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Fine-grained knowledge about manipulable
objects is well-predicted by contrastive
language image pre-training

Jon Walbrin,1,2,4,* Nikita Sossounov,1,2 Morteza Mahdiani,3 Igor Vaz,1,2 and Jorge Almeida1,2
SUMMARY

Object recognition is an important ability that relies on distinguishing between similar objects (e.g.,
deciding which utensil(s) to use at different stages of meal preparation). Recent work describes the fine-
grained organization of knowledge aboutmanipulable objects via the study of the constituent dimensions
that are most relevant to human behavior, for example, vision, manipulation, and function-based proper-
ties. A logical extension of this work concernswhether or not these dimensions are uniquely human, or can
beapproximatedbydeep learning.Here,weshowthatbehavioraldimensionsaregenerallywell-predicted
by CLIP-ViT - a multimodal network trained on a large and diverse set of image-text pairs. Moreover, this
model outperforms comparison networks pre-trained on smaller, image-only datasets. These results
demonstrate the impressive capacity of CLIP-ViT to approximate fine-grained object knowledge. We
discuss the possible sources of this benefit relative to other models (e.g., multimodal vs. image-only pre-
training, dataset size, architecture).

INTRODUCTION

Correctly recognizing and using everyday manipulable objects (e.g., a hammer) is a critical human ability, and uncovering the organization of

human object knowledge is a long-standing research aim. Coarse-grain, category-specific characteristics of human object knowledge are

shown via category-selective brain responses (e.g., distinct cortical activations for tools, faces, animals1–3 although these regions are typically

identified using visual tasks, the representational contents of many of these areas reveal that they are sensitive to semantic properties beyond

vision4–11). Category-specific distinctions are important, but everyday human behavior is often more reliant on finer-grain, within-category

discriminations. For example, when preparing a meal, selecting and using the correct kitchen utensils is more useful than distinguishing

the kitchen utensil from an animal. One powerful means of measuring finer-grained distinctions is via the study of the representational sim-

ilarities between objects.12 For example, the similarity of a given pair of objects is measured by their distance from each other within a high-

dimensional representational space (e.g., a space defined by a set of object features, such as elongation, size13). However, the specific fea-

tures, or dimensions that most strongly drive similarities, are often not immediately apparent.

Indeed, objects can be described by a rich set of dimensions, for instance, shape, grip type, usage context, and recent work has begun to

reveal the central dimensions that govern object knowledge. For example, Hebart et al.14 (see also15,16) used human behavioral judgments to

develop a computational model that identifies a set of human-interpretable object dimensions. These results are complemented by other

work that describes the conceptual space spanned by objects via behavioral and neural measures.17–19 These studies used large stimulus

sets that reveal dimensions that describe known categorical distinctions such as body parts, food, and animals. Recently, Almeida et al.,20

adopted a similar approach to identify the within-categorymultidimensional structure of manipulable/hand-held objects. This work demon-

strates that multimodal dimensions - vision, manipulation, and function-related dimensions - are extractable from human behavioral judg-

ments, and that these dimensions can in turn be learned by naive participants, and are neurally relevant (i.e., they explain responses tomanip-

ulable objects across different brain areas that are consistent with the human tool network).

In brief, these dimensions provide insight into the fine-grained structure of human knowledge about manipulable objects. One important

advancement of this work lies in determining whether these dimensions are uniquely ‘‘human’’ or whether they can be approximated by deep

learning. Human object knowledge arises frommultiple factors and constraints that may not be grasped inmany deep learning scenarios. For

example, the organization of object responses in the brain is strongly influenced by structural and functional connectivity.7,21–23 Develop-

mental work shows that object and conceptual knowledge undergoes continual refinement across childhood24–29 and much of this learning

depends on human mechanisms that are not explicitly implemented in most pre-trained neural networks, for example, complex sensory
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experience such as visuo-motor grasping behavior. However, neural networks may still acquire some aspects of human object knowledge.

Studies that probe the representational contents of pre-trained neural networks reveal evidence of ‘‘incidental learning’’ of information

that is not explicitly intended: For instance, convolutional neural networks (CNNs) trained on an a simple image classification task can learn

certain semantic associations - for example, image representations for bicycles are more similar to helmets than semantically unrelated ob-

jects, such as forks,30 and fish are more similar to underwater scenes than land scenes.31

These associations arise from statistical regularities that are present in training data, for example, via repeated exposure to the co-occur-

ence of objects in images. Indeed, there is also evidence that statistical regularities contribute to human object knowledge. For example,

expectations that arise from day-to-day experience with objects are shown to influence behavioral and neural responses to objects, such

as faster recognition of an airplane when presented in the upper-rather than than lower visual field, or for groups of semantically related ob-

jects relative to unrelated objects.32,33 In short, neural networks trained on human generated data - that implicitly learn some of the statistical

regularities that are inherent to human object knowledge - may capture certain aspects of human object knowledge. However, to capture

finer-grained details, more powerful models are likely needed.

Recently, deep representation learning approaches have made impressive gains in terms of approximating human behavior (e.g., GPT,

BERT). For example, contrastive language image pre-training (CLIP)34 jointly trains image and text embeddings from a large dataset

(e.g., > 2 billion image-text pairs) to generate semantically elaborate representations that transfer well to other tasks, such as zero-shot image

classification. Beyond the exposure to a vast training dataset thatmay facilitate the learning of statistical regularities, the combination of visual

and linguistic information employed by CLIP allows for the acquisition of deeper semantic representations: This likely accounts for recent

demonstrations that CLIP outperforms comparison networks in the prediction of neural object responses.35–37 Accordingly, CLIP is potentially

well-suited to learn relatively subtle information about objects - such as manipulable object dimensions - beyond simpler semantic distinc-

tions already shown by neural networks.30,31

The present study investigates whether humanderived object dimensions are well-approximated by deep learning. To do so, we cast each

dimension as an outcome variable in a separate regression analysis where neural network (e.g., CLIP) features serve as predictors. Modeling

human-to-neural-network correspondence in this waymay have several advantages over representational similarity analysis (RSA) - a common

approach for human-to-neural-network comparisons.30,31,38,39 First, RSA measures the overall similarity of two measures or systems by

comparing their multi-dimensional representational spaces, but does not consider the constituent dimensions that structure these spaces:

The potential interpretational value of these dimensions is overlooked - for example, understanding that human-network correspondence

is driven by a dimension consistent with ‘‘elongation’’ is more informative than broadly construed ‘‘visual properties.’’ Second, most RSA ap-

proaches are agnostic to the weighting of individual input features such that all features froma neural network layer are assumed to contribute

equally (although some modified approaches overcome this problem.40 In brief, modeling dimensions directly may allow a more direct and

detailed comparison of human knowledge and deep learning.

Here, we show that CLIP affords relatively good predictions of human-derived object dimensions, and is able to predict behavioral cate-

gorization results over novel (unseen) objects based on these object-related dimensions. This demonstrates an impressive standard for the

fine-grained representational correspondence of object information between humans and artificial neural networks.

RESULTS

Overview of dimension extraction: Almeida et al. (2023)

We investigated whether human-derived object dimensions can be reliably predicted by a CLIP network, along with a set of comparison neu-

ral networks. These dimensions are identical to those obtained by Almeida et al.,20 and we start with a brief overview of how they were ex-

tracted (see Figure 1 for a visualization of these dimensions; see STARMethods for further details). Subjects completed a computerized ‘‘word

piling’’ task where they arranged a set of word icons - that depict 80 manipulable objects - into piles based on their judged similarity, that is,

similar objects in the same pile. This task was performed for 3 knowledge types - vision, manipulation, and function based properties of the

objects. Group level representational dissimilarity matrices that describe the pairwise dissimilarities for the object set)were obtained for each

knowledge type. Non-metric MDS (using the mdscale function in MATLAB 2019b) with Kruskal’s normalized stress criterion was applied to

each of thesematrices to obtain a set of dimensions that explainmost of the variance for each knowledge type. This resulted in 15 dimensions

overall - 5 vision dimensions, 6 manipulation dimensions, and 4 function dimensions. Importantly, each dimension describes a continuous

ordering of the 80 objects, such that the numerical score of each object indicates where it is situated along the dimension (from high to

low extremes).

These dimensions were extracted in a data-driven manner, and so are not forced to be cognitively interpretable, however a free-labeling

task in an independent set of subjects revealed that they can be labeled consistently. For example, the first vision, manipulation, and function

dimensions are consistent with the concepts of ‘‘metal vs. other materials,’’ ‘‘power vs. precision grip,’’ and ‘‘cooking vs. sports,’’ respectively

(see Figure 1 caption for a full description of these labels). The behavioral relevance of these dimensions was demonstrated in separate sub-

jects that were able to accurately learn the ordering of objects along dimensions in an alternative forced choice task. Finally, these dimensions

also explain the variance of brain areas (via parametric analysis) that typically show tool-preferring responses.

Human-derived dimensions are well-predicted by contrastive language image pre-training-ViT representations

To test whether human-derived dimensions can be recovered by neural network image representations, cross-validated regression was per-

formed for each dimension separately (see Figure 2D). On each fold - 10 in total - predictionswere generated froma training set that consisted
2 iScience 27, 110297, July 19, 2024



Figure 1. Visualization of objects for each of the 15 behavioral dimensions (obtained by Almeida et al.)

Vision (V1-V5), manipulation (M1-M6) and function dimensions (F1-F4) are shown. For more intuitive visualization, the 10 highest and 10 lowest objects on either

extreme of the dimension are shown on the left and right of the row, respectively. The descriptive labels given for dimensions by subjects from 20, are as follows.

Vision dimensions: Metal vs. other materials (V1), elongated vs. round (V2), size (V3), material properties (V4), sharp/tapering/pointy (V5). Manipulation

dimensions: Power vs. precision (M1), dexterity vs. force (M2), hand vs. finger movements (M3), press/squeeze (M4), rotation (M5), fine vs. coarse movements

(M6). Function dimensions: Cooking vs. sports (F1), kitchen vs. office (F2), cleaning vs. construction (F3), studying vs. household chores (F4).
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of 90% of object images and subsequently tested on the remaining 10% of images. That is, from an original image set of 800 images that

consisted of 10 exemplars per each of the 80 objects (see Figure 2A for example images of the 80 objects), 720 images (9 sets of exemplars)

were used to train on each fold, with the remaining held-out image set of 80 object images used for testing. To achieve this, image repre-

sentations were extracted from a given neural network, and principal component analysis (PCA) and recursive feature analysis (RFE) were per-

formed to identify the final sets of features for each cross-validation fold that were used for making predictions (X = components derived from

PCA + RFE; y = dimension scores for the objects). Model fits (e.g., R2) were used to determine goodness-of-fit for each fold, and then aver-

aged together to obtain a final model fit. For each dimension, significance testing ofmodel fits was performed by comparing each final model

fit value against a permutation distribution of model fits generated from 5000 ‘‘random dimensions’’ where dimension scores were shuffled

(see STAR Methods for full details).

We first present results for the best performingmodel - CLIP-ViT - the H-14 vision transformer variant basedCLIP network (based on output

representations of the image encoder). We then present comparison analyses with several other networks. As described previously, CLIP-ViT

was pre-trainedonmultimodal information (image-text pairs for >2 billion stimuli) and is shown to rival or exceed the performance of CNNs on

a variety of human object-related tasks.34,37,41

Indeed, we show here that most behavioral dimensions are relatively well-predicted by CLIP-ViT (see Figure 3A; results shown when

modeling with the best 10 components per dimension). Specifically, model fits are significantly better than a chance for each respective

dimension across the 3 knowledge types - vision, manipulation, and function related knowledge. R2 values range between 0.80 and 0.65
iScience 27, 110297, July 19, 2024 3



Figure 2. Stimulus sets and overview of the cross-validation approach

(A) Example images for the 80 objects image set.

(B) Example images for THINGS image set (63 object identities that are also in the 80 object set).

(C) Text labels for each of the 80 objects (objects that are also in the THINGS image set are shown in bold).

(D) Schematic of the cross-validation approach for the main analysis. In this example, CLIP image representations are depicted as rows in the large red-ish matrix

(e.g., 9 exemplar sets of 80 objects = 720 training samples), with the remaining images depicted in thematrix below (80 objects for the ‘‘held-out’’ exemplar set =

80 test samples). Cross-validated PCA & RFE was applied to reduce these representations to a set of components (e.g., 10 components; blue matrices) that

served as predictors (X) for the scores of a given dimension (y; green-blue vectors).
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for the first dimension of each knowledge type. Interestingly, the strength of model fit of dimensions shows some correspondence with their

ordering, with later dimensions showing weaker model fits. Importantly, this may relate to the fact that these latter dimensions explain less

variance of the original similarity data.20

We next tested the generalizability of these predictions for a different image set - namely a subset of images taken from the THINGS image

database42 (see Figure 2B for example images). This consisted of 63 objects that were also in the 80 objects set. Unlike the original 80 objects

images that were visually controlled (gray-scaled and segmented on a white background), images from the THINGS set depict objects in a

more naturalistic context (e.g., full color with background scenery), and so comparisons with this image set serves to further validate the pre-

dictive capacities of CLIP-ViT. As before, we implemented cross-validated regression by training eachmodel on representations derived from

the 80 object image set, and testing on those associatedwith the THINGSobjects (see STARMethods for further details). As before,model fits
4 iScience 27, 110297, July 19, 2024



Figure 3. Regression model fits for CLIP-ViT, for each behavioral dimension

(A) Model fits for cross-validation on the original 80 object image set.

(B) Model fits when generalizing to the THINGS image set (training on 80 object images, testing on THINGS database images). These results are based on

modeling with the 10 best components (per cross-validation fold) as predictors (X) for each respective target dimension (y). Bars show the mean model fit

(R2) across folds, error bars are SEM of fits across folds. Above-chance model fits based on 5000 permutations are indicated with black circles (p % 0.001).

(C) Regression model fits for each behavioral dimension when considering different sized sets of best k components. Colored lines are mean model fits for each

dimension across folds, error bars are SEM of fits across folds.Model fit is adjusted R2 to correct for inflatedmodel fit estimates with increasingly large component

sets. Vertical gray dashed line indicates best 10 components as shown in sub-figures A & B. Colored dots show significance for each dimension and best k

components value - opaque and transparent circles denote significance at p % 0.001, and p < 0.05, respectively.
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are well-above chance for most dimensions, and in most cases, of comparable magnitude (see Figure 3B; results shown when modeling with

the best 10 components per dimension).

The preceding results show modeling performance when selecting the best 10 components as regression predictors; that is, on each

training fold, selecting the 10 components that yield the highest regression coefficients for the training data, and then independently testing

them on held-out data. We also present model fits (adjusted R2) across a range of ‘‘best k component’’ values (1, 5, 10, 20, 30, 40, 50 com-

ponents) for each dimension to explore how model fits change as a function of component set size. Model fits are above-chance for all di-

mensions and best component sets (see Figure 3C). The sharpest increase in model fit occurs for most dimensions between 1 and 5 compo-

nents, with more gradual improvements up until 30–40 components, with small reductions in model fits occurring thereafter. Notably, the first

and second dimensions of each knowledge type - V1, M1, F1 - tend to show the highest model fits across component sets, although later

dimensions (i.e., 3 onwards) tend to show relatively similar model fits for larger sets of components. Together these results reveal the striking

capacity of CLIP-ViT to capture human-derived object dimensions.

Contrastive language image pre-training-ViT component consistency analyses

The previous analyses were performedwith cross-validation and so the definition and selection of CLIP-ViT components on each fold was free

to vary - that is, thedefinitionandselectionof componentspotentially variedacross folds.We thereforeexploredwhich componentsweremost

likely to be selected, and whether the components that were selected were ‘‘chosen’’ in a consistent fashion across folds. Two analyses were

performed. First, we inspected the selection frequencies of the 10 modal best components per dimension - that is, the 10 components that

were most frequently selected across all cross-validation folds, as shown in Figure 4A. We note 2 observations. 1) The first few dimensions

for each of the 3 knowledge types rely strongly on ‘‘early’’ components (i.e., components 1–5); that is, 2 or more of the first 5 CLIP-ViT compo-

nents are consistently selected for the first few behavioral dimensions. By contrast, the remaining dimensions tend to draw more upon later

components (component6onwards).Wenote that, although thedefinitionof thesecomponentsmay vary slightly across cross-validation folds,

we assume that these differences are relativelyminimal given the large amounts of training data in each fold. Nevertheless, it is likely that there

is less across-fold variability in thedefinitionof early components relative to later components, by virtueof earlier components explainingmore

variance of the original data than later components. This may contribute to the relatively higher selection frequencies observed for earlier
iScience 27, 110297, July 19, 2024 5



Figure 4. CLIP-ViT component analyses

(A) Selection frequencies of the modal 10 best components across 10 cross-validated folds are shown for each behavioral dimension. Color intensity (0–1)

indicates the proportion of folds for which that component was included across folds. This analysis shows that the first 2–3 dimensions for each knowledge

type rely strongly on the first 5 components.

(B) Conjunction (overlap) of the 10 best selected components across each of the 10-folds. Within-dimension overlap is shown on the main diagonal of the matrix,

off-diagonals are between-dimension overlap. Color intensity (0–10) represents themedian overlap of selected components across all folds. This analysis shows a

relatively high across-fold consistency of the best 10 selected components selected for each dimension.
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components. 2) Within the first 5 components, there is rarely more than one overlapping component across dimensions (however, for the first

vision dimension, there are 2 overlapping components with the third vision dimension, and 3 overlapping components with the second func-

tion dimension). This demonstrates that the prediction of different dimensions largely depends on independent sets of components.

Next, we examined the consistency of component selection across folds within each dimension versus between dimensions. Specifically,

we calculated the selection overlap (conjunction) of the best 10 components for each of the 10-folds - that is, the number of components that

are commonly selected across the 10 fold-wise selections of best 10 components. In Figure 4B, matrix diagonals depict within-dimension

overlap and off-diagonals show between-dimension overlap. Within-dimension overlap is unequivocally higher than between-dimension

overlap (median within-dimension overlap ranges between 5 and 6 components; overlap was slightly lower - 4 components - for the last

dimension of each knowledge type, along with the third manipulation dimension). Despite greater within-than between dimension overlap

across leave-one-object-out folds, these results also suggest moderate differences in the components selected across folds that ostensibly

result from slightly different exemplar images used per fold. In short, these results suggest that component selection is relatively stable across

folds, and that each dimension draws from a relatively distinct set of components.
Human behavior and contrastive language image pre-training-ViT representations reveal generalizable dimension

predictions

We next tested two critical aspects of object dimension knowledge with a set of 20 previously unseen objects. Examples of these images are

shown in Figure 5A. First, can humans generalize their learned understanding of the dimensions to held-out objects that were not included in

the original definition of these dimensions? Second, can CLIP-VIT representations predict human behavioral judgments about these held-out

objects? To do so, we obtained both model predicted dimension values from CLIP-ViT representations and human predicted dimension

values from a behavioral task described as follows.

This task entailed three phases (see20 for a similar task; see STARMethods for more details). In the first two phases (training phases), adult

participants (n = 10, 10, & 11 subjects per V1, M1, & F1 dimensions, respectively) completed a computerized task. This entailed passively

learning (via on-screen feedback, no response given) whether each target object (represented with a word token) was more similar to an an-

chor object situated at either extremeof the dimension: That is, extremeA corresponds to the object with the highest score on the dimension,

and extreme B corresponds to the lowest scored object, according to the rank order of the dimension values for each object, respectively. For

the secondphase, subjectsmade a binary decision as towhether the target object in each trial was closer to the anchor object on extremeAor

B of the dimension, and received feedback for each response. A subset of 50 of the original 80 objects were used as target objects.

For the third phase (test phase), participants were tested on their ability to generalize their understanding of each primary dimension (V1,

M1, F1) to 20 unseen objects that were not included in either the original definition of the dimensions or the preceding training phases. Again,

this entailed judging whether each unseen object was closer to an object on extreme A or B (24 trials per object; no feedback was given).

Importantly, these 20 objects do not have dimension scores: Instead, behavioral proxy values for these objects were obtained by calculating

the percentage of trials that each object was classified as closer to extreme A (scores ranged from 0 to 100%). The average values per object

across trials and subjects were used as human predicted dimension values for subsequent comparison with predictions from the CLIP-ViT

model.

Before comparing human and CLIP-ViT predictions, behavioral generalization performance was assessed by inspecting the average

responses for the 20 unseen objects. Importantly, if subjects failed to generalize their dimension knowledge to these objects, the mean
6 iScience 27, 110297, July 19, 2024



Figure 5. Both humans and CLIP-ViT representations make generalizable predictions about previously unseen objects for the primary dimensions (V1,

M1, F1)

(A) Humans can generalize their understanding of the primary dimensions to a set of 20 previously unseen objects (that were not used in the original definition of

the dimensions). Objects are plotted as a function of the percentage of trials where they are considered more similar to the highest scored object on the

dimension (high extreme). Error bars show SEM of judgments across individuals.

(B) Comparison behavioral data for a set of 30 untrained objects from the original set of 80 objects but distinct from the 50 objects used for the training phase of

the task. Markers and error bars are the mean and SEM values for ‘‘binned’’ objects along the dimension, plotted as an average across 8 consecutive objects, per

decile bin along the extent of the dimension. Black lines are cumulative Gaussian curve fits.

(C) Human behavior and CLIP-ViT representations show generalizable predictions about the 20 unseen objects. Bars show the mean model fit (R2) values

(between the behavioral predictions (y) and model predictions), error bars are SEM of model fits across folds. Black and gray circles indicate permutation

significance (p % 0.001 & p % 0.01, respectively).
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percentage of extreme A votes should be close to chance level across all items - that is, all objects categorized as extreme A approximately

50% of the time. However, if subjects could correctly generalize what they had learned, object judgments should vary as a function of their

similarity to extreme A objects - that is, those considered highly similar or dissimilar to extremeA should have responses close to 100% or 0%,

respectively.

Subjects showed a clear ability to generalize their knowledge of the primary dimensions to completely unseen objects (see Figure 5A): The

ordering generated for each dimension closely follows the expected pattern of the original dimension. For example, the arrangement of ob-

jects follows what is generally shown for the original dimensions illustrated in Figure 1, for example, ‘‘power vs. precision’’ grip for the first

manipulation dimension. In addition to the 20 unseen objects, responses to 30 untrained objects that were not included in the training phases

were alsomeasured (3 trials per object; note that these objects were not used during the training phases, but they were used in the original set

of 80 objects used to define the dimensions). Subjects’ object judgments for these 30 objects (see Figure 5B) clearly vary as a function of prox-

imity to extreme A - that is, objects that are closer to the high extreme of the dimension are judged as more similar to it than items on

extreme B.

Finally, we demonstrate that CLIP-ViT representations show relatively good prediction of human dimension judgments for the 20 unseen

objects (using cross-validated regression, similar to earlier analyses; see STAR Methods for full details). For vision and manipulation dimen-

sions, there is good correspondence between the dimension predictions that both humans andCLIP-ViTmake about these 20 unseen objects
iScience 27, 110297, July 19, 2024 7



Figure 6. Regression model fits (adjusted R2) for ImageNet pre-trained neural networks

Colored lines represent mean model fits across folds for each dimension, per best k selected components. Error bars are SEM of model fits across folds.

(A) IN-ViT.

(B) IN-ResNeXt101.

(C) IN-VGG16.

(D) IN-AlexNet (y axis re-scaled to capture poorer model fits). Colored dots show significance for each dimension and best k components value (opaque and

transparent circles denote significance at p % 0.001, and p < 0.05, respectively).
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(see Figure 5C; R2 values: V1: 0.71; M1: 0.55). For the function dimension this correspondence is also significant, but appreciably weaker in

strength (F1: 0.24; see discussion for further interpretation). In short, we show that CLIP-ViT representations make relatively generalizable pre-

dictions about human behavior that extend to objects outside of the original definition of the behavioral dimensions.
Comparison network analyses

To better contextualize the preceding CLIP-ViT results, we next tested whether other models that have been pre-trained for visual object

recognition showed similar results. Specifically, we tested a set of models that were not trained with a CLIP protocol, but instead on an

ImageNet protocol.43 Briefly explained, ImageNet is a large image database that is commonly used for pre-training vision-based neural net-

works with an image classification task - that is, learning to associate 1000 image categories with their corresponding class labels. We ex-

pected that CLIP-ViT would substantially outperform ImageNet models due to several factors: That is, these networks were pre-trained

with images only, with a simpler image classification objective, and using a smaller, less diverse training dataset.

Four networks were tested: 1) IN-ViT (visual transformer, variant H-14): This was chosen due to an identical transformer architecture as the

CLIP-ViT model. Importantly, comparisons with this model allow for the determination of whether any potential performance advantage for

CLIP-ViT arises from how it is pre-trained above-and-beyond its underlying architecture. 2) IN-ResNeXt101: At the time of testing, this was one

of the most performant CNNs on brainscore.org (in terms of highest correspondence with neural and behavioral benchmarks). 3) IN-VGG16,

and 4) IN-AlexNet: These CNNs were chosen due to their versatility and long-standing popularity (they have been widely adopted across

object recognition literature and achieve good performance across many test scenarios). For each network, output features were extracted

from the last layer before the classification head, and used analogously to CLIP-ViT representations.

Model fits (adjusted R2) for each dimension and best k component set, for each network, are shown in Figure 6. Three main trends are

noted. 1) For IN-ViT, IN-ResNeXt101, and IN-VGG16 networks, above-chance model fits are shown for all dimensions, across most best k

component sets. 2) For these three networks, model fits tend to be highest for vision dimensions, followed by manipulation, then function

dimensions. 3) IN-AlexNet performs relatively weakly compared to the other networks: Model fits are above-chance in some cases, especially

for the first dimension of each knowledge type, for the best 10–20 component sets before model fits fall-off. Fold-wise estimates are also

extremely noisy in some cases (see large error bars in Figure 6D; indeed, we observed that model fits were especially bad for 1-fold and

so we visualize results for the 9 remaining folds to avoid excessive re-scaling of the y axis). Additionally, we provide supplementary evidence

that modified image pre-training (EcoSet pretraining44) does not afford an appreciable improvement on standard ImageNet pre-training (see

Figure S1).

Finally, we ran direct comparisons between CLIP-ViT and the four other networks. Specifically, for each dimension and best k components

set, we calculated the unique variance explained by CLIP-ViT over-and-above each of the four other networks. For example, in the case of the

CLIP-ViT > IN-ViT comparison, this was calculated as the model fit of both models combinedminus the model fit of IN-ViT ([CLIP-ViT + IN-ViT

R2] - IN-ViT R2). Three trends are noted. 1) CLIP-ViT explains substantially more unique variance than the other models do (see Figure 7;
8 iScience 27, 110297, July 19, 2024
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Figure 7. Unique variance explained for CLIP-VIT relative to ImageNet networks

(A) IN-ViT as the comparison network.

(B) IN-ResNeXt101 as the comparison network.

(C) IN-VGG16 as the comparison network.

(D) IN-AlexNet as the comparison network (y axis is re-scaled to account for high unique variance estimates resulting from very poor model fits, as shown in

Figure 6D). Colored lines represent unique variance explained by CLIP-VIT over-and-above the comparison network, for each dimension, across different

best k component sets. Error bars are SEM of exemplar image sets. For reference, unique variance explained by the comparison network over-and-above

CLIP-ViT is plotted with gray scale lines (first dimension plotted in black with each successive dimension plotted in lighter grays).
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colored lines show unique variance of CLIP-ViT, and for reference, the ‘‘other’’ network is shown with gray-scaled lines). 2) Unique variance for

CLIP-ViT is oftenmost pronounced for best k component sets 5–10. 3) Unique variance explained by CLIP-ViT is generally highest for the func-

tion dimensions, followed bymanipulation-, then vision dimensions. In summary, CLIP-ViT shows superior prediction of the behavioral dimen-

sions than the other 4 networks, despite reasonable model fits in many cases.

DISCUSSION

Wepresent 3main findings here. First, human-derived dimensions that describe different knowledge properties of manipulable objects - that

is, visual, manipulation, functional dimensions - are relatively well-predicted by CLIP. Second, this model can generate good predictions of

human behavior for previously unseen objects. Third, the predictive capacity of this model is substantially greater than comparison models,

and that most of this benefit ostensibly results from several differences in pre-training regime (i.e., learning objective, data modality, and

amount of training data). These results extend well-established demonstrations that deep neural networks represent broad characteristics

of visual object recognition.30,37–39,41,45–50

Indeed, recent work demonstrates that CLIP affords excellent predictions of human brain activity. For example, Wang et al.36 used CLIP

image features as inputs to voxelwise encodingmodels that generate goodpredictions of fMRI responses to objects and natural scenes. Simi-

larly, a recent study by Contier et al.35 used CLIP image features to encode and predict fMRI responses to object dimensions derived from the

THINGS object set: This powerful approach revealed well-known cortical topologies, for example the organization of category-selective cor-

tex and low-level feature turning in early visual cortex. These findings, along with the present results, reveal the striking capacity of CLIP to

predict high-level human behavior and brain responses.

Notably, we observed that CLIP-ViT vastly outperforms a set of comparison networks, and that this benefit potentially results from several

differences between CLIP and ImageNet pre-training regimes, namely: Data modality (image & text vs. Image only), learning objective (joint-

learning of image-text representation pairs vs. image classification), and training dataset size (larger vs. smaller). We do not make strong

claims about any specific factor alone, but consider that these factors collectively contribute to the superior performance of CLIP-ViT. We

do however show evidence that ViT architecture - in itself - does not drive this performance benefit: CLIP-ViT substantially outperforms

the ImageNet version of ViT. Indeed, recent fMRI work shows a very minimal effect of network architecture for CLIP models when predicting

high-level neural responses to objects (e.g., CLIPmodels with ViT vs. ResNet as image encoders36,37). Similarly, other fMRI work demonstrates

that the influence of pre-training regime is a much more significant factor on downstream task performance than network architecture.44

Indeed, this pre-training advantage benefits the prediction of dimensions across each of the three tested knowledge domains. Strong

performance for vision dimensions is relatively unsurprising given the vast exposure to image information during pre-training. Notably, func-

tional information about objects is also, to some extent, accessible via visual information: This is shown to some extent with simpler pre-

training schemes for CNNs that can learn contextual associations between objects.30,31 Beyond visual information, the linguistic contributions
iScience 27, 110297, July 19, 2024 9
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of CLIP likely contribute to the improved approximation of functional information relative to vision-only models (see Figure 7). Manipulation

dimensions were also relatively well-predicted. In lieu of the human motoric experience, CLIP may indirectly learn from the presence of cues

such as hand-posture, or relative size information, conveyed during pre-training by images as well as their associated text descriptions (e.g.,

‘‘using tweezers to extract a splinter’’ indicates fine, precise manipulation).

The predictive capacity of CLIP-ViT has important consequences for the interpretation and understanding of how human knowledge about

manipulable objectsmight develop. Clearly, there are stark differences between human learning and artificial deep learning. For instance, the

organization of human object knowledge in the brain is constrained by connectivity,7,9,21–23,51–53 and is refined via lived experience, as shown

by developmental24–29 and visual expertise work.54–57 Other experiential human factors such as visuo-motor behavior, and the acquisition of

learned statistical regularities about objects - for example, repeated exposure to the co-occurrence of objects, for example, spoon and bowl -

undoubtedly contribute to this knowledge too. While definitively elucidating the individual contributions of these sources of knowledge to-

ward human-based object dimensions is beyond the scope of the current study, the present findings suggest that the statistical regularities

that CLIP exploits, along with the semantic boost afforded by its linguistic inputs, are crucial factors. Importantly, the fact that CLIP out-per-

formed all other models strongly suggests that low-level (visual) regularites are not enough to explain and determine object representations

and related information.

We note that, while many dimensions have relatively good model fits, these results are not at ceiling - the best R2 values are around 0.80,

and not all dimensions are equally well-predicted. In our view, this implies that, while modal and amodal statistical learning is an important

factor in determining fine-grained knowledge about manipulable objects, we expect that other critical human factors - such as those outlined

above - make important contributions too. Determining the relative contributions of these knowledge sources is certainly a worthy future

research aim.

Although comparison networks show poorer predictions of dimensions than CLIP-ViT overall, there are several notable aspects of these

results in three of the ImageNet pre-trained networks that showmany above-chance model fits (IN-ViT, IN-ResNeXt101, & IN-VGG16). These

models show relatively good prediction of vision dimensions, suggesting that the visual tuning of these models is sufficient for reasonable

approximations of these dimensions. These networks also show above-chance, albeit weaker, prediction ofmanipulation and function dimen-

sions, suggesting that image-only pre-trainingmay partially capture these kinds of information, ostensibly via statistical regularities or contex-

tual information that is incidentally captured across training (e.g., as similarly shown by30,31). By contrast, IN-AlexNet shows substantially

poorer performance than all other models. This is likely due to its relatively shallow architecture - 5 convolutional layers in total - that may

not be sufficient to capture information about dimensions that deeper comparison networks are able to.

We also consider relative differences between dimensions within each knowledge domain, for CLIP-ViT. One notable trend is that the best

model fits are always shown for the first or second dimensions. However, these differences are not always strongly pronounced and so we do

not wish to overstate this trend. For example, for larger component sets, the first 2 manipulation dimensions are only slightly better than di-

mensions 3 & 4 (see Figure 3C). This suggests that in most cases, the first few dimensions are well-approximatedwith smaller component sets,

but later dimensions (e.g., dimension 3 onwards) provide good predictions when considering larger component sets.

We also ran exploratory analyses that potentially provide more detail on why these first few dimensions perform well: The first few dimen-

sions of each knowledge domain draw strongly from early CLIP-ViT components (first 5 components). As mentioned in the results, this likely

reflects the possibility that early components ‘‘benefit’’ from less variability across folds, by virtue that early components explainmore variance

than later components, and as such, the definition of these components on each fold is likely to be more similar than for later components.

Additionally, this result might also demonstrate loose commonalities between the original representational spaces from which behavioral

dimensions and CLIP-ViT components are extracted; that is, that early dimensions/components extracted from each respective space

seem to show some broad similarity in terms of the variance that they capture. However, we are cautious not to overstate a like-for-like cor-

respondence between dimensions and components, given supplementary evidence that individual CLIP-ViT components do not show a clear

resemblance to any behavioral dimension (see Figure S4 for a visualization of the object ordering for each of the first 10 CLIP-ViT components).

Moreover, as the main analyses show (see Figure 3C), combinations of multiple components better predict individual behavioral dimensions

than any individual component does.

We observed largest unique variance gains for CLIP-ViT for function dimensions, and in particular F1, indicating that this network provides

an especially strong advantage over the other networks in terms of predicting function knowledge.We also show that although F1 predictions

seem to generalize to other object sets - both THINGS images and 20 unseen object images - this is to a lesser extent than V1 and M1 di-

mensions. In the case of THINGS images, these images contain relatively more contextual information such as background information

and the presence of other objects that is not present in the 80 objects images that have been segmented and presented on a white back-

ground. These differences may account for slightly poorer generalization where these kinds of contextual information might be especially

informative. In the case of the 20 unseen objects analysis, these objects were pre-selected before analyzing and interpreting the ordering

of objects along the F1 dimension: As shown in Figure 1, this dimension broadly depicts cooking vs. sports-related objects on the two ex-

tremes, but the chosen set of 20 unseen objects contains many instances that do not clearly correspond to either of these extremes. This

may contribute to poorer generalization performance for F1, relative to M1 and V1 where intermediate items can be more intuitively situated

on the dimension.

In summary, the present findings are in broad agreement with recent work that reveals strong correspondence between CLIP and higher-

level conceptual object knowledge.15,35–37 This work represents a necessary step toward a better understanding of the fine-grained organi-

zation of human object knowledge.
10 iScience 27, 110297, July 19, 2024
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Limitations of the study

The dimensions that we focus on here are not exhaustive and those extracted from other cognitive domains are necessary for a deeper un-

derstanding of high-level human behavior. Future work may address different formulations of dimensions. For example, here we obtained

manipulation dimensions by probing declarative knowledge about how objects are used, but this potentially differs in some ways from di-

mensions extracted directly from motor behavior.
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Further information and requests for resources should be directed to the lead contact, Jon Walbrin (jon.walbrin@gmail.com).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� All data required to re-produce analyses from this paper is available on github (github.com/jwalbrin/OK_CLIP).
� All code required to re-produce analyses from this paper is available on github (github.com/jwalbrin/OK_CLIP).

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants were 31 undergraduate students from the University of Coimbra (Portugal), aged between 18-40 years, 50% female, and of white-

european background. Participants completed a computer-based behavioral experiment. This data was used as both a behavioral validation

task, and to test the correspondence with predictions generated from a neural network. No explicit sample size calculation was performed,

but the sample here is in line with sufficient sample sizes in related work.20 No between sex analyses were performed as there was no a-priori

reason to do so. These experiments were approved by the ethics committee of the Faculty of Psychology and Educational Sciences of the

University of Coimbra, and followed all ethical guidelines. Participants provided written informed consent, and were compensated for their

time (either with course credit or financial compensation).
METHOD DETAILS

Image sets

The main image set consisted of 80 objects (400 * 400 pixels) presented in gray-scale on a white background, as used by Almeida et al.20 (see

Figure 2A for example images and Figure 2C for object names). There were 10 exemplar images per object (800 images total). Similar images

were generated for an additional set of 20 objects (gray-scaled, white background; 400 * 400 pixels; 10 exemplars each, 200 images total) for

use in generalization analyses - examples of these images are shown in Figure 5A. Another set of images were selected from the THINGS

image database42 that depict color images of objects in natural contexts (variable image sizes; see Figure 2B for example images); we

inspected the database and identified 63 objects that were also contained in the main 80 objects image set, and randomly selected 10

exemplars each (630 images total).
Neural network feature extraction

We extracted image representations, rather than text representations, for the CLIP-ViT network because: a) The current results follow on from

the study by 20, and sowewanted to extract representations from images used in that study; b) The 80 object images that we did use could be

easily compared with other existing image sets, such as the THINGS image set42; c) this allowed for direct comparisons with several other

image-only neural networks that show good performance on object recognition tasks.
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We extracted image representations from CLIP-ViT - a pre-trained vision transformer trained with CLIP.34 Briefly explained, this network is

pre-trained with pairs of images and text descriptions (e.g. ‘‘ugly Christmas sweaters with cats’’). This entails a contrastive learning procedure

that jointly trains (updates the weights of) an image encoder and text encoder to generate representations that maximize the cosine similarity

between correct image-text pairs. This network (obtained from pypi.org/project/timm/) was pretrained on a dataset consisting of�2.3 billion

image-text pairs (LAION2B subset of the LAION5B dataset.58 For feature extraction, we obtained the final output representations that con-

sisted of 1280 features from the class token embeddings of the image encoder/vision transformer, similar to previous work.37,59 We used the

THINGSvision toolbox60 for extraction.

For the comparison ImageNet pre-trained networks, features were extracted as follows: a) IN-ViT (1280 features from the class token

embedding layer of H-14 variant of vision transformer pre-trained on ImageNet 21K; pypi.org/project/timm); b) IN-ResNeXt101 (2048 features

from the average pooling layer of ResNeXt101 CNN pre-trained on ImageNet 1K; pytorch.org); c) IN-VGG16 (4096 features from the last acti-

vation layer of VGG16 CNN pre-trained on ImageNet 1K; pytorch.org), and d) IN-AlexNet (4096 features from last activation layer of AlexNet

CNN pre-trained on ImageNet 1K; pytorch.org).

Component selection

We used principal component analysis (PCA; implemented with Scikit-learn Python package61) to reduce the image representations of each

network to an initial set of 100 components. This set of initial components was the same for each dimension tested (but the selected com-

ponents were determined with cross-validation, per dimension). We used dimensionality reduction for 3 reasons: a) To alleviate differences

in feature set size between the networks (e.g. 1280 for CLIP-ViT vs. 2048 for ResNeXt101); b) To ensure that predictors were orthogonal to each

other, and; c) Because components individually explainmore variance than individual features in the original representation. Recursive feature

elimination (RFE; implemented with Scikit-learn Python package61) was used to determine the best performing components for each behav-

ioral dimension (k components). The ranking of components was determined by obtaining their regression coefficients, iteratively removing

the single weakest component until k features have been selected. As described in the results section, component definition and selection

(PCA & RFE) was performed with cross-validation such that test samples were never used for the definition and selection of components. We

also present supplementary analyses that demonstrate virtually identical results when using nested cross-validation with PCA and RFE for

component selection (see Figures S2 and S3).

Regression

For each analysis, cross-validated principal component regression was implemented (the same cross-validation scheme was applied to PCA

and RFE beforehand). For the original analysis (see Figure 2D), the training partition of each fold contained 9 exemplar image sets of 80 ob-

jects (720 samples), with the left out exemplar set used for the test partition (80 samples). We note that we previously obtained similar results

with a leave-one-item-out regression scheme (i.e. training on all data for 79 objects (790 samples), and testing on all data for the held out

object (10 samples)), but we opt for the ‘‘leave-one-exemplar-out’’ scheme described above as this attenuated overfitting in some cases

(e.g. very poor model fits were shown when testing larger sets of components).

Model fit values (e.g. R2) were calculated for the 80 held out objects on each fold. This resulted in 10 model fits - one for each of the 10 sets

of exemplar images. Note, that the assignment of an image to a given exemplar set is arbitrary - exemplar sets are usedmerely to distinguish

10 non-identical sets of images for the 80 objects, but the assignment of specific images to each fold was consistent across all reported an-

alyses. The mean and standard errors of these R2 values are plotted in the main figures. Permutation analyses were performed by calculating

model fits for 5000 random dimensions, simply by shuffling the order of the original values of a given dimension. Note that the assumption of

exchangeability is met. For each permutation iteration, the permuted dimension scores were used to estimate a model fit for each of the

cross-validated prediction folds; that is, between the predictions for a single set of 80 objects, and the 80 shuffled dimension values. These

model fits were then averaged across folds to create a final permutation model fit. P-value significance was determined as (C + 1) / (5000 + 1),

where C is the number of permutations that exceeded the test score. For example, p = .001 is roughly equivalent to the test score being within

the top 5 scores overall.

For generalization to THINGS images, a similar schemewas adopted. This entailed training amodel on images from the 80 objects set, and

then generating predictions for samples from the THINGS image set. Notably, the THINGS images here consist of 63 objects that were also

included in the original 80 set of images. We therefore used the full set of 80 objects to train each model, but only generate predictions for 63

objects, and then compare these against the corresponding 63 values on a given dimension. This was implemented as follows.

Two loops were used on each iteration: a) An outer training loop with the original 80 objects images (i.e. 10 folds of 720 images each (9

exemplar sets of 80 objects)); b) An inner testing loop with the 63 THINGS images (i.e. 10 folds of 567 images each (9 exemplar sets of 63

THINGS images)). A model fit was calculated for each of the 100 iterations (i.e. 10 training x 10 testing iterations). Meanmodel fits were calcu-

lated as the average across all iterations. For error bar plotting, and to be consistent with the main analysis, a set of 10 model fits were ob-

tained - one per training iteration - by mean-averaging across all inner loop iterations. Permutation analyses were performed in an analogous

manner to before. 5000 randompermutedmodel fits were obtained - first by obtaining them for each of the 100 iterations as described above,

and then averaging to a single permuted model fit value.

To test the generalization of 80 objects to the 20 unseen objects, a similar approach was taken. That is, models were trained on the 80

objects data, and predictions were generated for the 20 unseen objects. However, because model fits using only 20 values could potentially

yield unstable model fits (due to low number of datapoints), each model fit was performed for all 10 exemplars of the 20 objects (200 values).
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Thus, for each iteration (10 folds in total), 720 training samples from the 80 object data were used, and predictions were generated for all 200

unseen object samples. A model fit was generated between the 200 predictions and corresponding behavioral proxy values for each dimen-

sion. As before, a final model fit was calculated as the mean fit across the 10 folds. Permutations were conducted in an analogous manner.

Importantly, exchangeability was enforced by ensuring that the shuffling of behavioral proxy values was performed in a group-wise fashion -

that is, the same shuffle ordering was applied to each of the 10 exemplar sets, such that different exemplars of the same object always

received the same value.
Behavioral task

As reported by Almeida et al.,20 a behavioral dimension learning task was performed with independent participants from the behavioral

dimension definition task described above. Adults completed a task with three phases (N = 31; 10-11 subjects each for testing generalization

of the V1, M1, and F1 dimensions with the 20 unseen objects; note that these relatively small subject counts were deemed sufficient, as the

final measures were based on a the mean-average scores across subjects, and this was shown to be sufficient for similar subject counts in the

original study). In the first phase, subjects completed a computerized task where they passively learned (no responses) to associate each

target object (represented with a word token) with items at either extreme of a given dimension (extreme A or extreme B, respectively).

For the second phase, a set of 50 training itemswere identified by dividing a given dimension into 10 decile bins - each containing consecutive

sets of 8 items along the extent of the dimension, as determined by their dimension scores. 5 items from each of the 10 bins were used as

target items during this training phase. On each trial, subjects made a binary decision as to whether the target was close to the anchor

item on extreme A or B of the dimension, and received feedback for each response.

In the third phase (test phase), subjects again made binary decisions for each target item (closer to extreme A or B; no feedback given).

Here, target items consisted of 20 completely unseen objects (24 trials each; distinct from the original 80 objects). Additionally, responses to

the 30 untrained objects - from the original set of 80 objects, but distinct from the 50 objects used during training - were also tested for com-

parison (3 trials each; these were the 3 remaining items from each of the 10 bins along the extent of the dimension). These data are plotted for

comparison in Figure 5B. Cumulative gaussian curves were fitted to the decile bin means:

y =
1

2
erfc

��sðx � mÞffiffiffi
2

p
�

where y is the percent responses, x is decile bin, s is the slope of the cumulative Gaussian, m is the midpoint of the curve, and erfc is the com-

plementary error function. The cumulative Gaussian spans from 0% to 100% (lower and upper asymptote, respectively).
Analysis of unique variance explained

We directly compared the predictive capabilities of CLIP-ViT to each comparison network by calculating the unique variance explained (e.g.

see 36, for similar analysis). Unique variance of CLIP-ViT was calculated for each set of best k components as follows. First, model fits (R2, as

described from the main analysis, above) were calculated for a combined set of components from the two networks for a given comparison.

For example, for the best 5 components estimate, this involved the best 5 components of each of the respective models (10 components

total). Next model fits for each respective model in isolation were calculated (e.g. for best 5 components each). Finally, unique variance of

CLIP-ViT was calculated as the combinedmodel fit minus the fit of the other model - that is, all of the combined variance that the other model

cannot explain. An identical approach was taken to calculate the unique variance for the other model (i.e. all variance that CLIP-ViT cannot

explain).
QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed with Python (version 3.11) using various packages (e.g. scikit-learn, numpy). Principal component analysis, recursive

feature elimination and linear regression methods were used. Results (e.g. means, SEMs) and indications of significant tests are presented in

the manuscript figures. Permutation significance was determined as stated in the method details section.
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