjacent normal tissues using RT-
qPCR. The 2 − ΔΔCT method was used to calculate FC for 
LIFR-AS1 compared with the internal control GAPDH 
mRNA. LIFR-AS1 was downregulated in CRC compared 
with normal tissues (FC = − 1.50, P = 0.008, Fig. 6A). We 
also found that LIFR-AS1 expression positively correlated 
with TNM stage and lymph node metastasis in 92 CRC 
patients (Fig.  6B). Moreover, forest plot from multivari-
ate regression analysis demonstrated that high LIFR-AS1 
related to increased overall survival (P < 0.05, Fig.  6C). 
Kaplan–Meier analysis revealed poor survival for patients 
with low expression of LIFR-AS1 compared with patients 
with high expression of LIFR-AS1 (P = 0.010, Fig.  6D). 
Thus, these findings suggest that LIFR-AS1 might be an 
independent predictor of CRC aggressiveness.

LIFR‑AS1 is a novel tumor suppressor lncRNA in CRC​
We next investigated the potential roles of LIFR-AS1 in 
CRC in  vitro and in  vivo. RT-qPCR demonstrated that 
the expression of LIFR-AS1 in colon cancer cells (HT-
29 and T84) was appreciably lower than that in other 
cells (LOVO, HCT116, SW480, SW620 and DLD-1) 
(Fig. 7A). We thus chose HT-29 and T84 cells for further 
analysis and overexpressed LIFR-AS1 using oe-LIFR-
AS1 (Fig. 7B). Both HT-29 and T84 cells overexpressing 

Fig. 4  The features of LIFR-AS1 and neighboring genes in CRC. A The position of LIFR-AS1 and neighboring genes (LIFR and miR-3650) annotated 
in GRCh38. B The expression of LIFR in 41 matched normal and tumor CRC samples from TCGA. C Correlation analysis between LIFR-AS1 and 
LIFR expression in GSE156451 and TCGA datasets. D Correlations between LIFR expression and methylation level of CpG loci located in LIFR-AS1 
promoter region. E Expression levels of LIFR in LIFR-AS1 overexpression cells using qRT-PCR analysis. F The expression of LIFR in t-SNE plots colored 
by cell cluster. G The expression of miR-3650 in CRC samples from TCGA. H The transcriptional regulatory network showing the target genes of 
LIFR-AS1. Color represents the P value. I Luciferase activities of LIFR-AS1_WT and LIFR-AS1_MUT with or without transfection of hsa-miR-29b-3p

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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LIFR-AS1 displayed lower cell viabilities than the respec-
tive control cells (Fig. 7C). Stable overexpression of LIFR-
AS1 induced a significant decrease in colony formation 
and cell invasion (Fig.  7D, E). To confirm the above 
observed phenotype, xenograft mouse models were 
established. The results showed that overexpression in 
LIFR-AS1 cells decreased the average volume and weight 
of tumors (Fig.  7F–H). Together, these findings indicate 
that LIFR-AS1 functions as a tumor suppressor in CRC.

Discussion
Recent multi-omics analysis has demonstrated that can-
cer involves a complex regulatory network that harbors 
both genetic and epigenetic abnormalities, contribut-
ing to escape from chemotherapy and host immune 
surveillance [20, 21]. Advances in high-throughput 
sequencing technologies have led to the identification of 
individual molecular heterogeneity. Epigenetics including 
DNA methylation and histone modifications are a new 
research focus in cancer [22]. Methylation features were 
found to be closely linked to CRC patient prognosis. For 
example, methylation levels in the intragenic regions of 
oncogenes (PDX1, EN2, and MSX1) levels could predict 
CRC patient prognosis [23]. In this study, we performed 
an integrated methylome and transcriptome analysis to 
identify potential lncRNAs regulated by aberrant DNA 
methylation in CRC. By precisely mapping altered DNA 
methylation to the promoter regions of lncRNAs, 276 
epigenetically deregulated lncRNAs in CRC were identi-
fied. To confirm the accuracy of the approach, BSP assay 
was performed, and the results showed high methyla-
tion status of LIFR-AS1 promoter region. Four CpG sites 
(cg12587766, cg18174928, cg12602374 and cg18848688) 
and the expression of LIFR-AS1 were related to the prog-
nosis of CRC. Overexpression of LIFR-AS1 was shown 
to remarkably suppress colon cancer cell proliferation, 
growth and invasion in vitro and in vivo.

LIFR-AS1 is located on chromosome 5p13.1 and tran-
scribed in an antisense manner from the LIFR gene. 
Several human solid tumors have been shown to exhibit 
aberrant expression of LIFR-AS1 [24–26]. Liu et  al. 
found that LIFR-AS1 and miR-29a negatively regu-
lated each other through direct binding in PDT-treated 
HCT116 cells [24]. LIFR-AS1 knockdown reduced the 
effect of PDT on proliferation and apoptosis of CRC 

cells, implying that LIFR-AS1 may act as a tumor sup-
pressor via interacting with miR-29a. Pan et al. observed 
that the expression levels of LIFR-AS1 were significantly 
increased in gastric tumor tissues and cells compared 
with normal adjacent tissue samples and GSE1 cells [26]. 
LIFR-AS1 modulates COL1A2 to promote gastric can-
cer cell proliferation and migration by miR-29a-3p. Chen 
et al. reported that METTL3-mediated m6A hyper-meth-
ylation induced the upregulation of LIFR-AS1 in pan-
creatic cancer by enhancing METTL3 mRNA stability, 
resulting in increased expression of VEGFA by directly 
interacting with miR-150-5p [25]. LIFR-AS1 has been 
shown to act as a sponge for miR-942-5p in lung cancer 
[27], for miR-29a in CRC [24] and osteosarcoma [28], for 
miR-31-5p in thyroid carcinoma [29], for miR-4262 in 
glioma [30], for miRNA-150-5p in pancreatic cancer [25], 
for miR-197-3p in breast cancer [31], and for miR-29a-3p 
[26] and miR-4698 [32] in gastric cancer. These results 
prompted us to investigate the ceRNA function of LIFR-
AS in CRC. Interestingly, we found that LIFR-AS1 could 
interact with hsa-miR-29b-3p through luciferase reporter 
gene in colon cancer cells.

Considering the heterogeneity of LIFR-AS1 in cancers, 
we performed scRNA-seq on CRC and non-tumor cells of 
the single-cell expression to characterize the functional role 
of LFIR-AS1 indirectly. Intriguing, SNRPF, which is nega-
tively linked to LIFR-AS1, was highly expressed in CRC 
cells. A previous study showed that SNRPN was highly 
expressed in CRC tissues and high SNRPN expression indi-
cated a poor prognosis [33]. Additionally, the GSEA-mined 
“Genes downregulated in colorectal adenoma compared 
to normal mucosa samples” gene set was related to LIFR-
AS1. Colorectal adenomas are often precursor lesions of 
CRC. These phenomena suggested LIFR-AS1 is an impor-
tant tumor-suppressive lncRNA during carcinogenesis. A 
strong association was observed between LIFR-AS1 and 
LIFR in CRC, whereas LIFR expression was not detected in 
epithelial cells. Rockman et  al. demonstrated that colonic 
epithelial cells express LIF protein but not LIFR. Con-
versely, pericryptal fibroblasts express LIFR but not LIF 
protein [34]. This is consistent with the results of scRNA-
analysis in detecting LIFR expression in stromal cells. 
Meanwhile, overexpression of LIFR-AS1 did not affect the 
expression of LIFR in colon cancer cells. Differences in tis-
sue distribution led to little biological correlation between 

(See figure on next page.)
Fig. 5  The LIFR-AS1 promoter region is hypermethylated in CRC. A MethPrimer predicted potential CpG islands (blue region) and depicted CpG 
sites (red vertical line and bar chart) within the LIFR-AS1 promoter region. B Bisulfite sequencing PCR (BSP) showed that a CpG site at position 16 
was methylated in tumors. C BSP was used to detect the methylation status of LIFR-AS1 in tumors and paired adjacent normal tissues. D Results of 
BSP detection of the methylation status of the LIFR-AS1 promoter region using 18 colorectal cancers and paired adjacent normal tissues. E Receiver 
operating characteristic curve showing the profiles of sensitivity and specificity of the methylation status to distinguish colorectal cancers from 
normal tissues. F LIFR-AS1 and LIFR mRNA expression levels were significantly lower in hypermethylated groups compared to hypomethylated 
groups
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LIFR-AS1 and LIFR. As a result, the displayed relationship 
between LIFR-AS1 and LIFR might due to the methylation 
status in the promoter region.

Methylation of cytosines in the human genome is a 
critical epigenetic modification that functions in tran-
scriptional silencing [35]. DNA methylation regu-
lates tissue-specific gene expression [36]. However, the 
genome-wide identification of abnormal DNA methyla-
tion in a specific lncRNA region with functional impor-
tance is lacking. In this study, we found hypermethylation 
of a CpG island located in the promoter region of the 
tumor suppressor gene LIFR-AS1 that enhanced can-
cer progression. The methylation level of LIFR-AS1 had 
high sensitivity and specificity for the diagnosis of CRC. 
Recent studies indicate that aberrant DNA methylation 
is an early and frequent event in carcinogenesis [37]. We 
found that early CRC tumors had high levels of LIFR-AS1 
methylation, and four CpG sites were associated with 

prognosis. Detection of the methylation level of LIFR-
AS1 might be a promising biomarker for CRC screening.

Combining bioinformatic analysis and experimental 
verification, our research highlighted the role of LIFR-
AS1 in the progression of CRC. However, our study has 
several limitations. First, conjoint analysis identified a 
series of methylation-driven lncRNAs, and we only chose 
LIFR-AS1 for validation. Second, LIFR-AS1 appeared to 
play a significant role in determining the developing of 
colon cancer both in vitro and in vivo, and recent stud-
ies reported that LIFR-AS1 could interact with other 
molecules in multiple cancers. Thus, LIFR-AS1 may 
be involved in other cancers in addition to CRC. Third, 
whether the methylation status of LIFR-AS1 functions 
as an independent diagnostic and prognostic marker 
for CRC remains to be investigated and requires clini-
cal multicenter studies with larger samples to confirm 
our findings. Fourth, the FC in LIFR-AS1 overexpression 
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experiments was much higher than that in RNA-seq or 
our validation cohort and might not reflect changes in 
the human body.

In conclusion, by using integrative analysis and 
molecular experiments, we revealed that the promoter 
region of LIFR-AS1 was hypermethylated in CRC and 
was negatively associated with the expression of LIFR-
AS1. Furthermore, LIFR-AS1 was correlated with poor 
outcome of CRC patients and repressed tumor cell 
growth and metastasis. Overall, our results indicate that 
aberrant DNA methylation mediates downregulation of 
LIFR-AS1 to promote the progression of colon cancer.
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Additional file 5: Figure S4. Prediction of 6 miRNAs (miR-29b-3p, miR-
4677-3p, miR-144-3p, miR-30b-5p, miR-30e-5p and miR-374b-5p) target-
ing LIFR-AS1 in CRC.
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