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Exhibiting extreme regenerative abilities which extend to complex organs and entire
limbs, salamanders have long served as research models for understanding the basis
of vertebrate regeneration. Yet these organisms display additional noteworthy traits,
namely extraordinary longevity, indefinite regenerative potential and apparent lack of
traditional signs of age-related decay or “negligible senescence.” Here, I examine
existing studies addressing these features, highlight outstanding questions, and argue
that salamanders constitute valuable models for addressing the nature of organismal
senescence and the interplay between regeneration and ageing.
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INTRODUCTION

Salamanders, or urodele amphibians, stand out among vertebrates due to their ability to regenerate
extensive sections of their body plan including ocular tissues, jaws, lungs, sections of their heart
and brain, spinal cord, and entire limbs throughout their lives (Brockes and Kumar, 2008; Cox
et al., 2019). As the evolutionarily closest organisms to humans capable of complex regeneration,
salamanders constitute valuable models for regenerative biology studies. In particular, the axolotl—
Ambystoma mexicanum—and the Iberian ribbed newt—Pleurodeles waltl—are two laboratory-
tractable systems whose adoption has exponentially grown in recent years due to the ease of captive
breeding and rearing (Khattak et al., 2014; Joven et al., 2015), efficient transgenesis and genome
editing methods (Khattak et al., 2013b; Hayashi et al., 2014; Fei et al., 2018; Cai et al., 2019),
availability of genomic and transcriptomic information (Elewa et al., 2017; Nowoshilow et al.,
2018; Smith et al., 2019), and advanced imaging techniques (Masselink and Tanaka, 2020; Subiran
Adrados et al., 2020; Box 1). Newts present a conventional salamander life cycle, undergoing
metamorphosis and becoming fully developed adults with reduced to imperceptible continuous
growth. In contrast, axolotls are neotenic organisms, exhibiting larval traits throughout their
lives and indefinite growth. While occasional differences in regenerative capacity (Suetsugu-
Maki et al., 2012) and mechanisms (Tanaka, 2016; Tanaka et al., 2016) exist, both species are
capable of extensive organ and appendage regeneration following important clade-conserved
principles. Particularly, salamander regeneration is associated with an unusual ability to regulate
the plasticity of the differentiated state. Instead of relying exclusively on stem cells, the progenitors
for the new structure are often obtained through limited reprogramming—dedifferentiation and
transdifferentiation—of mature, differentiated adult cells (Tanaka and Reddien, 2011; Yun et al.,
2013, 2014). In the context of the axolotl limb, the connective tissue cells at the stump dedifferentiate
to form the various connective tissue derivatives of the new structure (Gerber et al., 2018). In
newts, muscle regeneration relies on progenitors derived from dedifferentiation of mature muscle
fibres (Lo et al., 1993; Tanaka et al., 2016), while the lens of the eye is regenerated de novo

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 June 2021 | Volume 9 | Article 689062

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.689062
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.689062
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.689062&domain=pdf&date_stamp=2021-06-07
https://www.frontiersin.org/articles/10.3389/fcell.2021.689062/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-689062 May 31, 2021 Time: 18:39 # 2

Yun Salamander Models for Ageing Research

BOX 1 | Experimental toolbox for salamander models∗.

• Germline transgenesis. Tools for germline transgenesis are available
for both axolotls and Iberian ribbed newts, based on I-SceI
meganuclease and Tol2 transposon technologies, including the
CRE/LoxP system for tissue and time dependent control of gene
expression (Khattak et al., 2013a; Hayashi and Takeuchi, 2015).

• Genome assembly and CRISPR-mediated gene editing. The
recent sequencing and assembly of the 32-Gb axolotl genome
(Nowoshilow et al., 2018; Smith et al., 2019) and the 20-Gb P. waltl
genome (Elewa et al., 2017) provides a rich platform for investigations
into the molecular basis of biological phenomena. Together with TALEN
and CRISPR/Cas9-mediated gene editing (Khattak et al., 2013a;
Hayashi et al., 2014; Fei et al., 2018; Cai et al., 2019), it is possible to
assess candidate genes for functional analysis.

• Somatic gene delivery methods. Various technologies are available
for gene delivery to salamander cells and tissues (Echeverri and
Tanaka, 2003; Yun et al., 2013), including electroporation and viral
transfection methods (Khattak et al., 2013a; Whited et al., 2013;
Oliveira et al., 2018).

• Cell and tissue transplantation. The amenability of salamanders to
cell and tissue transplantation combined with transgenic technologies
(Kragl et al., 2009; Kragl and Tanaka, 2009; Lopez et al., 2014; Yun
et al., 2015), has been informative toward understanding key aspects
of development and regeneration.

• Advanced imaging. Many salamander tissues are optically
transparent, and highly suited to live imaging. Further, several optical
clearing methods have been adapted to the salamander system,
enabling volumetric quantitative imaging (Duerr et al., 2020; Masselink
and Tanaka, 2020; Pinheiro et al., 2020; Subiran Adrados et al., 2020).

• Chemical screenings. Due to their size and skin mediated compound
exchange, salamanders can be used for moderate-throughput
screening of pharmaceutical compounds (Ponomareva et al., 2015).

∗Adapted from Yu and Yun (2020).

through transdifferentiation of pigmented epithelial cells of
the dorsal iris (Henry and Tsonis, 2010). Reversals of the
differentiated state for the generation of regenerative progenitors
are also common in other vertebrates capable of complex
regeneration, such as zebrafish (Jopling et al., 2010; Knopf et al.,
2011), yet rarely observed in mammals. In this connection, the
existence of roadblocks to dedifferentiation has been proposed to
underlie the limited regenerative potential found in mammalian
systems (Pajcini et al., 2010; Yun et al., 2013).

INDEFINITE REGENERATIVE CAPACITY

A salient feature of salamander regeneration is its resilience.
Urodele regenerative capacity does not decline with time, and
most studies suggest it is not impaired by repetitive regeneration
events (Yun, 2015). A landmark study by Eguchi et al. (2011)
tracked the process of lens regeneration over 16 years in Japanese
newts, removing the lens from the same animals 18 times
and allowing them to undergo regeneration. Remarkably, the
resulting lenses were structurally identical to the original ones
and expressed similar levels of lens-specific genes. Subsequent
analysis revealed that the transcriptomes of young and old (19-
times regenerated) lenses are nearly indistinguishable (Sousounis
et al., 2015), showcasing the robustness of newt lens regeneration.
Of note, by the end of the study the specimens were at least

30 years old, representing a geriatric population in this species
(Eguchi et al., 2011). This provides an interesting contrast to the
declines in regenerative capacities observed in most vertebrate
contexts (Yun, 2015). Additional studies indicate that repetitive
amputations do not affect tail regenerative potential in the newt
Triturus carnifex, as examined over a 10 year period with up
to nine tail regeneration cycles (Margotta et al., 2002; Margotta,
2008), nor that of the axolotl limb, challenged by five regeneration
rounds during 3 years (Yun et al., 2015). In this connection,
a recent study observed increasing rates of incomplete or
failed regeneration after 3 regenerative cycles in the axolotl
(Bryant et al., 2017). This interesting observation was based on
studies using American axolotl strains, whereas similar studies
in European strains have not shown the described regenerative
impairment. It is thus conceivable that the phenotypic differences
stem from a diverse genetic background, something which should
be addressed by further studies. Taken together, the evidence to
date suggests that the ability of urodeles to regenerate complex
structures does not decline with time or serial regeneration
cycles. In mammals, loss of regenerative potential with ageing
has been largely attributed to the ageing of stem cell populations
and/or their niche (Yun, 2015). Whether the prevalence of
dedifferentiation as a regenerative mechanism in salamanders
is linked to the indefinite nature of their regenerative potential
remains an outstanding question.

EXTREME LIFESPANS

Beyond their remarkable regenerative abilities, salamanders
exhibit extraordinary longevity (Sousounis et al., 2014),
constituting lifespan outliers with respect to organismal size
(Figure 1). Among animal species, there is a notable correlation
between body mass and lifespan, with larger animals living
longer. Yet, salamanders break this rule by several orders of
magnitude. For example, axolotls—average mass: 60–110 g—live
over 20 years (CRTD colony and (Warburg, 2007)), P. walt
newts—average mass: 25 g—live up to 20 years in the wild
(Warburg, 2007; Tacutu et al., 2018), Japanese newts—Cynops
pyrrhogaster, average mass: 8 g—have a 25 year lifespan
(Sousounis et al., 2015), spotted salamanders—Ambystoma
maculatum; average mass: 13 g—reach 30 years of age, and
cave olms—Proteus anguinus; average mass: 17 g—can surpass
100 years (Voituron et al., 2011; Tacutu et al., 2018). Indeed,
they match and in some cases exceed the lifespan/body mass
ratios found in other well-known outliers such as the naked
mole rat (Ruby et al., 2018) and Brandt’s bat (Seim et al., 2013).
This is even more remarkable given that most salamander
longevity data derive from specimens in the wild (Warburg,
2007), where animals are exposed to environmental challenges,
predation, pathogens, and food source fluctuations. The
establishment of research colonies for certain species, enabling
breeding and rearing of individuals under controlled conditions,
has contributed to the acquisition of more accurate lifespan
measurements. Unsurprisingly, in most cases these surpass the
estimates obtained from wild specimens, as in the extreme case
of P. anguinus, whose lifespan fluctuates from 15 years in the
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FIGURE 1 | Salamanders are lifespan outliers. Relationship between average body mass (g) and lifespan (years) for selected salamander (red) and representative
vertebrate species (blue). Additional upper-end lifespan outliers (naked mole rat—Heterocephalus glaber-, African bush elephant—Loxodonta africana—and
human—Homo sapiens—) are indicated in green. Animal silhouettes (not drawn to scale) represent the vertebrate clades to which the selected representative
species belong to. Data was obtained from various sources, including ADW Animal diversity web, AnAge (Tacutu et al., 2018) and Amniote Life History Database
(Myhrvold et al., 2015).

wild to a predicted maximum exceeding 100 years in lab cave
conditions established in the 1950’s (Voituron et al., 2011; Tacutu
et al., 2018). Thus, salamanders are not only lifespan outliers, but
also in many cases their longevity may be underestimated.

NEGLIGIBLE SENESCENCE

While the underlying basis of their exceptional longevity
remains unknown, salamanders exhibit an uncommon resistance
to ageing. Although few studies have addressed this topic,
these, together with evidence from captive records in zoos
and laboratories, suggest that a number of urodele species
do not display the traditional signs of physiological decay
that accompany mammalian ageing and are thus considered
organisms of “negligible senescence” (Finch, 1990; Margotta
et al., 2002; Cayuela et al., 2019). This phenomenon, also
observed in other vertebrates such as turtles, rockfish and
naked mole rats (Finch, 2009), is intrinsically linked to a
defiance of the Gompertz-Makeham law of mortality (Gompertz,
1825; Makeham, 1860), which states that death risk increases
exponentially as an organism ages. Indeed, a recent study
involving three salamander species (Lyciasalamandra fazilae,
Salamandra salamandra, and Salamandra perspicillata), indicates
that their mortality rate is stable and weakly affected by age,
in keeping with them exhibiting negligible senescence (Cayuela
et al., 2019). This observation raises several important yet
outstanding questions, including whether salamanders manifest
cellular hallmarks of ageing as defined in mammalian contexts
(Lopez-Otin et al., 2013), whether they age at the molecular level,

what principles govern ageing—or lack of—in these organisms
and, in particular, what is the role played by their extreme
regenerative abilities in this process.

As a salamander grows older, changes in its tissues do occur.
A number of these have been reported for the axolotl, including
increase in size, progressive replacement of skeletal cartilage
by bone, reduced locomotion and thickening of the dermal
layer (Vieira et al., 2020). However, these changes are likely
associated with the species’ traits—as in the case of size-, and
organism’s maturation—in the case of the skeleton, dermis and
locomotion—rather than ageing. In addition, a reduction in the
rate of limb regeneration through time has been observed for
the axolotl (Vieira et al., 2020). Yet, this can be interpreted as
a consequence of the continuous growth that characterises this
species, as the regeneration rate is proportional to the size of the
structure being regenerated. Furthermore, time-related declines
in regeneration rate are not observed in salamander species
with limited adult growth (e.g., Notophthalmus viridescens). An
additional change that may occur in axolotls as they age is a
decline in fertility. This notion, based on anecdotal reports of
mating success, including in our colony, does not extend to other
salamander species, nor is conserved across the amphibian clade
(Jones et al., 2014).

Long lifespans combined with a lack of ageing biomarkers
have so far precluded the determination of biological age in
urodeles. While this issue has seldom been studied, time-related
expression changes have been reported for aged tail and iris
cells from c. 30 year old newts (Sousounis et al., 2015). Some
of these changes are consistent with features of molecular ageing
as observed in mammalian contexts. Namely, aged tail and iris

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 June 2021 | Volume 9 | Article 689062

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-689062 May 31, 2021 Time: 18:39 # 4

Yun Salamander Models for Ageing Research

samples displayed a downregulation of electron transport chain
genes when compared to their young counterparts, indicating
that these tissues could undergo molecular ageing (Sousounis
et al., 2015). Nevertheless, further research should determine to
what extent salamander tissues age at the molecular level.

CANCER RESISTANCE

Molecular ageing aside, no clear manifestations of age-related
physiological declines or pathologies have been reported in
urodeles to date. On the contrary, they exhibit a very
low incidence of cancer, one of the most prevalent age-
related pathologies. Neoplastic growth is rarely observed
among salamander species, as documented in newts and
axolotls (Ingram, 1971; Tsonis, 1983). Further, treatment with
carcinogens can result in neoplasm induction but only at
higher concentrations and longer treatment periods than those
required to elicit malignant transformations in mammalian
settings (Tsonis, 1983). Evidence also indicates that regenerating
tissues such as limbs are particularly resistant to tumourigenesis
(Tsonis and Eguchi, 1981). Indeed, malignant outgrowths show
regression, incorporation to regenerating tissues or induction
of axis duplications and accessory limbs, yet they do not
persist as tumours in the regenerated structure (Breedis, 1952;
Ingram, 1971). This is surprising as, paradoxically, the process of
regeneration shares many similarities with tumour development,
including downregulation of tumour suppressors (e.g., p.53,
Yun et al., 2013, 2014), upregulation of oncogenes (e.g., c-myc,
Maki et al., 2009), and extensive cell proliferation (Subiran
Adrados et al., 2020). In line with Waddington’s individuation
field hypothesis (Waddington, 1935) it is possible that, in
a regenerative context, active patterning and differentiation
mechanisms influence cell behaviour away from neoplasia.
However, this is a notion that merits further consideration.

SALAMANDERS AND THE HALLMARKS
OF AGEING

When looking for factors that may account for the absence of
age-related declines in urodeles, it is worth considering whether
and how hallmarks of ageing are manifested in these organisms.
One such hallmark is cellular senescence, which in the recent
years has emerged as a driver of several age-related disorders.
Senescent cells are induced by various forms of cellular stress
such as DNA damage, telomere shortening, oxidative challenges
and oncogene activation (Gorgoulis et al., 2019). In response to
these stimuli, these cells undergo a permanent cell cycle arrest
and acquire a characteristic phenotype which includes the ability
to secrete a repertoire of growth factors, matrix remodelling
proteins and modulators of inflammation and immunity (Walters
and Yun, 2020). Senescent cells play physiological roles in
a number of contexts, including development (Munoz-Espin
et al., 2013; Storer et al., 2013; Davaapil et al., 2017), wound
healing (Jun and Lau, 2010; Demaria et al., 2014; Ritschka et al.,
2017) and tissue repair processes (Yun et al., 2015; Sarig et al.,

2019; Da Silva-Alvarez et al., 2020), in both mammals and
salamanders. However, in mice and humans, they accumulate in
various tissues as the organism ages, resulting in an imbalance
in the inflammatory response and the promotion of age-related
disorders such as sarcopenia, atherosclerosis, subcutaneal fat
loss, osteoarthritis and neurodegeneration (van Deursen, 2014;
Gorgoulis et al., 2019). Importantly, this role is causal, as the
elimination of senescent cells attenuates age-related decay and
leads to significant lifespan extension in mice (Baker et al.,
2011, 2016). Moreover, it has been recently suggested that an
age-related slow-down in senescent cell turnover could be a
major contributing factor to the Gompertz law of mortality
(Karin et al., 2019), which several salamander species defy.
Relevant to this suggestion, we have observed that axolotls
and newts (up to 10 years old) do not accumulate senescent
cells in their tissues—e.g., liver, spleen, heart, limbs—as they
age (Yun et al., 2015). Further, we have now extended these
observations for axolotls up to 20 years old, and have not
observed senescent cell accumulation. While the mechanistic
reasons for this phenomenon remain elusive, it is notable that
salamanders have a very rapid and efficient immune-dependent
mechanism for senescent cell clearance, which may account
for the lack of senescent cell accumulation (Yun et al., 2015;
Walters and Yun, 2020). It is also possible that avoidance of
replicative senescence, a form of senescent cell arrest triggered by
telomere shortening, also plays a role in this context. While this
process has not been studied in urodeles, observations suggest
that salamander cells do not exhibit replicative senescence in
culture (Ferretti and Brockes, 1988). Given the strong correlation
between telomere shortening rate and the lifespan of a species
(Whittemore et al., 2019), this is a topic worthy of further
research efforts. In addition, another factor that could contribute
to a lack of senescent cell accumulation in salamanders is the
existence of well-geared mechanisms of genome maintenance.
Although still a poorly developed area, recent studies suggest that
axolotls employ robust DNA damage response mechanisms to
promote proper cell cycle progression upon injury (Sousounis
et al., 2020), which may restrict excessive generation of senescent
cells in regenerative contexts. This is an interesting notion in
light of evidence suggesting that other species of negligible
senescence, such as the naked mole rat, exhibit efficient DNA
repair mechanisms (Tian et al., 2017). In addition, it is possible
that their large genomes (Elewa et al., 2017; Nowoshilow et al.,
2018; Smith et al., 2019) provide an additional level of protection
against mutagenic challenges, as the presence of extensive non-
coding, non-regulatory areas would help ease the mutagenic
burden (Poetsch et al., 2018). Nevertheless, it is yet unclear
if the mechanisms of genome maintenance in salamander
cells are more efficient than those found in their mammalian
counterparts both in regenerative and homeostatic contexts,
whether salamander cells are more resistant to certain types of
genome challenges, and how well does this explain their limited
senescent cell accumulation and resistance to age-related decay.

Another important hallmark with a well-documented impact
on ageing and longevity is metabolic dysregulation. In particular,
deregulated nutrient sensing is one of the most common
age-related traits, with the insulin–insulin growth factor 1
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(IGF1) signalling pathway constituting the most conserved age-
controlling mechanism in evolution (Lopez-Otin et al., 2013;
Fontana and Partridge, 2015; Partridge et al., 2018). This pathway
mediates, partially through its control of the age-implicated
mTOR complexes, the beneficial effects of dietary restriction on
longevity from mice through worms to flies. Genetic mutations
leading to a reduction in the functions of insulin receptor, IGF1 or
mTOR result in lifespan extension (Fontana and Partridge, 2015).
Further, mTOR inhibition through rapamycin leads to significant
longevity increases, one of the most robust pharmacological
interventions to promote lifespan extension in mammalian
contexts (Fontana and Partridge, 2015). While little is known of
how salamanders regulate nutrient sensing and its connection to
their longevity, it is noteworthy that salamanders, as ectotherms,
have inherently high levels of metabolic plasticity including
thermal acclimation and hibernation/aestivation cycles, which
may facilitate achieving metabolic states—at least temporarily—
similar to those conducing to lifespan extension in mammals.
Nevertheless, it is also worth noting that the aforementioned
molecular regulators of anti-ageing are also involved in
regenerative processes (Lund-Ricard et al., 2020). Particularly,
IGF1 and mTOR inhibition suppress blastema formation during
zebrafish fin regeneration (Hirose et al., 2014). In axolotls,
mTORC1, a key complex whose downregulation promotes
mammalian longevity, is implicated in mediating a systemic
response to injury (Johnson et al., 2018). It would thus be of
interest to understand the activity balance of this molecular axis
in connection to both ageing and regeneration.

ON THE LINK BETWEEN
REGENERATION AND AGEING

Together, the aforementioned observations raise a critical
question, namely what is the link between longevity, lack of age-
related decay and extreme regenerative abilities such as those
found in salamanders? Could regeneration, in particular the
limited reprogramming used by these organisms, elicit a process
akin to tissue rejuvenation? Again, almost no studies to date
have tackled this question. Anecdotal observations indicate that
in axolotls the regenerated skin is structurally distinct from that
of the original tissue, exhibiting greater thickness and dermal
connective tissue (McCusker and Gardiner, 2011), suggesting a
phenomenon akin to rejuvenation. Further, it has been proposed
that the activation of developmental pathways in the regenerative
context would lead to the generation of new tissues of equivalent
age to those that arise immediately upon development (McCusker
and Gardiner, 2011). While this idea has not been formally
addressed, the study by Sousounis et al. has offered initial insights
into this problem. By comparing gene expression signatures
of lenses that had undergone repeated regeneration cycles to
those of the original lenses, the authors observed that the
regenerated lens transcriptome resembled the original one and
thus appeared not to have aged. In contrast, old structures that
never regenerated, such as the tail or the iris—the source of
progenitors for the lens—exhibited more noticeable time-related
changes (Sousounis et al., 2015). Unfortunately, this study did not

include a comparison with old lenses that had never undergone
regeneration, therefore its conclusions are based on the effect of
time on other tissue populations. Consequently, the similarities
in gene-expression between original and regenerated lenses could
be explained by a rejuvenation effect, but also by an inherent
resistance of the lens itself to the passing of time that is not
found in tail or iris tissues. Whilst this remains an open question,
this study constitutes a first attempt to address the link between
the limited reprogramming associated to lens regeneration
and rejuvenation. This is particularly interesting in light of
recent findings suggesting that reprogramming may revert aging
through epigenomic mechanisms (Lu et al., 2020). Challenging
the link between regeneration and rejuvenation further will
require establishing reliable aging biomarkers in salamanders,
capable of accurate determinations of tissue age, and leveraging
systems approaches to determine the molecular changes that
occur with time from individual cells to entire structures and
how these are affected by regenerative processes. Lastly, this
would also benefit from comparative genomic approaches, taking
advantage of the available repertoire of models of regeneration
and ageing (Valenzano et al., 2017).

CONCLUDING REMARKS

Salamanders offer a wealth of interesting biology, from their
seemingly endless regenerative abilities to their extreme lifespans
and resistance to cancer and age-related decay. Thanks to recent
technological advances in transgenesis, gene editing tools and
fully assembled genomes, models such as the axolotl and the
Iberian ribbed newt provide an opportunity to unravel the
cellular and molecular basis of these remarkable traits. Together,
the resulting insights will help us further understand the nature
of regeneration, ageing and their interconnection, central to the
development of rejuvenation strategies of clinical relevance.
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