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Abstract

Background: Chemical genomics is an interdisciplinary field that combines small molecule perturbation with
traditional genomics to understand gene function and to study the mode(s) of drug action. A benefit of chemical
genomic screens is their breadth; each screen can capture the sensitivity of comprehensive collections of mutants
or, in the case of mammalian cells, gene knock-downs, simultaneously. As with other large-scale experimental
platforms, to compare and contrast such profiles, e.g. for clustering known compounds with uncharacterized
compounds, a robust means to compare a large cohort of profiles is required. Existing methods for correlating
different chemical profiles include diverse statistical discriminant analysis-based methods and specific gene filtering
or normalization methods. Though powerful, none are ideal because they typically require one to define the
disrupting effects, commonly known as batch effects, to detect true signal from experimental variation. These
effects are not always known, and they can mask true biological differences. We present a method, Bucket
Evaluations (BE) that surmounts many of these problems and is extensible to other datasets such as those obtained
via gene expression profiling and which is platform independent.

Results: We designed an algorithm to analyse chemogenomic profiles to identify potential targets of known drugs
and new chemical compounds. We used levelled rank comparisons to identify drugs/compounds with similar
profiles that minimizes batch effects and avoids the requirement of pre-defining the disrupting effects. This
algorithm was also tested on gene expression microarray data and high throughput sequencing chemogenomic
screens and found the method is applicable to a variety of dataset types.

Conclusions: BE, along with various correlation methods on a collection of datasets proved to be highly accurate
for locating similarity between experiments. BE is a non-parametric correlation approach, which is suitable for
locating correlations in somewhat perturbed datasets such as chemical genomic profiles. We created software and
a user interface for using BE, which is publically available.
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Background
Chemogenomics, the genome-wide analysis of the effects
of chemical compounds, is a valuable approach to eluci-
date the mechanism of action of small molecules by
identifying their cellular targets and target pathways [1].
Recent applications of chemical genomics in yeast in-
clude haploinsufficiency profiling and homozygote pro-
filing of barcoded deletion collections [2-6], exploration
of essential genes using temperature-sensitive mutants
[7], molecular barcoded open reading frame libraries [8],
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decreased abundance by mRNA perturbation [9], multi-
copy suppression profiling [10] and gene function and
drug action analysis using the relationships between
gene fitness profiles and drug inhibition profiles [11], to
name a few.
We used chemogenomic profiles obtained from

experiments that utilized the yeast Saccharomyces cerevi-
siae gene deletion collections [12], which include hetero-
zygous and homozygous diploid deletions and haploid
deletions. These screens measure growth of individual
strains in a mixed population in the presence of diverse
small molecules. In these screens, a decrease in the
strain’s fitness can reflect that the deleted gene is the tar-
get of the chemical compound present (in heterozygous
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diploid deletion strains) or part of an affected pathway
(homozygous diploid deletion strains).
In practice, a genome-wide chemical-genetic profile

comprises the fitness of each strain relative to a mock
treatment control profile. As each chemical compound
produces a unique profile of gene sensitivities, compar-
ing the profiles helps understand the similarity between
the modes of action of compounds [13,14]. This “guilt-
by-association” approach can suggest therapeutic appli-
cations for known compounds as well as the mode(s) of
action of novel compounds [15,16]. Because most chem-
ical profiles display a range of fitness defects, identifying
similarities between chemical profiles requires a way to
define similar fitness defect profiles. As part of this com-
parison, the method must emphasize those genes with
highest fitness defect values, i.e. the strains most sensi-
tive to treatment.
To analyze chemical genomics on a large scale (i.e.

thousands-100 thousands of tests) a robust, extensible
means to correct for variation is needed. This variation
can come from many sources; including operator,
laboratory, sample preparation and date [17,18]. Taken
together, many profiles will cluster based on these non-
biological parameters, into “batches”, which confounds
any biological conclusions [19,20]. Furthermore, as
throughput increases, and the method is adopted by dif-
ferent laboratories and platforms, batch effects will in-
crease. These non-biological variation in results [18], are
well recognized [21] and hinder the progress of 1) global
analysis across different chemogenomic datasets and 2)
efforts to integrate this data with orthologous genomic
data. Although many batch effects [22] can be recorded
for each experiment, one cannot account for all vari-
ation. One example of an effect that is not always
recorded is the level of training, which varies over time,
of the person performing the experiment. Another ex-
ample is the temperature which affects all next gener-
ation sequencing experiments [23].
Due to batch effects, genomic profiles often display

uninformative similarity according to these effects rather
than the similarity of the underlying chemical biology
[22,24]. Comparison algorithms, many of which do not
consider batch effects, provide an inaccurate similarity
mapping of profiles. Some algorithms require defining
the variables that affects the results for an accurate com-
parison [22,24-27], yet these variables, and their relative
impact are not always known.
To find similarity between experiments in a way that

accommodates such uncertainty, we devised a method
which finds correlation between experiments without
the need to define the batch effects variables. This
method is based on scaled ranks, which are scored
according to a levelled scoring matrix, which provides a
score for each gene-drug comparison. We evaluated the
method using chemogenomic profiles (see methods),
and compared the method to other existing correlation
methods, including Pearson [28], Spearman [29], and
Kendall [30] correlations, which also do not require
prior knowledge of the variables that affect the results.
Finally, we explored the extensibility of the Bucket Eva-
luations (BE) algorithm on other microarray data and
barcode sequencing data (see results). By statistically
evaluating results of the BE analysis compared to other
correlation methods, we demonstrate its performance
and illustrate its application to a variety of data types.
We created software and a user interface, which is freely
available such that the BE method can be applied for di-
verse experimental comparisons.

Results and discussion
The BE algorithm is based on ranking and comparing a
large number of columns within a dataset, and was ini-
tially applied to chemogenomic profiles. For a broader
understanding of how the algorithm works, consider this
analogy which equates chemogenomic profiles with
spider habitats; There are over 40000 species of spiders
living in a variety of habitats from hot deserts to artic
regions [31]. Similar habitats should have similar groups
of spider species, adapted to their environment. To
evaluate similarity between spider habitats, one should
compare the groups of successful (prosperous) species,
rather than comparing the single most successful species
because in very similar habitats A and B, the most suc-
cessful species in A is not necessarily the most success-
ful in B. A better way to measure habitat similarity is to
ask, for example, if the most successful species in habitat
A is, the top fifty most successful species in habitat B,
because such a rank is still very high considering there
are 40000 species.
Similar to the world of spiders, comparing the effect of

chemical compounds requires examining the groups of
genes affected by the chemical compounds rather than
the top gene alone. There are many differences between
profiles, such as scale of results, standard deviation, and
a changing rank of gene values, even when the experi-
ment was performed with the same compound at the
same dosage, but on different days (Figure 1). These dif-
ferences require analysing the ranking, not by comparing
specific ranks, but by comparing groups of ranks. A pure
rank comparison, meaning the highest value in one pro-
file against the highest value in another profile and so
on, gives poor results because it does not take into ac-
count the variability of ranks between genome-wide pro-
files. We addressed this problem in chemogenomic data
using section comparisons, dividing each profile’s gene
scores into sections, defined as buckets. The algorithm
creates a weighted scoring system by ranking sections
separately, and holding a higher score for highly ranked



Figure 1 Shabtai et al. Comparison of experiments performed on different dates. Two chemogenomic experiments performed using the
same conditions (cantharidin, a protein phosphatase inhibitor) on different dates (a). These images show the extent of the differences between
experiments that were performed using the same conditions. There is a difference in the scale of results (left experiment’s top value is ~22
representing a 106 fold difference in abundance while right experiment’s top value is ~31 representing a 109 fold difference in abundance). The
lower results are the least affected genes, and include the majority of strains. These results vary in range of fitness defects between experiments,
and are ignored because they are due to unmanageable differences between experiments, i.e. temperature perturbations. Despite the fact that
the experiments were performed under the same conditions, the most sensitive deletion strains are not necessarily in the same ratio to each
other nor are necessarily ranked in the same order (i.e. a strain can obtain the second highest fitness defect value in one experiment, and the
third highest in another). Another representation of the differences between experiments is shown in image (b). The scatterplot shows an
example of scores of two experiments performed using the same conditions. Top fitness defect scores are similar, though these strains are not in
ranked the same for both experiments and have a different range of scores.
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gene scores compared to lower ranked gene scores. Each
section, or “bucket”, is defined as a subgroup of ranked
scores, which are scored according to significance. The
gene deletion strains with the highest fitness defect
scores are considered the most significant for comparing
profiles, as these deletion strains are the most influenced
by the chemical compound. Therefore, we define the
bucket sizes in each experiment according to signifi-
cance, i.e. smaller buckets contain the most significant
genes (genes with the higher fitness defects scores and
lower fitness), whereas larger buckets contain the least
significant genes (those with lower fitness defect scores
and higher fitness). After the genes of each profile are
parsed into buckets, we used a levelled scoring matrix
(see methods) with weighted scores for scoring similarity
Figure 2 Shabtai et al. Simplified example of BE implementation. Figure
experiments: (1) Define bucket sizes and scoring table values. (2) For each
Each strain is mentioned with its bucket definition, while the values in brac
represent the buckets according to a coloured rectangle (red for bucket1, g
to the other experiments, and score similarity according to the scoring tab
rather than Exp2-Exp3. This example demonstrates that the BE algorithm g
than strains with a lower value.
between profiles, and evaluate a summed similarity score
(Figure 2).
The levelled scoring matrix guidelines award a higher

similarity score to genes located in lower buckets (e.g.
when comparing two experiments, a gene located in
bucket 2 for both experiments is awarded a higher score
compared to a gene located in bucket 3 for both experi-
ments), and to genes located in closer buckets (e.g. when
comparing two experiments, a gene that is located in
buckets 2 and 3 will get a higher score than a gene located
in buckets 2 and 4). To implement the levelled scoring
matrix guidelines, we devised a scoring matrix formula
(Additional file 1: Table S1) which meets the requirements
of the levelled scoring matrix (Additional file 2: Table S2,
Additional file 3). These guidelines allowed us to find
2| A small-scale example of a basic implementation of BE for scoring
experiment, insert the strains in the relevant bucket according to rank.
kets represent the fitness defect score. The fitness defect diagrams
reen for bucket2, and blue for bucket3). (3) Compare each experiment
le. In this example, there is a higher similarity between Exp1-Exp3
ives greater emphasis to strains with a high fitness defect value rather
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resemblance between profiles in addition to identifying pro-
files of repeated conditions.

TAG4 barcode microarray dataset
We ran the BE method on a dataset of TAG4 barcode
microarray results (see methods), which included novel
platinum based chemical compounds, in addition to well
characterised compounds, such as cisplatin. The dataset
was created by screening these compounds against a
pool of ~6,000 barcoded deletion strains of Saccharomyces
cerevisiae, 1200 essential genes as heterozygous diploids
and 4800 non-essential genes as homozygous diploids to
producing unique genome-wide profiles [2-5,32]. We used
several correlation methods, including Pearson [28],
Spearman [29] and Kendall [30], for finding similarities
between the compound profiles. We then assessed their
performance according to batching by date, an unwanted
cluster outcome, versus batching by chemical compound,
a desired cluster outcome (Figure 3, Figure 4). The results
showed the BE method performed better than other meth-
ods, as measured by the statistical significance of the
distribution of scores. We statistically assessed the
distribution of similarity scores generated by each of
the algorithms by using the Wilcoxon test (Figure 5)
[33]. Typically, when clustering experiments to evalu-
ate similarity, one would like to see experiments clus-
ter according to experimental factors, i.e. chemical
compound or mechanism of action, and not accord-
ing to the date of the experiment, for example. To as-
sess whether the date of the experiment had an effect in
batching the scores, we used a two-sided Wilcoxon test
on two vectors. The first vector contained the similarity
scores of pairs of experiments performed on the same
date, and the second vector contained scores of pairs of
experiments performed on different dates. The graphs
represent the distribution of similarity scores of both vec-
tors (Figure 5a, 5c, 5e, 5g). These differences demonstrate
a statistically significant shift in the distribution of
scores between the two vectors when Pearson, Spearman
or Kendall algorithms are used (p-values 10-18-10-29,
Figure 5a, 5c, 5e), indicating a strong unwanted effect of
the experiment’s date on the outcome. In contrast, the BE
algorithm was not significantly affected by date (p > 0.05,
Figure 5g). Indeed, the statistical evaluation confirmed
that, compared to these other methods, the BE algorithm
was least influenced by the date of the experiment, visua-
lized as a highly similar distribution of scores for same
dates and different dates. This is because BE compares
groups of genes, rather than single gene ranks. (Figure 5g).
We next evaluated whether the chemical compound used
in an experiment had an effect in batching the scores,
using the Wilcoxon test. We used two vectors: the first
contained similarity scores for pairs of experiments
performed with the same chemical compound, and
the second contained scores of experiment pairs per-
formed using different compounds (Figure 5b, 5d, 5f, 5h).
Repeated experiments, using the same chemical com-
pound, received higher similarity scores compared to
experiments using different chemical compounds. The
graphs represent the distribution of similarity scores of
both vectors, and demonstrate a statistically significant
shift in distribution for all algorithms used, indicating all
methods used are affected by the chemical compound
present. This was notable for the BE algorithm, which
attained the lowest p-value (p= 8.28e-23, W=40060)
compared to the other methods (1.89e-10< p < 0.0041,
26396 <W<33347), confirming that the chemical com-
pound has the strongest effect on the batching of
scores rated by the BE method, and seen where the
distribution of scores for different compounds is
much lower than the distribution of scores for identi-
cal compounds (Figure 5h). To summarize this application
of the BE algorithm, BE showed a clear difference in the
distributions of scores between date and chemical com-
pound, showing date has less effect on the BE method
(Figure 5g), while chemical compounds have a strong effect
on the BE method (Figure 5h). On the other hand, the dif-
ferences in score distribution for each one of the correl-
ation methods other than BE, look similar for both date
and chemical compound, which means that experiments
performed on the same date receive a score distribution
nearly as high as experiments where the same chemical
compound was used (Figure 5a-b, 5c-d, 5e-f).

TAG3 microarray 2004 PNAS dataset
In order to evaluate the BE method on other types of data-
sets, we tested the method on a dataset which included
80 published microarray results for 10 different FDA
approved drugs [3]. The assay used Haploinsufficiency
Profiling, which comprises all 6200 diploid heterozygous
yeast strains that can manifest sensitivity to compounds
that inhibit the product of the heterozygous locus. This
dataset consisted of 4 to 16 replicate experiments for each
drug [4]. The BE algorithm successfully located similarity
between drugs (Additional file 4: Table S3), recapitulating
the previously reported similarity between three drugs:
alverine-citrate, dyclonine, and fenpropimorph (Additional
file 5: Figure S1d), demonstrating the accuracy of the algo-
rithm [3]. In the original study, the similarity between
drugs was found using a parametric method that set a
threshold to ignore genes with low fitness defects (<3SD)
[3], the BE method is non-parametric and did not ignore
any genes for scoring similarity between experiments. We
assessed the similarity results using other methods,
including Pearson, Spearman and Kendall correlations,
which all found similarity between these drugs. However,
BE was the only method which found these three drugs as
most similar to one another (Additional file 5: Figure S1).



Figure 3 Shabtai et al. Ideal and random outcome of TAG4 Microarray dataset cluster. Expected results of an ideal outcome and a random
outcome. The left column displays the cluster of experiments where the labels are the dates on which the experiment was performed (a, c).
Adjacent identical dates are displayed in a red rectangle to indicate when clustering occurs by date. The right column displays the cluster of
experiments where the labels are the chemical compound that was used for each experiment (b, d). Adjacent identical chemical compounds are
displayed in a green rectangle as shown in the legend, to indicate when the same chemical compounds are clustering together. The ideal result
shows that experiments, performed using the same chemical compound, cluster together according to chemical compounds, where each cluster
can be seen in a green rectangle (b). The ideal result also shows that the experiments cluster by date only when they were performed using the
same chemical compound (a). The random score did not cluster any of the experiments according to chemical compound (d), and clustered
experiments by date only by chance.
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All methods found the replicate experiments as most
similar to one another, scoring the drug itself within the
top two most similar drugs.

Gene expression (transcript abundance) dataset
Having shown BE works on barcode data from different
studies, we next evaluated the BE method on an entirely
different data type, genome-wide expression profiles from
yeast. In this instance, gene expression is the measurement
of transcript abundance, which is used as a proxy to meas-
ure the relative transcriptional activity of genes. Using
microarrays, this process allows analyzing thousands of
genes at once, providing a global picture of transcript abun-
dance. For this analysis we selected the widely cited study
of Gasch et al. which contains microarray results for 173
environmental stress experiments for all ~6000 genes
[34]. This data was composed of gene expression abun-
dances of Saccharomyces cerevisiae to diverse environmental
conditions such as heat shock, oxidative and reductive
stress, osmotic shock, nutrient starvation, DNA damage
and extreme pH. In this dataset, high correlation scores be-
tween genes, represented by the transcript abundance mea-
sured, are indicative of a shared response to stress. These
data were initially analyzed using fuzzy k-means [35], a
method that differs from the standard k-means, as it pro-
vides a membership value for each gene to a centroid. Such
membership permits each gene (scored according to tran-
script abundance) to belong to more than one centroid,
which is critical because each gene may be co-regulated
with several groups. Gasch and co-workers used prior
knowledge about the data to select the k value according to
the expected number of clusters, and chose the initial cen-
troid locations according to known regulatory elements; we
therefore used this analysis as a benchmark. The BE
method positions the most affected genes, those with the
highest score represented by transcript abundance, in the



Figure 4 (See legend on next page.)
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Figure 4 Shabtai et al. Comparison of several correlation method outcomes using TAG4 Microarray dataset. Four correlation methods
applied to the same dataset were clustered to show the performance of BE compared to other methods. The left column displays the cluster of
experiments where the labels are the dates on which the experiment was performed (a, c, e, g). Adjacent identical dates are displayed in a red
rectangle to indicate when clustering occurs by date. The right column displays the cluster of experiments where the labels are the chemical
compound that was used for each experiment (b, d, f, h). Adjacent identical chemical compounds are displayed in a green rectangle to indicate
when the same chemical compounds are clustering together. The desired result of a cluster is that similar conditions will cluster together.
Examining the Pearson correlation cluster, the experiments cluster by date (a), due to a date batch effect. The BE method minimized the batch
effect where identical dates did not cluster together (g), while identical conditions (chemical compounds) did cluster together (h).
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top significant buckets, providing a high score for compar-
ing buckets among experiments with shared top genes,
which resulted in a high correlation score specifically be-
tween groups of highly affected genes, confirming the pre-
viously reported group of ~900 specific genes which were
found to be strongly affected throughout all stress treat-
ments (Additional file 6: Figure S2). This group of environ-
mental stress response genes represent a common gene
expression response to stress [2]. The affected genes
received statistically significant greater scores than the less
affected genes where p<2e-16 (Additional file 6: Figure S2c,
Additional file 6: Figure S2f). These findings suggest that
one can use the BE algorithm to locate unique groups of
genes that display similar pattern of expression in certain
experimental conditions, i.e. stress conditions or in the
presence of chemical compounds. The BE method was
found to perform as well as other correlation methods,
which also display a significantly higher score for the
reported genes (Additional file 7: Figure S3), including
Pearson, Spearman and Kendall, for locating groups of
similarly affected genes, presenting an additional applica-
tion of the BE method.

High throughput sequencing dataset
Next Generation Sequencing is rapidly being adopted
and applied by applications previously dominated to
microarrays, such as assessing abundance of yeast dele-
tion strains using barcodes [36], full genome sequencing
[37], transcriptome profiling [38,39] and epigenetics
studies [40]. Accordingly, we evaluated the BE method
on high throughput sequencing data of chemogenomic
profiles performed in a manner similar to the barcode
microarray data (see methods). For this method, the se-
quencing results consist of counts of barcode sequences
representing the abundance of strains for each experi-
ment [41]. The fitness defects are expressed as a log2
ratio of the strain specific barcode counts of strains
grown in the present of a drug versus strains grown
without the drug, for calculating the differences between
the treatment and control. These results build a sequen-
cing result matrix of strain fitness, a table of fitness de-
fect scores for each strain in each experiment, that
provided a dataset for using the BE. We ran the algo-
rithm on 12 experiments which included 4 repeated
experiments for each of 3 different drugs. The BE
method successfully identified the experiments where
repeated conditions clustered together according to the
drug (Additional file 8: Figure S4a). Experiments per-
formed using the same drug had a statistically significant
higher scores than different drug experiments where
P = 1.27e-20 (Additional file 8: Figure S4b). The BE
method performed better than the Pearson correlation
method (seen in cluster of repeated experiments in
Additional file 9: Figure S5a compared to Additional file
9: Figure S5d), and as well as non-parametric methods
including Spearman and Kendall correlations (Additional
file 8: Figure S4, Additional file 9: Figure S5, Additional
file 10: Figure S6). Such findings are significant as they
confirm that one can use the BE method to compare dif-
ferent chemical compounds using data originated from
high throughput sequencing experiments.

Conclusions
Rigorous evaluations on several datasets, which included
TAG4 microarrays, TAG3 microarrays, high throughput
Barcode sequencing and gene expression microarrays,
show that the BE algorithm overcomes most batch
effects (Figure 4). We confirmed that the BE algorithm
outperforms other well-established methods by statisti-
cally validating the differences of score distributions and
comparing these differences between the BE method and
other methods (Figure 5). Clustering of results showed
the BE algorithm successfully identified similar con-
ditions for microarray and sequencing data (Figure 4,
Additional file 5: Figure S1d and Additional file 8:
Figure S4). The BE method performed as well as other
methods by successfully locating the group of key genes as
most sensitive to environmental changes, attaining the
highest similarity scores (Additional file 6: Figure S2).
Having tested the BE method on data collected from

different technology platforms, we conclude that the
method is applicable to other datasets where correlation
between values is needed. For example, fine tuning the
BE variables for different datasets, e.g. for high through-
put sequencing data required modifying the first bucket
size to be 0.05% of the total number of genes, and setting
the maximum amount of buckets to 20 (Additional file 11:
Figure S7). In general, achieving accurate correlation of



Figure 5 (See legend on next page.)
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Figure 5 Shabtai et al. Four correlation score distribution outcome of TAG4 Microarray dataset. The BE algorithm is least affected by the
experiment date and most affected by experiment’s chemical compound used. The graphs show the distribution of scores. The graphs on the
left column represent results affected by date (a, c, e, g). The solid blue line represents the score distribution of experiment pairs performed on
identical dates, and the fragmented red line represents the score distribution of experiment pairs performed on different dates (a, c, e, g). The
distributions according to date are significantly diverse for Pearson, Spearman and Kendall correlations (a, c, e), whereas the distributions by date
are similar for BE correlation (g), meaning the scores were highly comparable for experiments done on the same date compared to experiments
done on different dates. The graphs on the right column represent the score distributions affected by chemical compound (b, d, f, h). The solid
blue line represents the score distribution of experiment pairs using identical chemical compounds, and the fragmented red line represents the
score distribution of experiment pairs using different chemical compounds. All methods show that the distribution of the same chemical
compound scores is significantly different than the distribution of different chemical compound scores, signifying, as expected, that all methods
are affected by the chemical compound. The BE method shows the most significant difference in distribution compared to the other methods
(h), being most affected by the chemical compound.
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results may involve similar fine-tuning. The general ap-
proach of bucket-weighted scores can therefore be applic-
able to both groups of highly similar profiles, and diverse
matrices, according to the definition of the variables. This
method may also be applicable to data collected from emer-
ging technologies, such as new next generation sequencing
applications, as finding correlation between results will con-
tinue to be beneficial [41].
We note that despite being applicable to many dataset

models, like any algorithm it cannot satisfy all datasets.
When considering whether to use the BE method or
other methods, one should take into account several fac-
tors. First, whether the data is significant for both posi-
tive and negative values. As the BE method evaluates
scores according to rank, datasets that are significant for
both positive and negative values are not analyzed prop-
erly. This occurs due to negative values appraised as in-
significant relative to positive values. For example, a
genomic expression dataset can hold positive scores for
induced genes and negative scores for repressed genes,
represented by transcript abundance. Therefore both
positive and negative values are significant, as they both
show a change in cell response to the conditions mea-
sured in the experiment. One way to surmount this
problem, which we used in our study, is to split the ori-
ginal dataset into two with the first dataset containing
positive values, and the second containing only the abso-
lute values of the original negative values. Running sep-
arate analysis for positive and negative values can then
identify affected genes, represented by their transcript
abundance.
The second factor is whether there is prior data that is

relevant to the dataset which the user wishes to incorp-
orate when assessing similarity between experiments. An
example is the work done by Gasch and co-workers (see
section 3.3), in which they wished to filter out highly
regulated genes. Gasch and co-workers used the fuzzy k-
means method, which uses prior knowledge about the
expected number of clusters, and regulatory elements
(see section 3.3). As a result many genes that are highly
co-regulated, based on prior knowledge of the regulation
factors, were filtered out. If the user wishes to ignore
subsections of the dataset, the BE method is not suitable,
as it is specifically designed to avoid the need of prior
knowledge about the dataset, and to use an entire-
dataset analysis approach.
We implemented the BE method so that it is available

in a graphical user interface environment program. The
application loads an input dataset, provided by the user,
and produces a similarity matrix according to the BE vari-
able definitions. The software is available for download
(Additional files 12, and 13) along with sample input and
output files (Additional files 14, 15, 16, and 17) [42].

Methods
Chemogenomic profiles
The chemogenomic profiles we compared were created
by using the yeast Saccharomyces cerevisiae deletion
strains collection [2-5]. Heterozygous and homozygous
diploid gene deletion collections were used to determine
those gene products of pathways most affected by treat-
ment [12]. In this method each deletion strain is tagged
with a barcode, which is a unique 20 bp sequence used
for identification of the strain. After a collection of
strains is grown in the presence of a compound, the sen-
sitivity of each deletion strain is measured as a decrease in
its abundance by PCR amplification of the strain specific
barcodes followed by barcode microarray hybridization or
barcode sequencing (Bar-Seq) [4,41]. This method allows
identifying potential drug targets and/or genes and path-
ways required for growth in the presence of a compound
[3,12].
The results of each experiment are microarray signal

intensities or barcode sequence counts, which reflect
barcode abundance and, by extrapolation, strain abun-
dance. These values are normalized by evaluating the
log2 ratio between the signal intensities of drug-treated
pools and control pools, which are mock treated with
DMSO. This value is represented as the strain’s fitness
defect. In a typical experiment, a few strains show a high
fitness defect while the majority show little or no defect
relative to the control treatment. Lower values may be
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true sensitive strains, yet are not necessarily located
when using a set threshold, because they are concealed
within midrange values that are considered background.
Levelled scoring matrix
The levelled scoring matrix is constructed of decreasing
scores, from high scores for a gene in closely ranked
groups (buckets) to low scores for a gene in distant
groups (buckets). When comparing profiles, the score
matrix yields the score of Si,j to a gene located in bucket i
and bucket j n each of the profiles compared. For a score
of Si,j the scoring matrix follows these guidelines: (1) For
each experiment, the strains are divided into buckets.
The buckets are ordered in ascending importance so that
a lower bucket holds the strains with the highest fitness
defect. (2) Assign higher scores for “hits” in different
experiments which fall within the same bucket, while
taking into consideration that first buckets are more sig-
nificant than last buckets, where Si,j for experiments
Exp1 and Exp2, is the score of a fitness defect strain
which is located in bucket i in Exp2, and in bucket j in
Exp2. (3) 8i; j i < j⇒Si;i > Sj;j

�
� For example: S1,1 > S1,2. (4)

Assign a higher score for hits in closer buckets:
8i; j; k i < j < k⇒Si;j > Si;k

�
� . For example: S2,3 > S2,4.

We built the scoring matrix formula, in accordance to
these guidelines (Additional file 1: Table S1), where n
represents the total number of buckets; c represents the
current bucket column. The top score (bucket 1 vs.
bucket 1) is a value set according to the total number of
buckets, in order to achieve a wide spread of scores
throughout the table. For example, the range of scores
for n = 5 buckets is from S1,5 = 2.1 10-4 to S1,1 = 2(5-1) =
16, while the range of scores for 11 buckets is from S1,11
= 9.9 10-16 to S1,1 = 2(11-1) = 1024 (Additional file 2:
Table S2). This example shows how the most significant
buckets hold few genes (buckets are smaller in size), yet
have the potential of receiving the highest scores giving
more significance to the most sensitive genes, providing
that the most sensitive genes appear in close buckets for
both experiments being compared (such as the scores in
the fragmented red rectangle). If a gene is in distant
buckets, the score is lower, i.e. a strain in bucket 6 in
both experiments is scored 1.42, while a strain in bucket
6 in one experiment, and in bucket 5 in another is scored
0.237 (Additional file 2: Table S2). For hits in the same
bucket, the score will be more significant for a lower
bucket, i.e. a strain in bucket 2 in both experiments will
get a score of 512, while a strain in bucket 4 in both
experiments will get a score of 42.67 (Additional file 2:
Table S2).
By creating a general formula, rather than an un-

changeable scoring matrix that corresponds to the
guidelines, we allow flexibility in algorithm analysis for
different types of data. Other scoring matrices, which
correspond to the defined guidelines, may also be suit-
able. The formula we constructed allows defining the
bucket sizes – how many genes can a bucket contain. If
the most significant buckets contain fewer genes, the
similarity score will be more stringent, and will provide
a high similarity scores for experiments sharing few hits.
When the most significant buckets contain many genes,
the similarity score will be broader, and will find high
similarity between experiments with larger distances be-
tween gene rank locations. The accompanying software
provides the user with the ability to change these para-
meters according to the dataset, and in addition, using
pre-set values for evaluating the suitable parameter
values.
Software imaging and implementation
Images and analysis were created using R [43]. Figure 1b
was created using SPSS [31]. The BE software was devel-
oped using C# .NET 3.0 Framework. The software is
available for download [42].
Additional files

Additional file 1: Table S1. Shabtai et al. Scoring matrix formula. A
scoring matrix formula in accordance to the guidelines needed for BE
scoring. The top score (bucket 1 vs. bucket 1) depends on the total
number of buckets (n) in order to achieve a wide spread of scores
throughout the table. For example, the range of scores for n = 5 buckets
is from S1,5 = 2.1 10-4 to S1,1 = 2(5-1) = 16, while the range of scores for 11
buckets is from S1,11 = 9.9 10-16 to S1,1 = 2(11-1) = 1024 (as seen in
Additional file 2: Table S2). n = Total number of buckets. c = Current
bucket column Si,j= Score for when comparing bucket i to bucket j.

Additional file 2: Table S2. Shabtai et al. Implementation example of
the scoring matrix. Implementation example of the scoring matrix
(Additional file 1: Table S1) where the number of buckets (n) equals 11
(therefore S1,1 = 2(n-1) = 1024). The cell colour, ranging from yellow to
blue, indicates the significance of a similarity score when comparing
gene ranks between experiments. The most significant buckets hold few
genes (buckets are smaller in size), yet have the potential of receiving the
highest scores (shown in blue) giving more significance to the most
sensitive genes, providing that the most sensitive genes appear in close
buckets for both experiments being compared (such as the scores in the
fragmented red rectangle). If a gene is in different buckets for the
compared experiments, the score is lower, i.e. a strain in bucket 6 in both
experiments is scored 1.42, while a strain in bucket 6 in one experiment,
and in bucket 5 in another is scored 0.237. For hits in the same bucket,
the score will be more significant for a lower bucket, i.e. a strain in
bucket 2 in both experiments will get a score of 512, while a strain in
bucket 4 in both experiments will get a score of 42.67.

Additional file 3: Scoring Matrix Example. An Excel file which
implements the scoring matrix formula (Additional file 1: Table S1), and
shows how each score is calculated (see formula bar of each cell).

Additional file 4: Table S3. Shabtai et al. Top three similar drugs in
TAG3 Microarray dataset using several correlation methods. Top three
drug similarity scores of the group of drugs that were reported as
similar. Each drug column mentions the amount of drugs that were
in the top three highest scores. For example, Pearson correlation
showed alverine-citrate experiments as most similar to all three
reported drugs: alverine-citrate, dyclonine and fenpropimorph. BE is
the only method which identified the similarity for all drugs (100%)
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recapitulating the previously reported similarity of alverine-citrate,
dyclonine and fenpropimorph.

Additional file 5: Figure S1. Shabtai et al. Comparison of TAG3
Microarray similarity results. A comparison of barcode TAG3 microarray
similarity results between a variety of correlation methods including
Pearson (a), Spearman (b), Kendall (c) and BE (d). Each colour represents
a drug, and each column represents similarity scores of one drug to
other drugs using coloured bars according to the compared drug. An
example of a column is seen in figure a showing similarity levels to
alverine citrate as calculated using Pearson correlation. Each bar
represents a different drug, and the size of each bar represents the level
of similarity to alverine citrate as a percentage of the top score of the
method used (e). To recapitulate the previously reported similarity
between three drugs: alverine-citrate, dyclonine, and fenpropimorph, we
used different methods, and ascertained all methods found similarity
between these drugs as seen in the orange (alverine-citrate), green
(dyclonine) and blue (fenpropimorph) bars. The top three most similar
drugs are mentioned within the drug’s similarity column of each method,
in a rhombus, for these drugs. For the BE method, the top three values
for these compounds are the three compounds themselves, where the
chemical structure of these drugs is similar explained by a similar mode
of action (d). BE was the only method where all three drugs shared the
same top three similar drugs.

Additional file 6: Figure S2. Shabtai et al. Gene similarity results using
BE on a Genomic Expression Dataset. In order to locate genes of interest,
the BE method was executed on a dataset of yeast response to
environmental changes. Because both negative values and positive
values are meaningful, we created two datasets where one included all
positive values (negative values were set to 0) and the second dataset
included all negative values, set to their absolute value (positive values
were set to 0). Results show how the BE method successfully located the
most affected genes , according to measured transcript abundance,
confirming the 586 positively affected genes (a), and the 282 negatively
affected genes (d), marked in yellow in the ranked scores as seen as the
exceedingly affected genes. The higher scores, that the 868 genes
received compared to other genes, can be seen in light green for both
positive (b) and negative (e) scores. The 868 genes received statistically
significant greater scores than other genes both for positive (c P<2e-16)
and negative (f P<2e-16) affected genes where the full green line
represents the positively (c), induced genes (c), and negatively, repressed
genes (f), and the fragmented red line represents the rest of the genes.
The distribution of scores for the less affected genes displays two peaks
due to lower scores for the negative genes compared to the other genes
and seen as two dark stripes (b), marked in blue at the low end scores
(a).

Additional file 7: Figure S3. Shabtai et al. Score distributions of
several comparison methods for a Genomic Expression dataset. The
distribution of scores of the Gasch et al. study dataset. The green line
represents the score distribution of the previously reported group of
genes found to be significantly affected by the stress treatments. For the
negative score dataset (a, b, c, d), the green line represents the group of
~300 repressed genes, and for the positive score dataset (e, f, g, h), the
green line represents the group of ~600 induced genes. The fragmented
red line represents the score distribution of the genes other than the
reported group of genes. The methods used for comparing the score
distribution included BE, Pearson, Spearman and Kendall correlations. All
methods showed there are statistically significant higher scores for the
reported genes (similar W statistic value) successfully locating the
affected genes. The BE method performed as well as other methods
identifying the affected group of genes, moreover, it differentiated the
lower results and identified anti-correlation between the two groups of
~300 and ~600 affected genes by showing two peaks for the lower
scores.

Additional file 8: Figure S4. Shabtai et al. Similarity results between
experiments using BE on a sequencing dataset. Running the BE method
on high throughput sequencing data successfully cluster experiments
using the same drug (a). We used the Wilcoxon test to evaluate the
distribution of the scores (b) of same drug experiment scores (green line)
and different drug experiment scores (red line). These results showed
that same drug scores received a statistically significant higher score than
different drug scores (P=1.27e-20).

Additional file 9: Figure S5. Shabtai et al. Comparison of several
correlation method outcomes using TAG4 Microarray dataset. A
comparison of several methods, including Pearson (a), Spearman (b),
Kendall (c) and BE (d), for finding correlations between barcode
sequencing experiments. A heat-map and dendrogram displays the
clustering of experiments for each method. For BE, Spearman and
Kendall methods, all experiments that were performed using the same
drug clustered together, showing BE (d) performed as well as other
non-parametric methods, including Spearman (b) and Kendall (c). BE
performed better than the Pearson correlation (a), where not all
same-drug experiments clustered together.

Additional file 10: Figure S6. Shabtai et al. Score distributions of
several comparison methods for a sequencing dataset. The score
distribution of several methods, including Pearson (a), Spearman (b),
Kendall (c) and BE (d) of correlations scores of barcode sequencing
experiments. The full green line represents the similarity score
distribution of experiments performed using the same drug, while the
fragmented red line represents the score distribution of experiments
performed using different drugs. All methods present statistically
significant greater scores to experiments performed using the
same drug.

Additional file 11: Figure S7. Shabtai et al. Fine tuning the BE variable
values. The output of using different BE variable values for high
throughput sequencing dataset shows how fine tuning the value can
produce a better result. When using an initial bucket size of 5%, not all
experiments cluster according to the chemical compound (a). When
using an initial bucket size of 0.05%, all experiments cluster according to
the chemical compound (b), showing how fine tuning the value can
produce better results.

Additional file 12: Bucket Evaluations Software. An executable file of
the BE software.

Additional file 13: Software Manual. An explanation of the software
architecture, and how to use the software.

Additional file 14: Sample Input Dataset. An example dataset of an
input file for using the software (12 experiments, 6003 genes).

Additional file 15: Sample Output Stringent. The file produced when
running the sample input, comparing the columns (experiments) using
stringent pre-set values.

Additional file 16: Sample Output Intermediate. The file produced
when running the sample input, comparing the columns (experiments)
using intermediate pre-set values.

Additional file 17: Sample Output Broad. The file produced when
running the sample input, comparing the columns (experiments) using
broad pre-set values.
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