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Autism spectrum disorder (ASD) is the commonest neurodevelopmental disability. It

is a highly complex disorder with an increasing prevalence and an unclear etiology.

Consensus indicates that ASD arises as a genetically modulated, and environmentally

influenced condition. Although pathogenic rare genetic variants are detected in around

20% of cases of ASD, no single factor is responsible for the vast majority of ASD

cases or that explains their characteristic clinical heterogeneity. However, a growing

body of evidence suggests that ASD susceptibility involves an interplay between genetic

factors and environmental exposures. One such environmental exposure which has

received significant attention in this regard is maternal immune activation (MIA) resulting

from bacterial or viral infection during pregnancy. Reproducible rodent models of ASD

are well-established whereby induction of MIA in pregnant dams, leads to offspring

displaying neuroanatomical, functional, and behavioral changes analogous to those

seen in ASD. Blockade of specific inflammatory cytokines such as interleukin-17A

during gestation remediates many of these observed behavioral effects, suggesting

a causative or contributory role. Here, we review the growing body of animal and

human-based evidence indicating that interleukin-17A may mediate the observed effects

of MIA on neurodevelopmental outcomes in the offspring. This is particularly important

given the current corona virus disease-2019 (COVID-19) pandemic as severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy is a potent

stimulator of the maternal immune response, however the long-term effects of maternal

SARS-CoV-2 infection on neurodevelopmental outcomes is unclear. This underscores

the importance of monitoring neurodevelopmental outcomes in children exposed to

SARS-CoV-2-induced MIA during gestation.
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by a spectrum of deficits in social
interactions and communication combined with stereotypical
and repetitive behaviors. Up to 50% of those affected can have
intellectual disability (ID) and limited verbal communication (1–
3). In recent decades, the prevalence of ASD has consistently
increased from approximately 1 in 1,000 in the 1960s (4), to 1
in 44 today in the United States (5). Increasing prevalence may
in part, be explained by changes in reporting practices, increased
recognition of ASD symptoms, broadening of the ASD diagnosis
(1), and improved accessibility to services (6, 7). A significant
ratio of 4:1 from male to female still exists with markedly
differing prevalence rates between the sexes, 1/38 in males and
1/151 among females (8). Although genetic susceptibilities are
recognized, the mechanism of disease development is unknown
and does not follow a clear pattern of inheritance (9, 10). This
suggests possible mediation by additional unknown biological or
environmental factors (11). Both common and rare genetic risk
factors have been identified with more than 400 diverse genes
now linked to ASD. Singly, these genetic factors each convey
only a modest increase in ASD risk (∼1%), however collectively
they can contribute to a far greater risk (12, 13). Up to 20%
of individuals with ASD may possess copy number variants
(CNVs) and de novo loss of function single nucleotide variants
(SNVs) that are individually rare but in combination, increase
an individual’s ASD risk (12). While newer methods of genetic
analysis (such as whole genome sequencing) are uncovering new
candidate genes with regularity (14), the heterogeneity of the
clinical and phenotypic groups within ASD strongly suggest that
in those with a genetic predisposition, environmental factors
may act in concert to bring about a multisystem dysfunction
leading to ASD. A well-characterized environmental factor
known to impact early fetal brain development and increase
ASD risk is maternal inflammation during pregnancy, which is
commonly called maternal immune activation (MIA). Numerous
epidemiological studies have linked gestational infections with
elevated risk of ASD in offspring (15–17), and animal models
of MIA have simulated gestational infection resulting in MIA-
induced neural and behavioral abnormalities analogous to those
seen in ASD (18–20).

Focused early intervention in young children with ASD
has been shown to result in normalized patterns of brain

Abbreviations: ACE-2, angiotensin-converting enzyme-2; ADHD, Attention
Deficit Hyperactivity Disorder; ARDS, acute respiratory distress syndrome; ASD,
autism spectrum disorder; CS, cesarean section; CD8 cell, cluster of differentiation
8, cytotoxic T-lymphocytes; CHD8, chromodomain helicase DNA binding protein
8 gene; CNV, copy number variant; COVID-19, corona virus disease-2019; FMR1,
fragile X mental retardation 1 gene; GWAS, genome-wide association study; HLA-
G gene, human leukocyte antigen G coding gene; ID, intellectual disability; IL,
interleukin; IL17A gene, interleukin 17A gene; LPS, lipopolysaccharide; MERS,
Middle Eastern Respiratory Syndrome; MIA, maternal immune activation; mTor,
mammalian target of rapamycin; Poly (I:C), polyinosinic:polycytidylic acid; PNS,
peripheral nervous system; RORγt, retinoid-related orphan receptor gamma
t; SARS-CoV-2, severe acute respiratory syndrome-coronavirus 2; SNV, single
nucleotide variant; Th17, T helper 17 cell; TSC1/TSC 2, Tuberous sclerosis
complex ½.

activity, and is associated with improved functional outcomes
and reduced morbidity (21, 22). Most children affected by ASD
can have a reliable and stable ASD diagnosis from as early as
14 months of age (23), yet in spite of this, the average age of
ASD diagnosis is closer to 5 years (24, 25). Numerous studies
sought to identify blood-based biomarkers of ASD in affected
adolescents and adults (26, 27) and have reported alterations
of molecules involved in iron transport (28), inflammation (29,
30), brain development (31), and metabolism (32). None to
date has identified and validated reliable mechanistic biomarkers
with the ability to improve ASD detection in the crucial early
developmental period. Multiple descriptive ASD biomarkers
such as characteristic MRI brain findings, abnormalities of gaze
preference on eye tracking or characteristic EEG findings in
infants with ASD; show promise in terms of aiding earlier ASD
detection. However, none is directly involved in the pathogenesis
of ASD and arises of the condition rather than contributes to it.
The infant brain doubles in volume over the first year coinciding
with maximal neuroplasticity and synaptogenesis. Recognition
of an early mechanistic biomarker gives us the best chance
of implementing strategies during this critical early childhood
window allowing ASD diagnosis and intervention at the earliest
possible stage.

Here, we highlight recent research in this area, both from pre-
clinical animal studies and epidemiological human studies, along
with a proposed mechanistic pathway, that we can encourage
other research groups with access to suitable maternal-child
cohorts to examine this question. We encourage researchers
to look at the prospective study of children born during the
corona virus disease-2019 (COVID-19) era, when their gestations
may have been complicated by mild or even asymptomatic
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection. Otherwise, the long-term effect, if any, of COVID-19
on the fetal brain could remain unknown for years to come.

INFLAMMATION, VIRAL INFECTION, AND
ASD: WHAT ARE THE IMPLICATIONS OF
THE COVID-19 PANDEMIC?

There is growing scientific evidence that aberrant immune
activation occurs in ASD (27, 33) based on studies of autistic
children and young adults (34, 35). As early as 1971, Stella Chess
reported ASD cases associated with the 1964 Rubella outbreak
in the United States (36), and in a 1977 follow up study, Chess
et al. quoted ASD prevalence rates of 8–13% in children of
mothers who were infected during that outbreak (16). Large
epidemiological studies indicate that conditions such as maternal
autoimmune disorders and mid-trimester viral infections that
trigger gestational pro-inflammatory states (i.e., MIA), are linked
with elevated ASD, schizophrenia, and bipolar disorder risk in
offspring (16, 17, 37, 38). More recently, a range of conditions
associated with proinflammatory states in pregnancy such as
obesity, psychosocial stress, and pre-eclampsia were associated
with increased ASD risk in children (39, 40). Thus, gestational
MIA appears to play a role in the pathogenesis of the ASD
phenotype in exposed offspring.
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MATERNAL IMMUNE ACTIVATION AND
NEURODEVELOPMENTAL OUTCOMES

We define MIA as a triggering of the maternal immune system
by infectious or infectious-like stimuli resulting in an increase
in measurable inflammatory markers during pregnancy (41,
42). Maternal immune activation has been most commonly
simulated in preclinical rodent, murine and non-human primate
(rhesus macaque) animal models by Poly (I:C) (polyinosinic-
polycytidylic acid) or LPS (lipopolysaccharide) injection which,
respectively, model viral and bacterial infection (18, 43, 44).
Poly (I:C) is a synthetic analog of double stranded RNA,
mimics the effects of viral infection (45). The triggered immune
response results in offspring with behavioral, immunological,
and neurological abnormalities that approximate to autistic
symptoms observed in humans, notably, impaired sociability and
repetitive behaviors (18, 46, 47). Offspring born to poly (I:C)
treated dams have consistently, across all exposure categories
[administration of varying doses of poly (I:C) and at varying
gestations], shown impairment of social interaction, this is
manifest as reduced communication in ultrasonic vocalizations
(USV) which are usually triggered by separation from the dam in
the first two postnatal weeks. Marble burying, a well-recognized
behavioral paradigm to measure repetitive behaviors in rodents,
again is consistently increased in murine offspring following
poly (I:C) treatment (48). These offspring have proven useful
in pre-clinical etiological studies as well as identification of
therapeutic targets.

Cytokine dysregulation may play a causative role in observed
neuronal dysfunction in pre-clinical models of MIA (20, 46, 49).
In a recent study, Choi et al. convincingly demonstrated that
simulated MIA in murine models leads to elevation in maternal
IL-6, which in turn activates maternal Th17 cells. These maternal
Th17 cells produce IL-17, which is thought to cross the placenta
triggering increased expression of IL-17AR in the fetal brain and
leading to cortical malformations and behavioral abnormalities
(18, 50). These malformations parallel abnormalities found in
brain development in children, adolescents and adults with ASD
(51, 52). Poly (I:C) treatment also leads to raised IL-17A mRNA
levels in placental tissue of these mice (18). Through inhibition of
IL-6 and IL-17A signaling with antibody blockade of the IL-17A
cytokine, Choi at al also determined that a sustained increase in
IL-17A expression seemed to be pathogenic in ASD, as IL-17A
blockade prevented the development of ASD-like phenotypes
(18). Specific behaviors in mice which model core diagnostic
features of ASD (including repetitive burying and increased
neonatal USV) were normalized in the previously MIA-exposed
offspring (53, 54).

Improved fetal resilience is associated with lower intensity of
MIA. Autism spectrum disorder risk after prenatal exposure to
maternal fever has been found to increase in a dose dependent
manner (55, 56) and similar effects were identified in animal
models of MIA (57). A balanced maternal diet seems to
contribute to improved fetal resilience also (58–60). Exposure to
relatively higher grades of immune activation via high intensity
MIA (40), intrapartum infection (61, 62) and genetic risk factors
lead to reduced fetal resilience, and increased likelihood of
unfavorable developmental outcomes.

ALTERATIONS IN CYTOKINE EXPRESSION
IN HUMAN STUDIES

While many studies have examined the cytokine profiles
of individuals with ASD, only a very limited number of
studies to date have examined mid-gestation cytokine levels
in mothers of children who subsequently develop ASD. Three
studies retrospectively analyzed maternal blood sampled during
pregnancy. A 2017 study by Jones et al., reported elevated mid-
gestation cytokines and chemokines in mothers of children with
ASD associated with ID, and particularly early onset ASD (as
defined by the authors as early or sustained delays in language or
social skills, and excluding those showing clear skill regression)
(63). Dysregulation was noted in a number of cytokines including
interleukins IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-17A
between 15 and 19 weeks’ gestation. An earlier study noted
elevations in mid-gestation serum IL-4, IL-5, and IFN-gamma
levels in mothers of ASD affected children (15). While, more
recently, Irwin et al. demonstrated alterations in IL-4, MCP-1,
and IL-10 levels in 28-week gestation serum of mothers who
birthed ASD affected children (64). Other authors have examined
amniotic fluid at mid-gestation and found elevated levels of IL-
4, IL-10, TNF-α, and TNF-β in ASD patients vs. controls (65).
Yet, amniotic fluid cytokine concentrations are more indicative
of the fetal immune state rather than the maternal state (66,
67). In Table 1, we outline a number of the cytokines most
frequently found to be dysregulated in the serum or cerebrospinal
fluid (CSF) of ASD affected individuals, and gestational
serum and amniotic fluid samples from mothers of ASD
affected children.

A growing body of evidence supports a role in ASD
pathogenesis for Th17 cells and their product cytokine, IL-17A
(Figure 1) (79, 82). The IL17A gene itself has been identified
by a small genome-wide CNV study to have amplified CNVs in
ASD affected cohorts (83). Elevated levels of IL-17A have been
reported in the blood of ASD affected individuals, and these
correlate positively with severity of ASD behavioral symptoms
(35, 63, 79). Yet, others have found high concentrations of IL-17A
in individuals affected by obesity or high BMI (84), both of which
aremore likely in ASD groups (85). This is a potential confounder
for any retrospective cohort based study designs.

STRING analysis (Figure 2) (86) indicates that IL-17A has
proven or predicted interactions with IL-2, IL-6, IL-10, IL-
13, IL-17F, IL-17RA, IL-17RC, CTLA4, STAT3, and STAT6.
Each of these proteins have been previously reported to have
altered expression in children with ASD, as outlined below. Of
these, the most persistently described, and hence, potential key
player is IL-17A, along with its receptor IL17RA and receptor
complex, IL17RC.

Network nodes represent proteins—each node represents
all the proteins produced by a single, protein-coding gene
locus. Edges (lines) represent protein-protein associations
that are specific and meaningful, i.e., proteins jointly
contribute to a shared function; this does not necessarily
mean they are physically binding each other. Blue
connecting lines indicate that protein interaction information
was derived from curated databases, pink indicates the
interaction was experimentally determined, yellow indicates

Frontiers in Psychiatry | www.frontiersin.org 3 February 2022 | Volume 13 | Article 823096

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Carter et al. MIA IL-17 Inflammation ASD COVID-19

TABLE 1 | Cytokine dysregulation in ASD affected individuals and in gestational serum and amniotic fluid samples of mothers with ASD affected offspring.

Cytokine Category Altered in blood/CSF

of ASD individual

Altered in

gestational blood

Altered in

amniotic fluid

Cytokine characteristics relevance to ASD

TNFα Pro-inflammatory (29, 68–70) (63) (65) Apoptosis of infected cells. Elevated in the CSF and

blood of ASD affected individuals (29, 68, 69).

IL-1β Pro-inflammatory (29, 68, 71, 72) (63) A potent pro-inflammatory cytokine involved in both

acute and chronic inflammation. Correlated with ASD

symptom severity (34).

IL-6 Pro-inflammatory (29, 68, 70–74) (63) Induces production of acute phase proteins and

stimulates B-cell antibody production (75). Pleiotropic

(affects hematologic, hepatic, endocrine, and

metabolic function). Thought to impact synapse

formation and neuronal migration (76). Potentially

mediates IL-17 linked ASD risk in pregnancy (18, 46).

IFNγ Pro-inflammatory (27, 29, 73) (15, 63) Interfaces between innate and adaptive immune

response. Secreted by NK cells, and promotes NK

killing. Activates macrophages, which produce IL-12

and−23, stimulating Th1 and Th17 cell, respectively.

Inhibits Th2 cells. Versatile, with a role in defense

against intracellular pathogens, tumors surveillance,

autoimmunity, allergy, and the protection of the

amniotic space during pregnancy (77).

IL-17 Pro-inflammatory,

Chemotactic

(29, 35, 70, 74, 78, 79) (63) Derived from Th17 cells, a subset of CD4 cells.

Potentiates the innate PMN response throughout

inflammation. Postulated to trigger alterations in the

blood brain barrier and lead to cortical dysplasia (46).

IL-4 Pro-/Anti-

inflammatory,

Allergy

(72) (15, 63, 64) (65) A Th2 derived cytokine, often linked with asthma and

allergic type inflammation (33). Dual role:

pro/anti-inflammatory properties. Crucially important

in mitigating inflammation during pregnancy (primarily

through suppression of Th1 T-cells and associated

cytokines (IL-2 and IFNγ).

GM-CSF Growth factor (80) (63) A colony-stimulating factor. Produced by stromal

cells, it targets bone marrow, and precursor cells,

mediating hematopoiesis.

IL-8 Chemotactic (71, 73, 81) (63) Produced by fibroblasts, neutrophils, and

macrophages. Chemo-attractant for phagocytes at

site of inflammation.

The numbers in parentheses indicate the relevant references.

the interaction was determined via text mining, black
indicates protein co-expression, and lilac indicates protein
homology. Analysis was performed on 28 July 2021 via the
string-db.org domain.

IL-17A ASSOCIATED
PRO-INFLAMMATORY MEDIATORS IN ASD

Upregulation of pro-inflammatory pathways has been
persistently associated with ASD. IL-6 is a versatile cytokine,
with multiple functions throughout the body. It plays roles
in immunity, inflammation, hematopoiesis, and oncogenesis.
IL-6 works to promote pro-inflammatory Th17 cells (IL-
17 producers) and to downregulate anti-inflammatory
Treg cells (regulatory T-Helper cells) (87, 88). Th17 cells
produce cytokines that cross the placental barrier (20). This
transplacental effect has been well-characterized with IL-6,

which was shown to alter offspring behavior and brain
development (20, 89).

Like IL-17A, IL-17F is also produced by Th17 cells (90). IL-17F
is reported to be involved in the regulation of proinflammatory
gene expression and responses (91). IL-17RA and IL-17RC are
both members of the IL-17 receptor family. In order for IL-17A
(or indeed IL-17F) to have biological effects on tissues, IL-17RA
must be present (90). IL-17RA is expressed in immune cells,
and some children affected by ASD appear to possess higher
levels of this receptor compared to neuro-typical controls (92).
IL-17RA blockade may reduce monocyte associated oxidative
stress which may improve neuro-inflammation associated with
ASD (92). IL-17RC is also essential for the formation of the
IL-17 receptor complex (46). IL-17RC levels in neutrophils are
raised in children with ASD compared to neuro-typical controls.
In fact, expression of this receptor (mRNA and protein) was
completely absent in a cohort of neuro-typical children. The
presence of both IL-17A receptor subunits in ASD patients
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FIGURE 1 | Potential outcomes in the inflammation-exposed fetus in the context of MIA related IL-17 induction. Improved fetal resilience is associated with lower

intensity of maternal immune activation. Autism spectrum disorder risk after prenatal exposure to maternal fever has been found to increase in a dose dependent

manner (55, 56) and similar effects were identified in animal models of MIA (57). A balanced maternal diet seems to contribute to improved fetal resilience also (58–60).

Exposure to relatively higher grades of immune activation via high intensity MIA (40), intrapartum infection (61, 62), and genetic risk factors lead to reduced fetal

resilience, and increased likelihood of unfavorable developmental outcomes.

may magnify the effects of IL-17A resulting in an autistic
phenotype (93).

The transcription factor STAT3 (signal transducer and
activator of transcription 3) is a key player in the development
of T helper cells and regulates the expression of the T helper
cell specific transcriptional regulator—retinoic acid receptor
related orphan receptor γ-t (RORγt) via IL-6 (94, 95). IL-
6 is a potent driver of RORγt activity. RORγt is exclusively
found in lymphoid cells such as Th17 cells (CD 4 helper cells),
and is required for differentiation of Tregs to Th17 cells (95).
STAT3 proteins occur at elevated levels in the peripheral blood
mononuclear cells (PBMCs) of children affected by ASD (96).
Inhibition of STAT3 mitigates MIA associated behavioral and
immunological abnormalities seen in animal models (49), while
RORγt KO models reverse outcomes in MIA exposed mouse
pups (18).

Lastly, IL-13 is a cytokine derived from T cells, which has both
inflammatory and anti-inflammatory properties. IL-13 inhibits
the production of other inflammatory cytokines (IL-1α, IL-1β,
IL-6) through its effects on inflammatory macrophages (97). IL-
13 is recognized as a key driver in allergic and inflammatory
airway disease, where its effects are potentiated by IL-17 (98).
Raised IL-13 has been noted in the plasma and PMBCs of
children affected by ASD (29, 99), particularly those with
comorbid asthma (although IL-13 is known to be skewed in those
with co-morbid atopic conditions) (35).

IL-17A ASSOCIATED
ANTI-INFLAMMATORY MEDIATORS IN
ASD

Another member of the STAT family, STAT6, suppresses the
IL-17A inflammatory response. In certain conditions, STAT6
signaling attenuates IL-17A producing T-cells, reducing their
production of IL-17A (100). IL-4 mediated inhibition of Th17
cells and IL-17A production is STAT6 dependent (101). In human
studies, children with ASD reportedly have reduced levels of
STAT6-expressing CD45 cells (CD45+STAT6+) in their PBMC
profile compared to neuro-typical controls (80). STAT6, as part
of the IL-4 signaling cascade can enhance the expression of anti-
inflammatory mediators. This pathway is critical for acceptance
of the fetal graft, through reduction of Th17 cells and increase of
both IL-4 and Tregs in the fetal environment (102, 103).

In addition to downregulation of the STAT6 mediated
pathways, downregulation of other anti-inflammatory cytokines
is also reported in autism. Anti-inflammatory cytokine IL-10 acts
as a “master” immuno-regulator (104) and IL-10 concentrations
are significantly lower in ASD children compared with neuro-
typical controls (79, 105). Cytotoxic T-lymphocyte antigen 4
(CTLA4) is a glycoprotein located on T cells (106) and is induced
following T cell activation. This anti-inflammatory molecule is
expressed at lower levels in the PBMCs of children with ASD
(107). Reductions in the levels of these anti-inflammatory and
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FIGURE 2 | STRING diagram illustrating the known and predicted protein

interactions for IL-17A. Network nodes represent proteins—each node

represents all the proteins produced by a single, protein-coding gene locus.

Edges (lines) represent protein-protein associations that are specific and

meaningful, i.e., proteins jointly contribute to a shared function; this does not

necessarily mean they are physically binding each other. Blue connecting lines

indicate that protein interaction information was derived from curated

databases, pink indicates the interaction was experimentally determined,

yellow indicates the interaction was determined via text mining, black indicates

protein co-expression, and lilac indicates protein homology. Analysis was

performed on 28 July 2021 via the string-db.org domain.

regulatory proteins may lead those with ASD to acquire a more
pro-inflammatory state.

LINKING IMMUNITY AND GENETICS IN
ASD

Bioinformatics analysis of large CNV studies suggest strongly
that innate immune processes are implicated in ASD risk (108),
this may indicate that immune dysfunction in ASD may be
genetically driven or influenced. Maternal immune activation
downregulates expression of susceptibility genes known to be
highly penetrant in ASD and heavily involved in neurogenesis,
cell signaling, synaptogenesis, and axonal guidance in the early
stages of fetal development (108, 109). When compared with
curated ASD associated gene sets [e.g., via the SFARI Gene
database (http://gene.sfari.org/)], MIA downregulated genes
were substantially enriched. The strongest enrichment of MIA
downregulated genes was observed in the ASD gene categories
with the highest likelihood of a link to ASD i.e., SFARI “High
Confidence” or “Syndromic” ASD gene sets. This suggests that
MIAmay bestow increased ASD risk through downregulating the
expression of the same genes that are highly penetrant in ASD
during the early stages of fetal development.

Loss of function mutations in TSC1 and TSC2 genes are
linked to syndromic ASD, and these genes are critical upstream
regulators of the mammalian target of rapamycin (mTor)
pathway. mTor has important functions in innate immunity and
metabolism in particular (52, 110, 111).

Maternal immune activation also has downstream effects,
in some cases influencing the transcriptome rather the genes
themselves. Fragile X mental retardation 1 gene (FMR1) and
CHD8 are both highly penetrant genes for ASD, yet MIA
does not seem to influence expression of these genes directly.
Rather, it wields an influence on downstream gene targets
such as FMRP (fragile X syndrome protein complex). This
raises the possibility that MIA may act as an environmental
factor disrupting crucial early developmental genomic pathways
through influence on downstream gene targets (108). This might
suggest that MIA could act both in a direct (genetic) and indirect
fashion (epigenetic/regulatory) with the end effects converging
on similar pathways.

As previously, mentioned, normal pregnancy is associated
with suppression of immunity, allowing the fetus to develop
inside the mother’s innate immune system. Human leukocyte
antigen G coding gene antigen recognition controls the placental
immune response and allows acceptance of the fetal graft.
Human leukocyte antigen G coding gene interacts with the CD8
cell surface antigen found on most cytotoxic T-lymphocytes
that mediate efficient cell–cell interactions within the immune
system (112). Higher rates of HLA-G mutations have been
found in mothers of children with ASD (113). The Th17
pathway in particular has been identified as a likely effector
of inflammatory changes on the developing fetal brain, with
downstream effects on behavior and cognitive development (46,
114). We hypothesize that the physiological changes in maternal
immunity during pregnancy are dysregulated in somemothers of
children with ASD.

In summary, many of the inflammatory proteins reported to
have altered expression in ASD are linked to pro-inflammatory
Th-17 cells, their product IL-17A, and the IL-17 receptors and
receptor complexes. It appears that IL-6 activation (regulated
by STAT3 and STAT6 via RORγt activity) of IL-17 expression,
and subsequent upregulation of IL-17 receptors and receptor
complexes may have a key role in the pathogenesis of ASD.
The majority of linked molecules identified above are pro-
inflammatory and found in higher quantities in those with
ASD, with a corresponding downregulation of anti-inflammatory
proteins. Whether this dysregulation of IL-17 is an inherent or
acquired state is unclear.

Circulating T cell and IL-17A levels are altered in a
subset of children with ASD. Maternal immune activation
(including IL-17A) seems to play a role in altering important
developmental pathways through direct interaction with ASD
susceptibility genes, and indirectly, through interaction with
their gene products. Circulating levels of IL-17A are dysregulated
during pregnancy in mothers of children who develop ASD
and ID (63, 79, 83). Murine models support a causative
role for IL-17A in the pathogenesis of ASD. We conclude
from the existing evidence that IL-17A dysregulation in the
mother or developing infant could play a causal role in the
development of at least some subsets of ASD and may be the link
between environmental exposure and genetic susceptibility.
Understanding the role of IL-17A and its associated
targets on neurodevelopmental outcomes is now becomin
increasingly important.
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WHAT IS THE RELEVANCE OF THE
ONGOING COVID-19 PANDEMIC TO
MIA-INDUCED ASD RISK?

Coronavirus disease 2019 (COVID-19), a disease caused by
the novel coronavirus, SARS-CoV-2, has become a pandemic,
affecting every corner of the globe. Although, the disease
(COVID-19) affects primarily the respiratory systems of those
affected, it has been found to affect and damage other organs,
including the kidneys (115), liver (116), brain (117, 118),
and heart (119, 120). Worldwide reported cases and COVID-
19 related mortality are most likely an underestimate due to
variability of public health capacities between countries, but as
of August 2021, there have been almost 200 million confirmed
cases of COVID-19, and over 4.2 million deaths reported to the
WHO (121).

Our current knowledge of COVID-19 is based only on our
limited experience with SARS-CoV-2 since December 2019 and
analogously, through our experience of other coronaviruses
(SARS CoV and MERS, Middle East Respiratory Syndrome).
The long-term consequences of in-utero SARS-CoV-2 exposure
and/or congenital infection are almost entirely unknown. There
is clear evidence that prenatal exposure to viral infections
increases the risk of adverse developmental, neurological, and
psychiatric outcomes in later childhood and adult life (38, 44,
122). In this next section, we discuss the implications of the
COVID-19 pandemic in the context of MIA-induced alterations
in neurodevelopmental outcomes.

COVID-19 AND CYTOKINE STORM

Preclinical work shows that MIA, which stimulates interleukin-
17A release from Th17 cells, can establish sustained fetal-
placental inflammatory responses. This inflammatory milieu
can persist into childhood and affect the development of the
young “primed” brain. Remarkably, in murine models, social
difficulties in MIA-exposed offspring are remediable through
a variety of mechanisms including IL-17 blockade (18, 46).
Cytokine storm is a general term applied to maladaptive cytokine
release in responses to infection and other stimuli (123). In the
context of sepsis, cytokine storm is considered one of the major
causes of acute respiratory distress syndrome (ARDS), systemic
inflammatory response syndrome (SIRS), andmulti-organ failure
(124, 125). In COVID-19, cytokine storm seems to play a role
in disease aggravation and correlates positively with severity
of disease (126). IL-17A target IL-6 and C-reactive protein
(CRP) specifically, have been shown to correlate positively with
increased mortality (127). Elevated numbers of Th17 cells have
been isolated in the blood of individuals with fatal COVID-
19 infection (128), while many authors have demonstrated
significantly elevated levels of IL-17A in those with both mild
and severe COVID-19 (129–131). Coronavirus infection results
in macrophage, and dendritic cell activation and IL-6 release
(132). This instigates an amplification cascade (JAK–STAT1/3
pathway) that results in cis signaling (binding of cell membrane
bound IL-6 receptors) in lymphocytes with downregulation of

Tregs and increased differentiation of TH17 cells; as well as trans-
signaling (binding of soluble IL-6 receptor) effects on many other
cell types (endothelial cells). This widespread immune activation
and cytokine production contributes to the pathophysiology of
severe COVID-19 (133). Indeed, some authors have specifically
suggested therapies intended to target both Th17 cells and IL-
17A in COVID-19 disease (134, 135). We have already outlined
how Th17 specific (T-helper 17 cell) pathways are initiated via
activated macrophages that produce IL-6 and IL-1β. As outlined,
IL-6 in particular, is a potent potentiator and trigger for IL-17A
release (123, 134, 136). IL-17A therefore, may be a key player in
the COVID-19 cytokine storm.

CORONAVIRUS (SARS-CoV-2)
NEUROTROPISM AND NEUROLOGICAL
EFFECTS

Coronaviruses have a demonstrated specific neuro-tropism that
allows them access to, and to proliferate in, the host’s CNS
(137, 138). Cell entry seems to occur through the angiotensin-
converting enzyme-2 (ACE-2) and transmembrane protease
serine 2 (TMP S2) receptors, both of which are widely expressed
in the placenta and at the feto-maternal interface. While trans-
placental infection of the fetus is, yet to be proven conclusively,
vertical transmission is certainly plausible and may lead directly
to inflammatory processes in the fetal brain, in addition to
indirect effects via the host/maternal immune response. The
neurological sequelae of COVID-19 are wide-ranging and
relatively common. Themajority of neurological presentations so
far have fallen into five categories, (i) Encephalopathy (including
delirium and impaired consciousness), (ii) Inflammatory CNS
disorders [including encephalitis and Acute Disseminating
Encephalomyelitis (ADEM)], (iii) Cerebrovascular accident
(CVA)/stroke, (iv) PNS disorders [including Guillain-Barré
Syndrome (GBS) and cranial nerve palsies], (v) “Miscellaneous”
central neurological disorders (such as raised intracranial
pressure, seizures, and myelitis) (139). Hyposmia/Anosmia
and hypogeusia (140) are recognized as two important
hallmarks of acute SARS-CoV-2 infection, while more severe
neurological complications have included CVAs, encephalitis,
encephalopathy, and neuropsychiatric disorders (118, 141).
Protein-protein network analysis for GBS and COVID-19
revealed that the combined gene set showed an increased
connectivity as compared to COVID-19 or GBS alone, this was
particularly true of genes related to Th17 cell differentiation.
Transcriptome analysis of PBMC from patients with COVID-19
and GBS demonstrated the activation of interleukin-17 signaling
in both conditions (142). Viral RNA has been isolated in
clinical CSF samples in those with COVID-19 and neurological
symptoms (143), and post-mortem examination of brain tissue
has identified both viral RNA and neutrophilic infiltrates
suggestive of aberrant immune response (144).

Recent pluripotent stem cell derived organoid models have
been used to model SARS-CoV-2 infection in a wide range of
tissues including gut, lung, liver, kidney, and brain (117, 145).
These models demonstrate the virus’ ability to infiltrate and
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proliferate in a variety of different cell/tissue types. Within
the brain, the areas with the highest avidity for SARS-CoV-
2 are the choroid plexus and the hippocampus (117). This
is an interesting finding, as the choroid plexuses themselves
represent the interface between CSFand blood compartments (in
a similar fashion to the blood-brain barrier). They are located
in each of the four ventricles, and are intimately related with
immediately adjacent CSF, capillary blood supply, and neural
tissue. Angiotensin-converting enzyme-2 receptors also appear
to be highly expressed in the choroid plexus (146). In this sense,
they provide a comprehensive roadmap upon which SARS-CoV-
2 can potentially travel. The neurological features on COVID-19
infection are diverse and wide-ranging. Most studies to date have
focused on symptomology in adult patients, but novel models of
SARS-CoV-2 infection in a variety of human and animal tissues
is casting new light on the mechanisms underlying COVID’s
infectivity and its ill-effects. There appears to be a variety of
mechanisms underlying COVID’s pathogenicity, not limited to
direct viral effects on tissue, but also collateral effects via immune
and thrombotic processes (147). Although there is little research
on the effects of COVID on fetuses in early pregnancy, the
same processes of direct viral effects and secondary immune and
inflammatory effects are likely to be at play.

MATERNAL COVID-19 INFECTION AND
PERINATAL EXPOSURE

Pregnant women are not thought to be more susceptible to
contracting coronavirus than the general population (148), but
given alterations in the pregnant immune state (103), they may
be more susceptible to more severe infection (149, 150). Studies
from previous pandemics, H1N1 influenza (2009), SARS (2003),
and MERS (2012), suggest the possibility of significant maternal
and neonatal morbidity and mortality (151, 152). Indeed, both
MERS and SARS resulted in maternal death in a significant
number of cases, but the specific risk factors for a fatal outcome
during pregnancy are not clear. Our experience with these
previous coronaviruses indicates higher risk of adverse outcomes
for the fetus and infant including fetal growth restriction (FGR),
and preterm delivery, both of which have previously been
linked to increased ASD incidence (153) as well as NICU
admission, spontaneous abortion, and perinatal death. As with
other Coronaviruses, maternal SARS-CoV-2 infection has been
associated with negative perinatal outcomes. Preterm delivery,
fetal distress, stillbirth, and perinatal death have been widely
reported (150, 154–156). Figures from China show that while
up to 3% of pregnant women infected with COVID-19 required
admission to intensive care (157, 158), a UK study showed 1%
of pregnant women admitted with SARS-CoV-2 required ECMO
(Extra-corporeal membrane oxygenation) and 10% Intensive
Care Unit (ICU) management (159).

Cesarean section (CS) has been implicated as a risk factor
for the development of ASD in offspring. The mechanisms
underlying this are unclear, yet the risk of ASD is increased
by approximately 33% in both elective and emergency CS
procedures (160). In a systematic review of perinatal and

maternal outcomes during the pandemic, CS rates were reported
at extremely high levels, up to 90% in some centers (range
from approximately 50–90%) (161). For comparison in work
published in 2020, Turner at al noted an all-cause national CS
rate in Ireland of approximately 26% (162). These higher rates
were observed in most centers in spite of recommendations
from the Royal College of Obstetrics and Gynecology (RCOG)
and the International Federation of Gynecology and Obstetrics
(IFGO) against decisions for CS being influenced by maternal
SARS-CoV-2 status.

More specifically to neonatal outcomes, the WHO quotes
worldwide preterm delivery rates of approximately 10% (163).
Two large review studies reported preterm delivery rates of 20–
25% in SARS-CoV-2 affected pregnancies (164, 165). Women
with SARS-CoV-2 seemed to be more likely to endure a preterm
delivery (165). The majority of these deliveries were iatrogenic,
but in some reviews, up to half were attributable to either fetal or
maternal compromise (166).

Maternal and neonatal ICU admission rates were also higher
in the SARS-CoV-2 affected cohorts. Maternal ICU admission
and mechanical ventilation rates were high vs. age matched non-
pregnant women (165). While rates of stillbirth and neonatal
death appear similar to uninfected fetuses, NICU admission
rates were notably higher in COVID affected pregnancies (159),
commonly as a precautionary step in the care of the neonate.
Neonatal morbidity was higher in the SARS-CoV-2 affected
groups and was associated with preterm delivery in mothers
with more severe COVID-19 primary infection. Hypoxemia and
respiratory difficulties inmothers had knock on effects of reduced
placenta perfusion, pre-placental hypoxemia, fetal distress, and
preterm delivery (167).

Given our knowledge of the potential developmental effects
of Th17 activation in pregnancy, children in-utero during
this pandemic may have significant inflammatory exposures if
maternal infection occurs. There remain unanswered questions
about the impact that asymptomatic and mild maternal
infection has on the fetal brain in early pregnancy. Prospective
follow up studies will need to follow infants whose mothers
were infected as well as health unaffected controls. There is
enormous potential to leverage archived serological samples from
pregnancy and neonatal cohorts to study the relationships (or
associations) between markers of maternal inflammation and
later neurodevelopmental outcomes in offspring born during
the pandemic. While in general, the likelihood of intrauterine
maternal-fetal transmission of coronaviruses is low—there have
been no documented cases of vertical transmission occurring
with either SARS or MERS. There are current reports of
possible vertical transmission of SARS-CoV-2 in several cases
of third trimester maternal infection (168–170). Little to no
information exists about children exposed in the first and
second trimesters yet. While generally placental seeding does
not seem common, some cases have reported strong evidence
of placental infection with the demonstration of high viral load
and immuno-histological evidence of SARS-CoV-2 in placental
tissue (168). Currently, we can only surmise what the true
effect (if any) of gestational COVID-19 on the incidence of
ASD will be, but already some have concerns that the incidence
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may increase (171, 172). No studies have yet been reported on
neurodevelopmental outcomes, as the oldest offspring are still
in early childhood. Still, the evidence we have outlined within
this review from MIA studies examining IL-17A and its pathway
members provides a strong basis to build upon our current
hypothesis and ask the question; could COVID-19 induced
MIA act via IL-17A signaling to increase the risk of ASD-like
phenotypes in vulnerable offspring?

DISCUSSION: IMPROVING OUTCOMES
FOR ASD AFFECTED INDIVIDUALS AND
FAMILIES

We believe that in spite of the tragedy of the COVID-19
emergency, we are presented with a serendipitous opportunity to
progress scientific knowledge regarding prenatal exposures and
ASD risk. During the COVID-19 pandemic, we have witnessed
a novel infection, affect an immunologically naïve population
within an extremely well-defined period of exposure. COVID-
19 is now a notifiable illness, and has been characterized and
monitored more than any illness in history. Many countries
have developed stringent mandatory testing protocols, and track
and trace programmes. Within all this, exists an opportunity
to study the longitudinal effects of this infection on offspring
of those affected by gestational COVID. Further investigation
of mid-gestational cytokine profiles (IL-17A in particular) and
their potential for genetic interplay could be a crucial cog in
the development of actionable and cost-effective improvements
in the current models of ASD care. Identification of pathways
of immune dysregulation during pregnancy could lead to the
identification of a risk marker of ASD that could be characterized
in broader ASD cohorts. This would facilitate the identification
of a predictive marker of ASD allowing earlier dedicated ASD
screening in at risk children. Coupled with these potential
biochemical markers, known early clinical signs of ASD exist.
Crystallization of the ASD diagnosis can be as early as 14
months old according to some authors, and there are clinically
detectable signs of ASD from a younger age still (23, 173, 174).
The first children born of this pandemic are now reaching their
toddler years, and they may represent a group with increased
risk of ASD or other developmental conditions. Taken together, a
postulated early biochemical marker and established early clinical
markers could allow targeted early ASD screening, which would
lead to earlier intervention, and improved outcomes. Therapies

instituted in this age group have the potential to significantly
improve clinical outcomes in ASD affected children. The timing
of therapy is important with the most dramatic symptomatic and
developmental improvements in those detected at an earlier age
of diagnosis (175, 176).

We believe that it is the obligation of the scientific community
to glean what benefit we can from this pandemic. In spite of
social distancing measures, systematic national “lockdowns,” and
working from home, there has been unprecedented scientific
collaboration to try to counter the scourge of COVID. This has
led to some outstanding success, not least in the development
of two highly effective mRNA vaccines. In order to facilitate
international research, the development of an international
gestational COVID-19 consortium and registry would be an
important step in coordinating research activities and aims.
Isolation of relevant clinical bio-samples and prospective
identification of patients will have already begun in some centers,
and should be facilitated by the public health infrastructures
that have been built up around the pandemic. Multidisciplinary
collaborative follow up programmes should be established to
identify, assess, and treat children with potential negative post-
COVID outcomes.
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