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Abstract

Aim

Proteomics has the potential to enhance early identification of beta-cell dysfunction, in con-

junction with monitoring the various stages of type 2 diabetes onset. The most routine

method of assessing pancreatic beta-cell function is an oral glucose tolerance test, however

this method is time consuming and carries a participant burden. The objectives of this

research were to identify protein signatures and pathways related to pancreatic beta-cell

function in fasting blood samples.

Methods

Beta-cell function measures were calculated for MECHE study participants who completed

an oral glucose tolerance test and had proteomic data (n = 100). Information on 1,129 pro-

tein levels was obtained using the SOMAscan assay. Receiver operating characteristic

curves were used to assess discriminatory ability of proteins of interest. Subsequent in vitro

experiments were performed using the BRIN-BD11 pancreatic beta-cell line. Replication of

findings were achieved in a second human cohort where possible.

Results

Twenty-two proteins measured by aptamer technology were significantly associated with

beta-cell function/HOMA-IR while 17 proteins were significantly associated with the disposi-

tion index (p� 0.01). Receiver operator characteristic curves determined the protein panels

to have excellent discrimination between low and high beta-cell function. Linear regression

analysis determined that beta-endorphin and IL-17F have strong associations with beta-cell

function/HOMA-IR, β = 0.039 (p = 0.005) and β = -0.027 (p = 0.013) respectively.
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Calcineurin and CRTAM were strongly associated with the disposition index (β = 0.005 and

β = 0.005 respectively, p = 0.012). In vitro experiments confirmed that IL-17F modulated

insulin secretion in the BRIN-BD11 cell line, with the lower concentration of 10 ng/mL signifi-

cantly increasing glucose stimulated insulin secretion (p = 0.043).

Conclusions

Early detection of compromised beta-cell function could allow for implementation of nutri-

tional and lifestyle interventions before progression to type 2 diabetes.

Introduction

The prevalence of obesity has escalated dramatically in recent decades, throughout most of the

Western world and much of the developing world [1] with a concomitant increase globally of

the incidence of type 2 diabetes (T2D) [2]. Poor insulin sensitivity with increasing obesity typi-

cally leads to impaired glucose tolerance and pre-diabetes, which is estimated to affect 37% of

the U.S. population [3]. Following the development of insulin resistance, the onset of T2D is

prompted when the remaining functional beta-cells fail to compensate for the increased meta-

bolic needs of the individual [4]. Genome wide association studies revealed that beta-cell mass

and function is determined in part by genetics [5], suggesting that therapies for improving

beta-cell function may be clinically relevant.

Proteomics has the potential to contribute significantly to the fields of nutrition and medi-

cal research [6, 7], with proteomic analysis of plasma and serum having potential to identify

biomarkers of various conditions and diseases, including T2D [8–10]. Cathepsin D, leptin,

interleukin 1 receptor antagonist, tissue plasminogen activator, renin, hepatocyte growth fac-

tor and fatty acid binding protein 4 have been identified as biomarkers of insulin resistance

(HOMA-IR) in two non-diabetic community cohorts (n = 1367) [11]. Retinol binding protein

(RBP4) was increased in fasting plasma samples of individuals with impaired glucose tolerance

(n = 11) compared to healthy controls (n = 44) [12]. Plasminogen activator inhibitor-1 (PAI-

1) was linked to T2D in a number of observational studies, with increased levels of PAI-1 in

individuals with T2D [13, 14].

The identification of protein biomarkers for early detection of decreased beta-cell function

could highlight the requirement for interventions to prevent or postpone T2D progression.

The down-regulation of chaperone proteins and elongation factor 2 have been associated with

high glucose-induced beta-cell dysfunction, and the downregulation of intracellular signalling,

potentially decreasing insulin secretion [15]. Insulin resistance may develop following down-

regulation of proteins involved in the control of insulin synthesis [16]. Studies in FoxO-defi-

cient mice and their controls identified a proteomic signature following a mixed arginine-glu-

cose tolerance test consisting of proteins involved in oxidoreductase activity, neuronal stress,

and clotting, which correlated with the early onset of beta-cell dysfunction in rodents [17]. An

unbiased iTRAQ (isobaric tag for relative and absolute quantification) was performed to assess

the release of plasma proteins in response to a mixed arginine/glucose tolerance test, prior and

post onset of hyperglycaemia, in FoxO-deficient mice and their controls. Firstly, an increase in

plasma proteins regulating the oxidoreductive state was observed in healthy mice, while no

increase was observed in the FoxO knockout mice. Secondly, both SNca and Park7, plasma

proteins which represent neuronal stress, were increased in comparison to a decrease in both

protein concentrations in FoxO knockouts. Lastly, proteins involved in clotting were elevated
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in plasma of FoxO knockout mice, for example Fga, Fgb, Fgg, Vwf, F13A1 and F13B [17]. Five

of the identified proteins were increased before defects in insulin secretion were observed. In

summary, the findings suggest that a reduction in the identified antioxidant proteins is an

early marker of beta-cell dysfunction, however further investigation and confirmation in

humans will be key to validating the proteins as potential biomarkers of beta-cell dysfunction.

In summary, proteomics in the study of pancreatic beta-cell function has potential to

enhance early detection of reduced beta-cell function and monitor T2D onset. The current

paper represents a subsequent step in the investigation of factors related to beta-cell function,

using a proteomics dataset containing information on 1,129 protein levels [18]. The most

routine method of assessing pancreatic beta-cell function is the oral glucose tolerance test

(OGTT), however this method is time consuming and is burdensome for the participant. A

single ideal biomarker may not exist for assessment of beta-cell function, therefore evaluat-

ing a panel of multiple biomarkers, preferably from a single fasting blood sample, may be

required. The objectives of this study are to identify protein signatures and pathways related

to pancreatic beta-cell function in fasting blood samples and confirm findings where

possible.

Materials and methods

Study population and design

This research uses data and samples from the Metabolic Challenge Study (MECHE),

which is part of a national research project by the Joint Irish Nutrigenomics Organisation

(JINGO: www.ucd.ie/jingo/). The MECHE study recruited 214 healthy participants aged

between 18–60 y and individuals were informed about the purpose of the study and the

experimental procedures which would be involved, prior to giving written consent. Good

health was defined as the absence of any known chronic or infectious disease and this was

verified by a number of fasting blood tests. Details of the study have been published else-

where [19–22]. Ethical approval was obtained from the Research Ethics Committees

in University College Dublin (LS-08-43-Gibney-Ryan) and the study was performed accord-

ing to the Declaration of Helsinki. The study was registered at clinicaltrials.gov under

NCT01172951.

Baseline blood samples were collected on the morning of the study visits following an over-

night fast. Participants underwent an OGTT or an oral lipid tolerance test according to the

guidelines set by the World Health Organisation/International Diabetes Federation. Venous

blood samples were taken before (0 min) and during the OGTT at set time-points (10, 20, 30,

60, 90 and 120 min), and serum and plasma samples were collected as previously described

[19–22]. Details of the analytes and methods used are previously reported, along with the mea-

surement of cytokines and hormones [19]. For the present study, participants with proteomic

data obtained from a baseline serum sample and who completed an OGTT were included

(n = 100).

Assessment of pancreatic beta-cell function

Two specific measures of beta-cell function were assessed. Beta-cell function was calculated

as the ratio of the incremental insulin to glucose response over the first 30 min of the OGTT

(ΔInsulin30/ΔGlucose30). Beta-cell function was adjusted for HOMA-IR ((ΔInsulin30 /ΔGlu-

cose30)/HOMA-IR). The oral disposition index (DI), which takes into account insulin

sensitivity, was calculated for all participants ((ΔInsulin30/ΔGlucose30) x (1/Fasting Insulin))

[23].
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Measurement of proteomic data

The SOMAscan™ assay [24] was used to measure the levels of 1129 protein levels in fasting

serum samples of MECHE participants. This technology has a dynamic range of more than

eight logs, allowing quantitation of both low and high abundant proteins which might other-

wise be missed. Proteins identified by SOMAmers are found in the blood as secreted (431),

external membrane origin (275), and intracellular proteins (423). Proteins are often released

from membranes by proteolytical cleavage and intracellular proteins may be released from

cells as a part of normal or abnormal physiological cell turnover.

Proteomic pathway and network analysis

Pathway over-representation analysis was performed with the human pathway collection from

WikiPathways [25] (curated collection with 276 pathways downloaded on 26th January 2016)

using PathVisio (version 3.2.4), a commonly used tool to create, visualise and analyse biologi-

cal pathways [26]. Permuted p-value was calculated by performing a permutation test 1000

times followed by calculating a rank of the actual Z score compared to the permuted Z scores.

The Z scores were calculated based on the changed proteins in a pathway out of the total pro-

teins in the pathway that have been measured in the uploaded dataset. Proteins with p� 0.05

were used for pathway analysis. The results of the pathway analysis were ranked based on the

number of proteins significantly associated with beta-cell function measures. A pathway was

considered important when the minimum number of differentially expressed proteins in the

pathway was three, had a Z-score > 1.96, and had a permuted p< 0.05.

Networks were constructed between the proteins that were significantly associated with

beta-cell function measures (p� 0.01) and their direct interacting proteins. The networks

were assembled by including protein-protein interaction (PPI) from the Human Protein Ref-

erence Database (HPRD). Data were extracted from the i2d database and self-loops and multi-

ple interactions involving the same pairs of proteins were removed. The R package igraph was

used to manipulate the PPI network. Visualisation was performed with Cytoscape 3.3. Biomart

was used to convert UniProt ID to the HUGO Gene Nomenclature Committee (HGNC).

Confirmation of beta-cell relationship in a separate cohort

Human calcineurin ELISAs were purchased from Elabscience (Patricell Limited, Nottingham

United Kingdom). Baseline serum samples taken from 45 participants who underwent an

OGTT as part of a Food for Health Ireland study were analysed for calcineurin levels.

Cell culture and treatment

All chemicals were purchased from Sigma-Aldrich Ireland unless otherwise stated. Culture

media and its related components were purchased from Gibco (Glasgow, UK). The BRIN-

BD11 cell line was used in this study as it is a stable glucose responsive, insulin-secreting, beta-

cell line [27]. The cells were maintained in RPMI-1640 containing 11.1 mM glucose, supple-

mented with 10% (v/v) foetal calf serum, 2 mM glutamine, 50 IU/mL penicillin, 0.05 mg/mL

streptomycin and incubated at 37˚C in a humidified atmosphere containing 5% C02 and 95%

air. For experimental treatments, cells were seeded at a density of 1.5 x 105 cells per well in a

24-well plate for insulin secretion assays. Cells were allowed to attach for 24 h before treatment

with 10, 20 or 50 ng/mL of rat IL-17F recombinant protein (Cambridge Biosciences) for 20 h.

Acute insulin secretion assay was performed. Cell viability was assessed using WST-1 assay.

Cells between passage 23–30 were used and all experiments were n = 4 unless otherwise stated.
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Acute insulin secretion

Following the 20 h treatment period, the culture medium was removed and the cells were

washed with phosphate buffered saline (PBS). The cells were then incubated with Krebs-

Ringer bicarbonate (KRB) buffer (115 mM NaCL, 1.28 mM CaCl2, 4.7 mM KCl, 1.2 mM

KH2PO4, 1.2 mM MgSO4 7H2O, 10 mM NaHC03, 5 g/L BSA, all at pH 7.4) supplemented with

1.1 mM glucose for 40 min. The media was then replaced with KRB buffer containing 16.7

mM glucose plus 10 mM alanine, for 20 min. Following this 20 min incubation, the samples

were transferred to Eppendorfs and centrifuged, before removing the supernatant and assaying

for insulin content using a Mercodia Ultrasensitive Rat Insulin ELISA kit (Mercodia AB, Upp-

sala, Sweden).

Statistical analysis

Analysis was performed using IBM SPSS Statistics 20. Data are expressed as means ± standard

deviation. Data was examined using boxplots to identify extreme outliers for each protein,

which was defined as Q1−3×IQR or above Q3 + 3×IQR. Pearsons correlation analysis assessed

the association of proteins with beta-cell function measures, using p� 0.01. Stepwise linear

regression analysis determined the strongest relationships between beta-cell function measures

and significant proteins (p� 0.01 from correlation analysis). Statistical significance was evalu-

ated using ANOVA with Bonferroni post-hoc tests for in vitro studies (p< 0.05). MetaboAna-

lyst 3.0 was used for ROC curve analysis. Participants were divided into tertiles based on their

beta-cell function measures. ROC curves were produced to determine whether proteins of

interest (p� 0.01) could discriminate between the top 15 in the low and the top 15 participants

in high tertile of beta-cell function. Pareto scaling was used and the random forest classifica-

tion model was selected. The classification performance (sensitivity and specificity) of the sam-

ples was assessed by the area under the curve (AUC).

Results

Uncovering a proteomic signature related to beta-cell function

Participants (n = 100) who completed an OGTT with fasting proteomic profiles were included

in this analysis. Baseline characteristics are summarised in Table 1. The cohort had an equal

number of males and females and a mean BMI of 25.3 kg/m2. The study cohort were 95% Cau-

casian (3% Black, 1% Asian, 1% Mediterranean). Beta-cell function/HOMA-IR was signifi-

cantly correlated with 22 proteins and the disposition index was significantly correlated with

17 proteins (p� 0.01) (Table 2, S1 Fig). Protein concentrations are displayed across tertiles of

beta-cell function measures in Table 3. Based on linear regression analysis, the strongest pro-

teins associated with beta-cell function/HOMA-IR were IL-17F (β = -0.027) and beta-endor-

phin (β = 0.039). Calcineurin and CRTAM were the strongest proteins associated with the

disposition index (β = 0.005 and 0.005 respectively) (S1 Table).

Discrimination between low and high beta-cell function using the

identified protein signature

ROC curve analysis used a multivariate model to examine the predictive accuracy of proteins

to discriminate between low and high beta-cell function. Biochemical and demographic data

were also included, to compare the clinical variables ability with the identified proteins ability

to discriminate between high and low beta-cell function. For the disposition index, a ROC

curve was produced using the panel of 17 proteins (Table 2), age, BMI, waist-to-hip ratio and
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fasting glucose, which discriminated between low and high disposition index values, resulting

in an AUC of 0.918 (Fig 1, S2 Fig). Similarly, a ROC curve was produced using the panel of 22

proteins (Table 2), age, BMI, waist to hip ratio and fasting glucose, and discriminated between

low and high beta-cell function/HOMA-IR (AUC = 0.913) (S3 Fig). The contribution of indi-

vidual variables by mean importance measure to ROC curve analysis for beta-cell function/

HOMA-IR is displayed in Fig 2.

Furthermore, using the identified sex, age and body fat mass associated proteins from previ-

ous analysis by our research group, potential confounding factors for the identified protein

panels were examined [28]. For beta-cell function/HOMA-IR associated proteins, the protein

WFIKKN2 was significantly inversely associated with body fat mass and LSAMP was signifi-

cantly higher in females and inversely associated with fat mass (2 out of 22 proteins also

related to phenotypic parameters). For proteins associated with the disposition index, only one

out of 17 proteins (IGFBP3) was also significantly associated with aging (1 out of 17 proteins

impacted by a phenotypic parameter). Therefore no overall impact from phenotypic parame-

ters on the identified proteomic panels was observed.

Pathways and networks emerge as related to beta-cell function measures

Pathway analysis performed in PathVisio using the WikiPathways human collection of

curated pathways revealed altered pathways for both beta-cell function measures (Table 4,

S2 and S3 Tables, S4 Fig). A total of 16 pathways contained three or more proteins signifi-

cantly associated with beta-cell function/HOMA-IR and 12 pathways with the disposition

index (S2 and S3 Tables). Proteins with p� 0.05 for Pearson correlation analysis with beta-

cell function measures were used for pathway analysis (S4 and S5 Tables). Five of the 16

pathways associated with beta-cell function/HOMA-IR and two pathways related to the dis-

position index met the significance criteria (p < 0.05), had a Z score >1.96, and had three or

more significantly associated proteins (Table 4). The percentage of total gene products

Table 1. Baseline characteristics of MECHE cohort (n = 100).

Variable Mean ± S.D.

Sex (m/f) 50/50

Age (y) 32 ± 11

Weight (kg) 76.64 ± 17.15

BMI (kg/m2) 25.3 ± 5.5

Waist (cm) 85.8 ± 15.6

WHR 0.85 ± 0.1

BP SYS (mm/Hg) 122.9 ± 12.8

BP DIA (mm/Hg) 74.7 ± 10.8

Glucose (mmol/L) 5.21 ± 0.58

Total cholesterol (mmol/L) 4.49 ± 0.96

HDL cholesterol (mmol/L) 1.32 ± 0.36

TAG (mmol/L) 1.06 ± 0.61

Insulin (μIU/mL) 8.72 ± 6.93

HOMA-IR 1.99 ± 1.57

All values are means ± standard deviation. BMI, Body Mass Index; WHR, Waist to Hip Ratio; BP SYS, Systolic Blood

Pressure; BP DIA, Diastolic Blood Pressure; HDL, High Density Lipoprotein cholesterol; TAG, triglycerides;

HOMA-IR, Homeostatic Model Assessment of Insulin Resistance

https://doi.org/10.1371/journal.pone.0202727.t001
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displayed in Table 4, S2 and S3 Tables refers to percentage coverage of each pathway by

SOMAscan assay.

Networks were constructed between beta-cell function proteins and their direct interacting

proteins. Two networks were constructed for both beta-cell function/HOMA-IR and the

Table 2. Pearson’s correlation of proteins with beta-cell function/HOMA-IR and the disposition index.

Beta-cell function/HOMA-IR Proteins Gene Coefficient P

Beta-Endorphin POMC 0.285 0.005

Cripto-1 growth factor TDGF1 -0.267 0.008

IL-17F IL-17F -0.272 0.006

IL-22 IL-22 -0.259 0.01

Junctional adhesion molecule B JAM2 -0.269 0.007

Galectin 2 LGALS2 0.306 0.002

A disintegrin and metalloproteinase with thrombospondin motifs 13 ADAMS13 0.259 0.009

WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2 WFIKKN2 0.258 0.01

Carbonic Anhydrase X CA10 -0.277 0.007

Complement factor MASP-3 MASP1 -0.262 0.009

Group IIE secretory phospholipase A2 PLA2G2E 0.305 0.002

Ephrin type-B receptor 4 EphB4 -0.272 0.006

Legumain LGMN -0.287 0.004

Mediator of RNA polymerase II transcription subunit 1 MED1 0.265 0.008

Mesothelin MSLN 0.328 0.001

Calcineurin PPP3R1 0.272 0.006

D-dimer FGA 0.354 0.0003

Peroxiredoxin 5 PRDX5 0.266 0.008

Cytotoxic and regulatory T-cell molecule CRTAM 0.344 0.001

DAP kinase-related apoptosis-inducing protein kinase 2 STK17B -0.282 0.005

Limbic system-associated membrane protein LSAMP 0.268 0.007

Stromelysin-2 MMP10 0.263 0.009

Disposition Index Proteins Gene Coefficient P

Beta-Endorphin POMC 0.29 0.004

Insulin-like growth factor-binding protein 3 IGFBP3 0.259 0.01

Cripto-1 growth factor TDGF1 -0.284 0.004

Junctional adhesion molecule B JAM2 -0.264 0.009

Galectin 2 LGALS2 0.325 0.001

Cathepsin B CTSB 0.256 0.01

Carbonic Anhydrase X CA10 -0.263 0.01

Stromelysin-2 MMP10 0.28 0.005

Peroxiredoxin 5 PRDX5 0.273 0.007

Cytotoxic and regulatory T-cell molecule CRTAM 0.367 0.001

Complement factor MASP-3 MASP1 -0.257 0.01

Ephrin type-B receptor 4 EphB4 -0.276 0.005

Legumain LGMN -0.277 0.005

DAP kinase-related apoptosis-inducing protein kinase 2 STK17B -0.281 0.005

Calcineurin PPP3R1 0.283 0.004

D-dimer FGA 0.353 0.00035

Mesothelin MSLN 0.348 0.001

Results obtained from Pearsons correlation, with correlation coefficients and p � 0.01 presented.

https://doi.org/10.1371/journal.pone.0202727.t002
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disposition index. Fig 3 displays the network between beta-cell function/HOMA-IR proteins

and direct interacting proteins with p� 0.01 while Fig 4 displays the network between disposi-

tion index proteins and direct interacting proteins with p� 0.01. Seventeen out of 22 signifi-

cant proteins (Table 2) for beta-cell function/HOMA-IR had direct interactions, while 13 out

of 17 proteins (Table 3) for disposition index had direct interactions.

Table 3. Protein concentrations across tertiles of beta-cell function measures.

Beta-cell function/HOMA-IR related proteins T1 (4.57 ± 2.07 pmol/mmol) T2 (10.27 ± 1.70 pmol/mmol) T3 (23.67 ± 8.16 pmol/mmol) P

Beta-Endorphin 488.8 ± 78.99 502.3 ± 49.68 554.4 ± 140.92 0.021

Cripto-1 growth factor 605.8 ± 58.07 593.3 ± 42.91 571.0 ± 40.91 0.015

IL-17F 888.8 ± 92.82 850.0 ± 64.94 834.8 ± 90.68 0.029

IL-22 470.7 ± 55.60 459.8 ± 51.09 439.9 ± 46.80 0.055

JAM-B 2857.4 ± 315.83 2765.3 ± 337.85 2606.3 ± 285.67 0.007

Galectin-2 950.8 ± 122.81 986.5 ± 106.39 1064.1 ± 154.43 0.002

ADAMS13 3488.5 ± 634.12 3724.8 ± 803.32 3976.6 ± 931.83 0.051

WFIKKN2 4470.5 ± 846.64 4898.6 ± 1036.92 5120.2 ± 1095.08 0.030

Carbonic Anhydrase X 672.6 ± 67.27 653.2 ± 49.11 648.2 ± 45.63 0.091

MASP-3 5498.5 ± 778.32 5190.6 ± 715.11 4995.6 ± 840.04 0.034

PLA2G2E 360.4 ± 30.03 375.9 ± 35.09 388.3 ± 47.64 0.015

EphB4 20856.3 ± 2139.79 20002.2 ± 2374.49 19132.2 ± 3287.01 0.034

LGMN 9492.1 ± 986.24 8905.2 ± 952.61 8626.7 ± 1292.85 0.006

MED-1 541.1 ± 38.16 555.8 ± 55.16 583.8 ± 76.79 0.014

Mesothelin 559.5 ± 83.80 599.2 ± 151.19 697.4 ± 361.64 0.055

Calcineurin 496.1 ± 95.12 556.3 ± 104.01 572.0 ± 133.11 0.017

D-dimer 2249.7 ± 386.28 2248.5 ± 391.11 2483.4 ± 530.12 0.053

Peroxiredoxin-5 573.9 ± 51.50 598.0 ± 66.48 629.8 ± 145.52 0.072

CRTAM 714.3 ± 75.25 747.0 ± 82.22 773.6 ± 167.40 0.142

STK17B 10299.7 ± 1222.92 9811.8 ± 1190.98 9412.9 ± 1541.83 0.028

LSAMP 1475.2 ± 230.80 1523.0 ± 182.98 1637.0 ± 279.46 0.018

Stromelysin-2 698.2 ± 134.68 664.6 ± 63.11 729.4 ± 94.73 0.038

Disposition Index related proteins T1 (1.08 ± 0.45 pmol/mmol) T2 (2.30 ± 0.39 pmol/mmol) T3 (5.33 ± 1.80 pmol/mmol) P

Beta-Endorphin 488.0 ± 78.17 499.0 ± 51.31 558.7 ± 138.90 0.009

IGFBP-3 1055.6 ± 234.27 1133.9 ± 159.66 1192.6 ± 212.11 0.028

Cripto-1 growth factor 605.9 ± 56.36 593.7 ± 43.10 570.5 ± 42.83 0.013

JAM-B 2826.3 ± 313.07 2783.8 ± 350.27 2617.9 ± 287.18 0.025

Galectin 2 950.1 ± 124.59 991.8 ± 100.17 1059.2 ± 159.46 0.004

Cathepsin B 2145.2 ± 232.24 2148.3 ± 274.98 2219.3 ± 346.06 0.499

Carbonic Anhydrase X 673.2 ± 67.91 651.6 ± 50.66 649.3 ± 42.05 0.171

Stromelysin-2 703.4 ± 133.67 655.2 ± 58.50 734.1 ± 93.25 0.007

Peroxiredoxin-5 571.7 ± 50.69 600.5 ± 66.86 629.3 ± 145.30 0.062

CRTAM 718.9 ± 73.34 742.0 ± 81.96 775.1 ± 168.90 0.167

MASP-3 5468.0 ± 768.34 5183.3 ± 760.26 5033.6 ± 827.38 0.079

EphB4 20733.6 ± 2014.20 20023.6 ± 2565.95 19232.8 ± 3217.17 0.078

LGMN 9454.4 ± 995.39 8932.0 ± 1039.30 8636.8 ± 1234.69 0.011

STK17B 10264.8 ± 1203.18 9800.0 ± 1264.52 9459.9 ± 1519.56 0.053

Calcineurin 490.4 ± 91.73 547.6 ± 99.45 586.7 ± 133.39 0.002

D-dimer 2234.7 ± 385.76 2255.4 ± 397.06 2491.9 ± 521.38 0.037

Mesothelin 558.7 ± 82.67 607.8 ± 152.97 690.4 ± 363.48 0.076

Protein concentrations (relative fluorescence units) displayed as mean ± standard deviations across tertiles (T) of beta-cell functions measures. P-values obtained from

one way ANOVA, overall P-value displayed.

https://doi.org/10.1371/journal.pone.0202727.t003
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Confirmation of beta-cell functions relationship with calcineurin and IL-17F

The Food for Health (FHI) cohort (n = 45) had a mean age of 53 y and a mean BMI of 31.6 kg/

m2 (S6 Table). The relationship between calcineurin and beta-cell function was successfully

confirmed in this independent cohort, with correlation coefficients of 0.299 and 0.316 for

beta-cell function/HOMA-IR and disposition index respectively (p = 0.046 and p = 0.035

respectively). To assess the effects of exposure to IL-17F on pancreatic beta-cells, BRIN-BD11

cells were incubated with IL-17F for 20 h. No loss of cell viability was observed during the

incubation period (S5 Fig). Following exposure to IL-17F, cells treated with the lower concen-

tration (10 ng/mL) displayed a significant increase in glucose stimulated insulin secretion in

comparison to the control (p = 0.043). No significant effect on insulin secretion was observed

with the higher concentrations of IL-17F (Fig 5).

Discussion

The present study identified a proteomic signature related to pancreatic beta-cell function,

capable of discriminating between low and high beta-cell function measures. Early detection

Fig 1. ROC curves for assessment of protein panel to discriminate between low and high disposition index

measures. ROC curves to determine the predictive ability of the protein panel (17 proteins associated with the

disposition index (p� 0.01)), age, BMI, waist to hip ratio and fasting glucose, for classification of low and high

disposition index values of MECHE participants (n = 30). Par scaling was used as a scaling method and random forest

method was employed for classification of variables. Using all 21 variables, the best ROC curve was produced with an

AUC of 0.918. AUC: area under the curve. Var: variable. CI: Confidence interval. Tertile 1: low beta-cell function

Tertile 3: high beta-cell function.

https://doi.org/10.1371/journal.pone.0202727.g001
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of decreased pancreatic beta-cell function would allow for the implementation of nutritional

and lifestyle interventions to reduce the risk of T2D [29]. Importantly, the ROC curve analysis

highlighted the potential of the identified panel for use in a clinical setting. In addition, path-

way analysis was performed to explore the biological basis of the altered proteomic signatures,

with the complement and coagulation cascades pathway emerging as the top pathway associ-

ated with beta-cell function.

The SOMAscan assay analyses serum protein levels across a wide dynamic range and has

been used to identify proteins associated with metabolic processes involved in T2D [30–33].

Belongie and colleagues identified proteomic and miRNA biomarkers of beta-cell function in

Fig 2. Features ranked by mean importance measure for the ROC curve analysis for beta-cell function/HOMA-IR. Determination of the

predictive ability of the protein panel (22 proteins associated with beta-cell function/HOMA-IR (p� 0.01)), age, BMI, waist to hip ratio and

fasting glucose, for discrimination between low and high beta-cell function/HOMA-IR values of MECHE participants (n = 30). Par scaling was

used and random forest classification method was selected. Using all 26 variables, the best ROC curve was produced with an AUC of 0.913.

AUC: area under the curve. 1: Tertile 1- low beta-cell function 3: Tertile 3- high beta-cell function. Green filled square: Low concentration/value

Red filled square: High concentration/value Green filled square/ Red filled square: Positive association with beta-cell function/HOMA-IR Red

filled square/Green filled Square: Inverse association with beta-cell function/HOMA-IR.

https://doi.org/10.1371/journal.pone.0202727.g002
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fasting samples from 43 participants who had impaired glucose tolerance (IGT) and 43 con-

trols who maintained normal glucose tolerance over a three year period [33]. Beta-cell function

was assessed by calculating the beta-cell glucose sensitivity index and the oral glucose insulin

sensitivity index, both of which were derived from data from OGTTs. The top proteins differ-

entially expressed in participants with decreased beta-cell function following the three year

Table 4. Pathways significantly related to beta-cell function measures.

WikiPathway

ID

Pathway Positive Measured by

SOMAscan assay

Z

Score

P % of total gene

products measured

in pathway

Significant proteins

Beta-cell function/ HOMA-IR

WP558 Complement and Coagulation

Cascades

8 40 2.57 0.02 64.4 TFPI, a1-antitrypsin, kininogen HMW, C7,

MASP3, C1s, coagulation factor IX/

coagulation factor IXab, C3a

WP545 Complement Activation 5 17 3.03 0.03 77.3 C7, C3a, C1s, Masp3, Properdin

WP2064 Neural Crest Differentiation 5 18 2.88 0.01 17.8 Cadherin 2, Cadherin 6, FGFR2, MIA,

HDAC8

WP2858 Ectoderm Differentiation 4 17 2.17 0.03 11.3 Cadherin 6, FGFR2, MCP1, GIB

WP3414 Initiation of transcription and

translation elongation at the

HIV-1 LTR

3 3 5.59 <0.001 6.3 HDAC8, Calcineurin, Calcineurin Ba

Disposition Index

WP558 Complement and Coagulation

Cascades

8 40 2.98 0.01 64.4 TFPI, a1-antitrypsin, kininogen HMW, C7,

MASP3, C1s, coagulation factor IX/

coagulation factor IXab, C3a

WP545 Complement Activation 4 17 2.47 0.03 77.3 C7, C3a, C1s, MASP3

Pathways obtained from pathway statistics using PathVisio software, using the curated WikiPathways directory. Sorted by number of differentially expressed proteins

(positive) in pathway (measured by SOMAscan assay). P-value is permuted, p < 0.05 is considered significant. Percentage of total gene products refers to % coverage of

pathway by SOMAscan assay.

https://doi.org/10.1371/journal.pone.0202727.t004

Fig 3. Network displaying proteins significantly associated with beta-cell function/HOMA-IR and their direct

interactions. The nodes represent proteins and the edges represent protein-protein interactions. Proteins significantly

related to beta-cell function/HOMA-IR are in blue (p� 0.01) and grey nodes are their direct interactions. 17/22

proteins significantly associated with beta-cell function/HOMA-IR have direct interactions.

https://doi.org/10.1371/journal.pone.0202727.g003
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Fig 4. Network displaying proteins significantly associated with the disposition index and their direct

interactions. The nodes represent proteins and the edges represent protein-protein interactions. Proteins significantly

related with the disposition index are in blue (p� 0.01) and grey nodes are their direct interactions. 13/17 proteins

significantly associated with the disposition index have direct interactions.

https://doi.org/10.1371/journal.pone.0202727.g004

Fig 5. The effect of 20 h treatment with IL-17F on insulin secretion in BRIN-BD11 cell line. Values are

mean ± standard deviation (n = 4). �p< 0.05. ANOVA was applied across groups with post-hoc Bonferroni test for

comparison of treatments (10, 20 and 50 ng/mL IL-17F) with 16.7mM glucose (control). Cells were incubated for 20 h

with 10, 20 and 50 ng/mL IL-17F, and stimulated with 16.7 mM glucose to determine insulin secretion. Overall

p = 0.000041. �p = 0.043 where treatment with 10 ng/mL IL-17F is significantly increased in comparison to control of

16.7mM glucose.

https://doi.org/10.1371/journal.pone.0202727.g005
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follow up were adiponectin, alpha1-antitrypsin and endocan. In our study, both adiponectin

and alpha1-antitrypsin were identified as meeting the p< 0.05 criteria. Belongie and col-

leagues also included clinical variables in combination with proteins to predict beta-cell func-

tion, and their models identified glucose during OGTT (time-points 60, 90, 120 min) as the

top predictors, followed by the proteins of interest. In our study, proteomic signatures in con-

junction with demographic and biochemical variables displayed high predictive ability for dis-

criminating between low and high beta-cell function measures. Galectin 2 and calcineurin

emerged as the top variables to discriminate between both high and low measures of beta-cell

function. The proteins displayed greater discriminatory ability than clinical variables, such as

fasting glucose levels and BMI. Galectin 2 (LGALS2) is a beta-galactoside binding protein and

was recently discovered as the first endogenous CD14/TLR4 ligand which induces a pro-

inflammatory, non-arteriogenic phenotype in monocytes/macrophages [34]. The waist-to-hip

ratio which was identified as strongly related to beta-cell function in previous analysis [18],

also emerged as influential in classifying individuals between low and high beta-cell function.

Overall, the ROC curve analysis promotes the potential use of the panel in a clinical setting

and should be further developed and validated.

Based on regression results, calcineurin, beta-endorphin, and CRTAM were positively asso-

ciated with beta-cell function measures based on regression results whereas IL-17F was nega-

tively associated. Calcineurin emerged as a highly influential feature in ROC curve analysis in

the MECHE cohort, a result replicated in an independent human cohort. Calcineurin was pre-

viously reported to have a relationship with beta-cell function [35]. Calcineurin/nuclear factor

of activated T-cells (NFAT) signalling regulates several factors that control regulation of beta-

cell function, demonstrating a potential avenue for enhanced understanding of the pathogene-

sis of T2D [36]. Protein kinase R-like endoplasmic reticulum kinase was observed to regulate

calcineurin with the proteins working in combination to modulate insulin secretion and cal-

cium signalling in pancreatic beta-cells [37]. The results presented in this analysis strengthen

the positive relationship of calcineurin with beta-cell function.

Beta-endorphin was an important variable in ROC curve analysis for discrimination

between high and low beta-cell function, in addition to having a strong association with beta-

cell function in regression analysis. Beta-endorphin was first linked with beta-cell function and

T2D risk in the 1980s [38, 39]. Beta-endorphin (2.5 mg IV bolus) administered to non-insulin

dependent individuals with T2D resulted in increased plasma levels of insulin at 90 min with a

decrease in plasma glucose [40]. In contrast, relatively little is known about CRTAM with

respect to pancreatic beta-cell function and T2D risk. CRTAM is a transmembrane protein

that is located on the cell surface of activated invariant natural killer T (iNKT) cells, CD8+,

and CD4+ T cells [41]. CRTAM expression was linked with pro-inflammatory profiles and cel-

lular activities, such as adhesion, cytotoxicity, and Th1 and Th17 cytokine production [42]. A

recent study reported lower iNKT cell counts in type 1 diabetics and CRTAM was identified as

a marker of activated iNKT lymphocytes [43]. Despite the potential role of CRTAM in the

inflammatory immune response, its role in relation to T2D is relatively unknown. The current

analysis observed a positive association of CRTAM with beta-cell function, a novel finding and

warrants further investigation.

An inverse relationship was observed between IL-17F and beta-cell function. Recently,

Th17 signature cytokines IL-21, IL-22 and IL-17F were identified as important indicators of

T2D, with IL-17F explaining some of the variance in HbA1c [44]. This group also analysed

production of TNFα in a number of different peripheral blood mononuclear cells (PBMC) in

the presence or absence of IL-17A and/or IL-17F blocking antibodies. IL-17F neutralisation

reduced production of TNFα by both CD41 and CD81 T cells [44], suggesting that a Th17 sig-

nature associated with T2D regulates downstream TNFα production. The in vitro analysis
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presented here showed that IL-17F also modulated insulin secretion, with a low dose of IL-17F

eliciting an increase in insulin secretion with no observed effects at the higher doses. This

result is consistent with the initial negative association of IL-17F and beta-cell function

measures.

Pathway analysis was used to analyse the main biological processes involved with beta-cell

function based on levels of serum proteins. Complement and coagulation cascades pathway

was the top pathway in which eight proteins were significantly associated with beta-cell func-

tion. The complement system is a major component of both the innate and adaptive immune

responses and the coagulation pathway has been previously associated with T2D by others

[45]. While the complement and coagulation cascade pathway is implicated in various disease

states [46] the proteins altered in the pathway may be specific to the biological process or dis-

ease under investigation. In the current analysis, C3a, C7 and alpha1-antitrypsin were posi-

tively associated with beta-cell function whereas TFPI, MASP 1, Kininogen HMW, C1s and

coagulation factor IX were negatively associated with beta-cell function. Previous literature

reported increased expression of C1s in primary adipose cells from abdominal subcutaneous

adipose tissue of individuals with insulin resistance [47]. The IL-17 signalling pathway con-

tained three proteins associated with beta-cell function/HOMA-IR and the disposition index,

with IL-17A and IL-17F negatively and IL-17sR positively associated with beta-cell function

measures. IL-17A and IL-17F are the most studied proteins of the IL-17 cytokine family, with

both proteins pro-inflammatory under most of the conditions studied and may participate in

driving autoimmunity [48].

The involvement of proteins with metabolic alterations or disease can be successfully

explored using protein interaction networks, due to protein-protein interactions represent-

ing connections between cell components and processes [49]. Any alterations in protein-

protein interactions may lead to disturbances in cellular processes. Due to interactions of

cellular components and co-dependencies, the pathogenesis of disease states are rarely due

to disruptions in one protein, often alterations are present in an intracellular network [50].

Network analysis of the plasma proteome data in this study identified a network related to

beta-cell function. FGA (D-dimer) and MED1 (Mediator of RNA polymerase II transcrip-

tion subunit 1) are key regulators in the beta-cell function/HOMA-IR network, while

IGFBP3 appears to be a key protein in the disposition index network. Beta-endorphin and

galectin 2 are also in these networks, reinforcing their strong relationship with beta-cell

function measures. The network analysis complemented the ROC curve analysis in

highlighting the benefit of using a protein panel instead of a single protein for assessment of

beta-cell function.

Strengths of the present study include direct assessment of fasting proteomic data with spe-

cific beta-cell function measures obtained during an OGTT, confirmation of calcineurin in an

independent cohort, and also effects of added IL-17F in cell assays. In vitro results mirrored

the inverse relationship of IL-17F with beta-cell function and provided an opportunity to

examine the direct effects on insulin secretion. Confirmation of the relationship between calci-

neurin with beta-cell function in the FHI human cohort, who were slightly older and had a

higher BMI strengthens the association of calcineurin and beta-cell function measures. Limita-

tions of the present study include the study population being limited to Irish participants.

Expansion of this research to non-Irish and non-European cohorts would be beneficial in

order to fully translate the research findings to the global population. In addition, the SOMAs-

can assay does not allow absolute quantification of protein levels and data were expressed in

relative fluorescence units. Absolute quantification may be necessary to set reference values

and translate results to the clinic.
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Conclusions

The SOMAscan assay was used to assess levels of 1129 proteins in 100 individuals which iden-

tified a proteomic signature related to pancreatic beta-cell function. The ROC curve analysis

highlighted the potential of the panel for use in a clinical setting for early detection of beta-cell

dysfunction. Early detection of decreased pancreatic beta-cell function would allow for imple-

mentation of dietary and lifestyle interventions before progression into T2D status. Further

work is needed to replicate this signature in a larger cohort of individuals with varying degrees

of beta-cell function.
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