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ABSTRACT The site-to-site variability in species composition, known as 3-diversity, is crucial to understanding spatiotemporal
patterns of species diversity and the mechanisms controlling community composition and structure. However, quantifying
B-diversity in microbial ecology using sequencing-based technologies is a great challenge because of a high number of sequenc-
ing errors, bias, and poor reproducibility and quantification. Herein, based on general sampling theory, a mathematical frame-
work is first developed for simulating the effects of random sampling processes on quantifying 3-diversity when the community
size is known or unknown. Also, using an analogous ball example under Poisson sampling with limited sampling efforts, the
developed mathematical framework can exactly predict the low reproducibility among technically replicate samples from the
same community of a certain species abundance distribution, which provides explicit evidences of random sampling processes as
the main factor causing high percentages of technical variations. In addition, the predicted values under Poisson random sam-
pling were highly consistent with the observed low percentages of operational taxonomic unit (OTU) overlap (<30% and <20%
for two and three tags, respectively, based on both Jaccard and Bray-Curtis dissimilarity indexes), further supporting the hy-
pothesis that the poor reproducibility among technical replicates is due to the artifacts associated with random sampling pro-
cesses. Finally, a mathematical framework was developed for predicting sampling efforts to achieve a desired overlap among rep-
licate samples. Our modeling simulations predict that several orders of magnitude more sequencing efforts are needed to achieve
desired high technical reproducibility. These results suggest that great caution needs to be taken in quantifying and interpreting
B-diversity for microbial community analysis using next-generation sequencing technologies.

IMPORTANCE Due to the vast diversity and uncultivated status of the majority of microorganisms, microbial detection, character-
ization, and quantitation are of great challenge. Although large-scale metagenome sequencing technology such as PCR-based
amplicon sequencing has revolutionized the studies of microbial communities, it suffers from several inherent drawbacks, such
as a high number of sequencing errors, biases, poor quantitation, and very high percentages of technical variations, which could
greatly overestimate microbial biodiversity. Based on general sampling theory, this study provided the first explicit evidence to
demonstrate the importance of random sampling processes in estimating microbial 3-diversity, which has not been adequately
recognized and addressed in microbial ecology. Since most ecological studies are involved in random sampling, the conclusions
learned from this study should also be applicable to other ecological studies in general. In summary, the results presented in this
study should have important implications for examining microbial biodiversity to address both basic theoretical and applied
management questions.
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icroorganisms appear to be the most diverse group of life

presently known, inhabiting almost every imaginable envi-
ronment on Earth (1). They play integral and unique roles in
ecosystem functions and biogeochemical cycling of carbon (C),
nitrogen (N), sulfur (S), phosphorus (P), and various metals. Un-
derstanding the structure, functions, interactions, stability, and
adaptations of microbial populations/communities is crucial for
basic science discovery (2, 3), biotechnology (4), agriculture (5),
energy (6), the environment (7), and human health (8). However,
due to their extremely high diversity and as-yet-uncultivated sta-
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tus, characterizing microbial diversity and establishing the link-
ages between microbial diversity and ecosystem function are very
challenging (9). Understanding the mechanisms controlling mi-
crobial diversity and functions is even more difficult. The recent
advances in metagenomics, which has emerged as a cutting-edge
21st century science (10), and associated metagenomics technol-
ogies such as high-throughput sequencing and microarrays (10,
11) provide revolutionary tools to address these challenges. Large-
scale high-throughput sequencing-based metagenomics is pro-
viding unprecedented views of the taxonomic diversity, metabolic

mBio mbio.asm.org 1


http://creativecommons.org/licenses/by-nc-sa/3.0/
mbio.asm.org

Zhou et al.

potential, and ecological roles of microbial communities in vari-
ous habitats (12-32). Various studies clearly demonstrate that
large-scale sequencing approaches are powerful in studying mi-
crobial community diversity and activity (23, 33—43).

B-Diversity, the site-to-site variability in species composition,
is crucial in understanding patterns of species diversity across var-
ious spatial and temporal scales. It can provide insight on the
mechanisms controlling community compositions and structure
(44). B-Diversity is widely used for investigating the mechanisms
controlling biodiversity (45-47) and the responses of biological
communities to environmental changes (45). In microbial ecol-
ogy, high-throughput metagenomics sequencing and associated
technologies are the major tools for examining the site-to-site
variability in species composition and its response to environ-
mental changes (48, 49). However, the amplicon-based approach
has shown limited reproducibility, especially when examining
low-abundance taxa (50). For instance, based on the overlap of
operational taxonomic units (OTUs), a very low reproducibility
(<20% between two technical replicates and <10% among three
technical replicates) was obtained (50), which is far away from the
theoretical expectation of 100% overlap among technical repli-
cates. Similar results were recently obtained with mock commu-
nities (51) and human microbiomes (13).

The high numbers of variations in technical replicates are most
likely due to the sampling artifacts associated with random sam-
pling processes (50, 52), because many steps in the pyrotag-based
sequencing analysis are associated with random sampling, e.g.,
PCR amplification of target genes, ligation of amplified PCR prod-
ucts to sequencing adaptors, emulsion and immobilization of
beads, and bead deposition (50). Since microbial communities
under natural settings are extremely complex and generally have
abundance curves with very long tails, that is, large portions of
OTUs exist in extremely low abundance, the probability of sam-
pling such rare OTUs in a sampling event is low. The chances of
resampling them are even lower, especially with limited sampling
efforts (i.e., percentages of total individuals sampled in a commu-
nity). It is expected that the severity of such sampling artifacts on
community comparison is dependent on community complexity
and sampling efforts. As the complexity of a microbial community
increases, such an artifact will become more severe. Increasing
sampling efforts will help to ameliorate such a problem (50).
However, there is no theoretical foundation to support such a
speculation.

In this study, we hypothesize that a random sampling process is
the main cause for high numbers of variations among technical
replicates. To test this hypothesis, the main objective of this study
is to provide a theoretical foundation on understanding such sam-
pling artifacts associated with a random sampling process. We first
developed a theoretical framework to simulate the random sam-
pling processes based on general sampling theory and to predict
sampling efforts for achieving a desired reproducibility. We then
illustrated the sampling artifacts associated with random sam-
pling processes using an analogous example. We also examined
whether the developed framework could be used to predict the
low percentage of overlap of OTUs among technical replicates.
Our results indicated that high numbers of variations in technical
replicates were due to the artifacts associated with random sam-
pling processes.

Mathematical framework. (i) Sampling individuals from a
large regional community. The pattern of species abundances
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across different spatial-temporal scales is a central issue in ecol-
ogy. However, it is generally impossible to directly measure the
abundance of all species at ecologically relevant scales. Thus, it is
important to understand the relationship between the underlying
species abundance distribution of a large regional community and
the observed abundance distribution in a small sample from the
large regional community. Various statistical sampling theories
are developed to describe the relationships of the species abun-
dance between the sampled community and the large regional
community (53). Here, we will use general sampling theory to
simulate and predict the sampling artifacts associated with ran-
dom sampling processes.

Assuming that a species (or OTU) occurs in a large regional
community, the number of its individuals that exist in a small
sample of the large community is dependent on the total abun-
dance of that species in the large community, the size of the sam-
ple, and the spatial distribution of the individuals (54). In this
study, we assume that all individuals in the large regional commu-
nity are located randomly in space. Let N represent the total num-
ber of individuals (e.g., 16S rRNA gene sequences) and n be the
number of different species (e.g., OTUs), each with abundances
Xp %o« « o X, If an individual is randomly sampled from the com-
munity, the probability of it belonging to the ith species is x/N. If
m individuals are randomly sampled from this large community,
the expected number of individuals from the it species is mx;/N.
With replacement, then, the probability of the it species with
abundance x; to be encountered by k individuals in the sample is
given by the following binomial function expression (55, 56):

plkf, Nom) = (™ )(%ﬂl - %)mk (1)

To estimate the probability that at least one individual of the it
species is present in the sample, we generally calculate the proba-
bility that the it species is absent in the sample, i.e., k = 0. If k = 0,
then the probability of the it" species with abundance x; in a com-
munity to be absent in the sample is expressed as

p(0]x;, N, m) = <1 - %)m (2)

Let x;/N equal ax;/m, where a = m/N, the sampling ratio. Then,
equation 2 is approximated to the exponential form of the Poisson
distribution:

lim p(0|x;, N, m) = e ** (3)

According to the Poisson distribution, the probability of the it
species with abundance x; in the community to have at least one
individual in the sample can be expressed as follows (54):

Ula,x;) =1—p(O|x, N,m)=1—e ™ (4)
The Poisson distribution is the simplest model for sampling indi-
viduals from a large regional community. Based on general sam-
pling theory (53, 56), the abundance distribution observed in a
sample that constitutes a proportion a of the large regional com-
munity can be expressed as

b, (m) = f P(a, )b (x, 0)dx (5)

0
where ¢,(m) is the observed species abundance distribution in a
sample with m individuals sampled. ¢(x) represents the species
abundance distribution with abundance x in the large regional
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community, in which 6 is the vector of parameters (57).

(ii) Expected species overlap among samples with the size of
the large community known. Given a large community with a
known underlying species abundance distribution, ¢(x), the ex-
pected proportion of species in common between samples can be
theoretically predicted. In the case in which the species abun-
dances in these samples are perfectly correlated, the expected
number of the species shared between two samples is given by (54)

J W(ay, x)l(ay, x)d(x, 0)dx (6)

and the number of species shared among three samples is

j lb(al’x)q’(ab x)¢(“3: x)d)(x, e)dx (7)

where a,, a,, and a; are sample ratios from samples 1, 2 and 3, and
a, = my/N,] = 1, 2, 3. m, is the number of individuals (i.e., 16S
rRNA gene sequences in this study) obtained from the /' sample.

Various similarity metrics are used for assessing overlap
among different samples (58). In this study, the two popular sim-
ilarity metrics, Jaccard’s incidence-based and Bray-Curtis’s
abundance-based methods, are used. Based on the Jaccard simi-
larity index, the proportion of species (i.e., OTUs in this study)
overlap between two samples [Oj(a,,a,,0)] is calculated as follows:

lb(al’ X)Lll(tlz, x)d)(x, e)dx

O}(ala a,0) = (8)

f U(ay, x)d(x, 6)dx

0

+J' Yi(a,, x)d(x, 0)dx

0

_j Wlay, x)(ay, x)d(x, 0)dx
0
The proportion of species overlap among three samples
[O?(apaz)as)e)] is

j W(ay, X)(ay, x)s(as, x)d(x, 0)dx

O?(al) a as,0) = D 9)
3

where

%

D3=j lb(al,x)d)(x,e)dx-f—f Yi(ay, x)db(x, 0)dx

0 0

+j di(aa,x)fb(xﬁ)dx—f Play, x)(ay, x)d(x, 0)dx

0

- f llj(aZ’ x)¢(“3s x)d)(x, e)dx - f lj"(al’ x)llj(ab x)¢(x7 e)dx

0

+ J lwb(al)x)drj(az’ X)llﬂ(ﬂ3, x)(b(x) e)dx

0
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There are seven commonly used continuous species abun-
dance distributions, including lognormal, exponential, gamma,
truncated hyperbolic, continuous log series (54), inverse gamma,
and inverse Gaussian distribution. When the total number of in-
dividuals of the regional community (N) is known, the Jaccard
similarity-based explicit expression functions of the proportion of
species overlap between two or three samples are summarized in
Tables S1A and S1B in the supplemental material.

(iii) Expected species overlap among samples with the size of
the large community unknown. Using equations 8 and 9 to esti-
mate the percentages of species overlap between two or three sam-
ples requires information about the total individuals (N) of the
communities examined. However, in most cases, the number of
total individuals in a community is unknown. In the following, we
will consider the situation in which N is unknown.

Since most of the species abundance distributions are scale
invariant under a Poisson sampling process (53, 57, 59, 60), the
expected sample abundance distribution can be obtained by res-
caling the community abundance distribution (x) to the sample
abundance distribution (y): y = px, where p is the proportion of
the community sampled. Thus, equation 8 can be rewritten as

jdi(ai,y)¢(a2,y)¢(y,9*)dy

07 * (a;,a,,0%) = (10)

f W(ar, ) d(y, 0%)dy

+ j bl y)d(y, 0%)dy

0

—f U(ay, y)(a5, y)d(y, 0%)dy

0

wherea, a;, and 6% are the sample ratios and the vector of param-
eters when N is unknown, which are the rescaled parameters and
functions of p. In the case of two random samples from the same
community with parameters 6, we set p = a, + a, and then obtain
a, = a,/(a, + a,) and a,= a,/(a, + a,). Let m, and m, be the total
number of individuals observed in sample 1 and sample 2, respec-
tively. Now we can substitute a, = m,/N and a, = m,/N into and
a,,and then both a, and a; are the functions of m, and m,, i.e., a;=
m,/(m, + m,) and a,= m,/(m, + m,). 0* is the vector of param-
eters of the species abundance distribution in the samples. Con-
sequently, the expected species overlap can be obtained by fitting
data to the parameters 6* without knowing the total number of
individuals of the community, N.

Similarly, in the case of three samples randomly sampled from
one community, the parameter p can be set to the sum of sampling
ratios, p = a, + a, + as. Then, equation 9 can be rewritten as

j Ulay, )y, y)b(as, y)d(y, 0%)dy

o x k 0
O;*(a]’ababe*) =

d;
(11)

where
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ds—fl!l(ai,yw(%@*)dy
+f¢(a§,y)d>(%9*)dy
+r¢(a;y)d>(y,9*)dy
- j °° b(ay, y)(ax y) by, 0%)dy

—J (ay, y)U(as, y)b(y, 06%)dy

0

- f U, y)(as, y) by, %) dy

0

+ f Ulay, Y)(a5, y)U(as, y)d(y, 0*)dy

0

and a; = a,/(a, + a, + a;) = my/(m, + m, + ms), a, = a,/(a, +
a, + a;) = my/(my, + my + my), a5 = as/(a, + a,, + a;) = my/(m,
+ m, + my).

Now, according to equations 10 and 11, the species overlap for
two and three samples can be estimated based on sample abun-
dance y rather than community abundance x, so that there is no
need to know the community size N. When the total number of
individuals of the regional community is unknown, the Jaccard
similarity-based explicit expression functions of the proportion of
species overlap between two or among three samples are summa-
rized in Tables S1C and S1D in the supplemental material.

(iv) Predicting sampling efforts for achieving a desired over-
lap among replicate samples. One important question in practice
is what levels of sampling efforts are needed for achieving desired
species overlap when the number of total individuals of the com-
munity is unknown. In the following, we will address this practical
question by assuming that and ), and ,,; individuals are needed
for sampling to achieve a desired overlap between two samples. To
simplify the situation, let #,= m,= m, and sampling ratio A =
m/N. Based on equation 13, when N is known, the predicted over-
lap between two samples is given by

j (A, )P (A, x)d(x, 0)dx

0

o' = (13)

%

f L[J(A,x)d)(x,ﬁ)dx-l—f Y(A, x)b(x, 0)dx

0 0

—f YA, )P(A, x)d(x, 0)dx

0

Similarly, when N is unknown, we can take the transformation
of the abundance variable y = px = (a, + a,)x. By comparing
equations 8 and 10, the relationship of the expected number of the
shared species when N is known or unknown is given by
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fdJ(A,x)d)(x,G)dx—f YA*, )by, 6%)dy (14)

A
where A* = ——— = m/(m, + m,) is the predicted sample ratio

for achievingatlheaéesired overlap between two samples, and 6* is
the vector of scaled parameters. Rearranging A* as the expression
of the number of sequences, A* = m'/(m; + m,), the predicted
overlap model is given by

j {lm"/(my + my), y1Pd(y, 0%)dy

0

21 %
o' * =

- (15)
ZJ {Wlm'/(m, +m,), yI}d(y, 6 )dy

0

—J {lm'/(my +my), x]} *b(y, 6% )dy
0
Similarly, the predicted overlap model for three samples is
given by

f {Wlm'/(m, +m, + ma),}’]P‘b(J” 0*)dy

0

30 %
o' * =

3f Ylm'/(m, + m, + ms), ylb(y, 0%)dy

_3J {W[m'/(m, + m, + m3)>}’]}2¢(y) 0*)dy

0

+f {lm"/(my + m, + ms), y|Pd(y, 0%)dy
0

(16)
By solving equations 15 and 16, the sampling efforts m’ can be
estimated based on sample abundance y without knowing the
community size N. The Jaccard similarity-based explicit expres-
sion functions of the proportion of species overlap between two or
among three samples for predicting sampling efforts are summa-

rized in Tables S1C and S1D in the supplemental material.

RESULTS

Simulation with an analogous example. To better illustrate the
effects of random sampling processes on the OTU overlap among
technical replicates (3), we use an analogous example by randomly
sampling balls from three jars containing the same number of balls
of different colors (Fig. 1). Assume that three identical jars contain
N balls of n different colors. Their abundance distributions vary
among different colors of balls but are identical among these jars.
Here, individual balls are equivalent to individual 16S rRNA gene
sequences, while the types of balls with different colors are equiv-
alent to individual OTUs. To simplify the situation, we assume
that the same numbers of balls, m, are randomly sampled from
these three jars, yielding samples 1, 2, and 3 (Fig. 1). Theoretically,
if all balls from the whole jars are sampled (i.e., m = N), 100% ball
overlap will be expected among these samples. However, in reality,
the percentages of ball overlap will be less than 100%, because they
depend on the sampling efforts, ball abundance distribution, and
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Three identical jars (communities)

N balls (individuals)

Randomly selected m balls
(sampling)

n colors of balls (species)
with identical distribution

N balls (individuals)

Randomly selected m balls 3

(sampling)

v
>
~

Randomly selected m balls
(sampling)

FIG1 An analogous example to simulate random sampling processes. Three identical jars contain the

same number and types of balls, with identical ball abundance distribution.

complexity of the community. The differences of the percentages
of ball overlap between the theoretically predicted and the ob-
served values among different sampling events are entirely due to
random sampling processes, because there is no difference in the
ball compositions and abundances among these three jars.

With the assumption that the ball abundance distributions in
these three jars follow any of the five continuous species abun-
dance distributions as listed in Table S1A in the supplemental
material, we simulated the effects of the random sampling pro-
cesses on the ball overlap based on Jaccard and Bray-Curtis in-
dexes for five different distributions: exponential, gamma, log-
normal, inverse Gaussian, and inverse gamma. Under each
specific ball abundance distribution, the average observed overlap
through simulations of 100 repeated samplings (see Materials and
Methods for details) was calculated and compared to the theoret-
ically predicted overlap between two samples based on equation 8
or 10, when N is known or unknown, respectively. Similar analy-

v V4
-
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ses were carried out for comparing ball
overlaps among three samples based on
equation 9 or 11. Although the simulation
results vary considerably with the param-
eters selected, the following generaliza-
tions can be drawn. First, no significant
differences of Jaccard similarities were
observed between the theoretically pre-
dicted and the observed overlap values for
all five species abundance distributions
(Table 1 and Fig. 2; see also Fig. S1 and S2
in the supplemental material), indicating
that the theoretically predicted percent-
ages of ball overlap match well to the ob-
served percentages of ball overlap for all
ball abundance distributions examined.
Second, there were no significant differ-
ences of the predicted overlap percentages
derived from equation 8 with known N
and equation 10 with unknown N for two
samples or from equation 9 with known
N and equation 11 with unknown N for
three samples (see Table S2 in the supple-
mental material), suggesting that accurate
predictions of the overlap percentages be-
tween two or among three samples can be
obtained when the size of the regional
communities is unknown. In addition,
low ball overlap percentages were ob-
served with low sampling efforts under
different ball abundance distributions
(Fig. 2; see also Fig. S1 and S2). For instance, under exponential
distribution, when 1% of the community was sampled, 50% over-
lap between two samples (Fig. 2A) and 34% overlap among three
samples (Fig. 2B) were obtained. As the sampling efforts increase,
the ball overlap among samples increases under different ball
abundance distributions (Fig. 2; see also Fig. S1 and S2). For ex-
ample, under exponential distribution, when 10% of the commu-
nity was sampled, 91% ball overlap between two samples (Fig. 2A)
and 82% among three samples were obtained (Fig. 2B). All of the
above results suggested that accurate predictions of the overlap
could be obtained between two samples with equation 8 or 10 and
among three samples with equation 9 or 11.

Because the general explicit form of the ball overlap for quan-
titative similarity index could not be derived, numerical simula-
tions were performed (see Materials and Methods) for all five ball
abundance distributions (see Fig. S3 in the supplemental material)

What percentage of
overlapped colors
(species) among
samples?

TABLE 1 Chi-square-based goodness-of-fit test of the observed and predicted percentages of overlap for the analogous example®

Two samples

Three samples

OTU abundance Known N Unknown N Known N Unknown N

distribution X2 P X2 P b P X2 P
Exponential 6.6 X 107> 0.999 6.6 X 10> 0.999 2.7 X 10~* 0.999 2.7 X 1074 0.999
Gamma 1.9 X 10~¢ 0.999 51X 1074 0.999 9.4 X 10~¢ 0.999 6.5 X 1073 0.999
Lognormal 42X 1074 0.999 2.1 X107 0.999 1.1 X 1073 0.999 1.1 X 1073 0.999
Inverse gamma 4.0 X 10—° 0.999 2.1 X104 0.999 6.5 X 10~¢ 0.999 2.2 X 1073 0.999
Inverse Gaussian 33X 1073 0.999 9.1 X 1074 0.999 7.5 X 1073 0.999 8.5X 1074 0.999

@ Detailed information is presented in Fig. S2 and S3 in the supplemental material.
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Jaccard overlap
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Sampling effort (a1=ay)
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1.0

0.8

0.6

Jaccard overlap
0.4

0.2

000 002 004

0.0

02 04 06 08
Sampling effort (a1=az=a3)

FIG 2 The relationships between the expected Jaccard overlaps of ball colors and sampling efforts under the exponential abundance distribution, assuming the
community has 10¢ individual balls and 10* types of balls, with different colors. Distribution parameter is set to A = 1 X 10~2. In each case, we calculated the
theoretically predicted overlap (blue line) by equation 8 when N is known, the predicted overlap (red line) by equation 10 when N is unknown, and the average
observed overlap (point) through simulations of 100 repeated samplings. (A) Two samples. The sample ratio is a, = a,. (B) Three samples. The sample ratio is

a, =a, = a,.

for comparisons based on Jaccard similarity, all of the numerical
simulations indicated that low percentages of overlap were also
observed among samples with low sampling efforts. For instance,
under exponential distribution, when 1% of the community was
sampled, 53% of ball overlap based on the Bray-Curtis index was
obtained between two samples and 35% among three samples. All
of these results, based on both Jaccard and Bray-Curtis similari-
ties, indicate that substantially high numbers of variations can be
obtained among communities of identical compositions and
abundance distributions when sampling effort is low. Such varia-
tion is entirely due to random sampling processes.

Empirical examples. In our previous studies, the composition
and structure of 24 microbial communities from a long-term
global change experimental site in Oklahoma were analyzed using
the amplicon-based sequencing detection approach (49). Each
community was amplified with 2 or 3 bar-coded primers, followed
by sequencing using both forward and reverse primers. Thus,
three types of datasets were available: sequences from forward and
reverse primers and combined sequences. Since the sequences of
individual technical replicates within an experimental plot are de-
rived from the same community, conceptually, they should obey
the same species abundance distribution. Thus, the sequences
from all technical replicates within a plot (a community) were
pooled for fitting species abundance models described in Ta-

ble S1A in the supplemental material. The best-fit model and as-
sociated parameters for each plot (i.e., community) were shown in
Table S3A for the soil communities amplified with two tags and in
Table S3B for the soil communities amplified with three tags. Ei-
ther the exponential abundance distribution or the inverse
gamma distribution is the preferred OTU abundance distribution
for all soil samples (see Tables S3A and S3B).

Once the OTU abundance distribution models are determined
for all communities examined, the predicted overlap percentages
in terms of Jaccard and Bray-Curtis similarities were calculated
based on the formula provided in Tables SIC and SID in the
supplemental material. The results were listed in Tables S4A and
S4B for the communities amplified with two tags and in Ta-
bles S5A and S5B for those with three tags. Overall, no significant
differences were observed between observed and predicted Jac-
card overlaps (Table 2).

Since Bray-Curtis overlap is a quantitative similarity index, it is
generally higher than the incidence-based overlap (see Tables S5A
and S5B in the supplemental material). Overall, no significant
differences were observed between observed and predicted Bray-
Curtis overlap percentages (Table 2). All of the above-reported
results indicated that the predicted overlap percentages match
well to the observed results. Therefore, the variations among tech-

TABLE 2 Chi-square-based goodness-of-fit test of the observed and predicted percentages of overlap for the experimental data®

Communities Similarity Forward primer Reverse primer Combined

amplified with: test ba P ba P ba P

Two tags Jaccard 0.040 0.999 0.060 0.999 0.038 0.999
Bray-Curtis 0.106 0.999 0.122 0.999 0.075 0.999

Three tags Jaccard 0.006 0.999 0.010 0.999 0.005 0.999
Bray-Curtis 0.008 0.999 0.026 0.999 0.016 0.999

@ Detailed data are listed in Table S4A (two tags, Jaccard), S4B (two tags, Bray-Curtis), S5A (three tags, Jaccard), and S5B (three tags, Bray-Curtis) in the supplemental material.
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FIG 3 Prediction of sampling efforts for desired OTU overlap. (A) Desired overlap between two tags based on the combined sequences from sample 2UC. The
sampling efforts were calculated based on equation 15. The parameters for species abundance distribution were from Table S3A in the supplemental material. (B)
Desired overlap among three tags based on the combined sequences from sample 1UC. The sampling efforts were calculated based on equation 16. The

parameters for species abundance distribution were from Table S3B.

nical replicates can be best explained by the artifacts associated
with random sampling processes.

Predictions of sampling efforts for the desired species over-
lap. Based on equations 15 and 16, on the explicit expression func-
tions presented in Tables S1C and S1D, and on sample abundance
and sequence information for various tags in Tables S3A and S3B,
sampling efforts for achieving various degrees of OTU overlaps
between two (see Table S6A) and among three technical replicates
(see Table S6B) were predicted. To achieve 20% OTU overlap for
two tags, an average of 2,367 sequences are needed (see Table S6A;
Fig. 2A, 2UC), which is consistent with the number of sequences
obtained in this experiment. To achieve 90% overlap between two
technical replicates, an average of 60,900 sequences are needed
(see Table S6A). For instance, for the community of 2UC, a total of
71,400 of the combined sequences would be needed to achieve
90% OTU overlap between two technical replicates (Fig. 3A),
which is about 32 times more sequence reads needed than we
sequenced previously (see Table S4 to S6).

Much more sequencing effort is needed to achieve desired
OTU overlaps among three technical replicates than between two
technical replicates. To have 10% OTU overlap for three tags, an
average of 3,310 sequences are needed, which is consistent with
the number of sequences obtained in this experiment. To reach
90% overlap between three technical replicates, an average of
63,770 sequences are needed (see Table S6B). For example, for the
community of 1UC, about 60,500 sequences are required to ob-
tain 90% of OTU overlap (Fig. 3B). The current sampling efforts
(2,018 sequences) are far less than the desired 90% OTU overlap.
Our results also suggested that most of the work published, espe-
cially with soils, is severely undersampling if the goal is to deter-
mine significant changes in 3-diversity among sampling sites.

DISCUSSION

One of the major technical challenges for the amplicon-based se-
quencing detection approach is low reproducibility (50), which is
a central issue in comparative studies (61). This issue has recently

May/June 2013 Volume 4 Issue 3 e00324-13

been examined intensively, but it is still a matter of debate (13, 31,
51). Results from several recent studies supported (13, 50, 51, 62),
disputed (31, 63-65) or both supported and disputed (66) our
previous observations. A number of factors can contribute to such
divergent observations, e.g., the complexity of the systems exam-
ined (50, 51, 64), differences in sequencing depths (50, 62, 63),
and/or variations in sequencing and sequence preprocessing ap-
proaches (51, 67). Since most of these factors act with each other,
isolating individual factors influencing sequencing reproducibil-
ity is extremely difficult, especially when natural communities of
unknown diversity background are examined. Using artificial
communities of known diversity, Pinto and Raskin (51) provided
explicit evidences for the poor reproducibility of the amplicon
sequencing-based detection approach, even with the simple com-
munity and relatively deep sequencing. Thus, poor reproducibil-
ity is a problem inherent in the amplicon sequencing-based detec-
tion approach (50).

Such poor reproducibility among technical replicates could
result from PCR amplification biases (67-72), sequencing errors
(51, 67,71, 72), and/or the artifacts associated with random sam-
pling processes during sample preparation and sequencing (50,
52). In this study, using analogous ball examples, we showed that
very low percentages of overlap were observed among replicate
samples from the community with identical ball types and num-
bers when the sampling effort was low, which is very consistent
with what we observed experimentally (50). In addition, under
different OTU abundance distributions, the obtained overlap per-
centages among two or three technical replicates were very con-
sistent with the theoretical predicted values under the assumption
of random sampling processes. The simulation results presented
in this study provided explicit evidences of the contributions of
random sampling processes to the high numbers of variations
observed among technical replicate samples. It should be noted
that spurious OTUs due to sequencing errors could also contrib-
ute to such technical variations, but they will be indistinguishable
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from rare abundant OTUs which can be detected only sporadi-
cally in replicate samples (51).

The low reproducibility of the amplicon sequencing-based de-
tection approach associated with random sampling processes
raises a concern of comparing the B-diversity of microbial com-
munities across different samples for amplicon sequencing. Al-
though the inherent high numbers of variations associated with
random sampling processes have less effect on a-diversity, it is
problematic in estimating (-diversity (50, 51), which presents a
significant challenge for comparative studies across different spa-
tial and temporal scales. However, the degrees of such effects on
estimating f-diversity are dependent on the complexity of the
community examined and sampling efforts. In general, as the
complexity increases, such problems will be more severe (50) and
greater sampling efforts will be needed (50, 62). Nevertheless,
great caution needs to be taken for estimating community based
on OTUs when the sequences examined are not enough to repre-
sent community diversity (51, 62).

Determining the patterns and distribution of species abun-
dance is a central issue in ecology (53), because they are important
in studying both basic ecological theory and applied biodiversity
conservation. However, direct measurement of species abundance
in ecologically relevant scales is difficult, if not impossible. In-
stead, the distribution of species abundance in ecology is generally
inferred based on limited samples under Poisson sampling.
Therefore, the artifacts associated with random sampling pro-
cesses observed in this study for microbial communities should
also be applicable to the other ecological studies in plants and
animals, although such problems could be less severe in macro-
ecology. However, to the best of our knowledge, such an issue has
not been addressed in the ecological literature, but it is of critical
importance in studying species distribution, especially species-
area relationships (52, 73). Along with our previous efforts (50,
52), this study clearly demonstrates the importance of random
sampling processes in estimating microbial biodiversity, espe-
cially B-diversity. The general conclusions learned from this study
should be applicable to other ecological studies in general.

In conclusion, the factors causing variations in B-diversity are
among the most important but poorly understood issues in ecol-
ogy, because they are the key mechanisms influencing global vari-
ation in biodiversity. Next-generation sequencing technologies,
such as PCR amplicon sequencing-based detection approaches,
have been rapidly used for characterizing microbial biodiversity,
but they also suffer from several inherent drawbacks, such as a
high number of sequencing errors, biases, and poor reproducibil-
ity and quantitation. Through mathematical modeling and simu-
lation based on general sampling theory, this study provides ex-
plicit evidences of random sampling processes as the main factor
causing high percentages of technical variations and develops a
framework for predicting sampling efforts for achieving the de-
sired technical reproducibility. Since most ecological studies are
involved in random sampling, the artifacts associated with ran-
dom sampling processes observed in microbial ecology should
also be applicable to macroecology, although such problems could
be less severe there. Because such artifacts greatly overestimate
B-diversity, great caution should be taken when the amplicon
sequencing-based detection is used for drawing quantitative con-
clusions about B-diversity. Increasing sampling efforts and/or the
number of sample replicates (both technical and biological)
should be the most effective ways to ameliorate technical repro-
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ducibility for drawing more reliable quantitative conclusions, but
how to balance the sampling efforts and number of samples ana-
lyzed per sequencing run is dependent on biological questions and
objectives, as well as the complexity and similarity of communities
examined.

MATERIALS AND METHODS

The details for all materials and methods used in this study are provided in
the supplemental material (see Text S1). Briefly, based on general sam-
pling theory (54-56), a mathematical framework was first developed un-
der 7 different OTU abundance distributions for simulating the effects of
random sampling processes on quantifying B-diversity when the commu-
nity size is known or unknown. Second, an analogous ball example was
used to explicitly illustrate the effects of random sampling processes on
the OTU overlap among technical replicates. Third, the theoretical mod-
els were fitted with the empirical experimental sequencing data from our
previous studies (50), in which a total of 24 soil communities from a
long-term climate change experiment facility (74) were sequenced with 60
tags. An average of 1,121 = 390 OTUs were obtained for each tag based on
the combined samples. In addition, a y? test was employed to determine
whether the predicted OTU overlaps were consistent with the observed
values.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org
Nlookup/suppl/doi:10.1128/mBio.00324-13/-/DCSupplemental.

Text S1, DOCX file, 0.1 MB.

Figure S1, DOCX file, 0.4 MB.

Figure S2, DOCX file, 0.4 MB.

Figure S3, DOCX file, 0.9 MB.

Table S1, DOCX file, 0.1 MB.
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Table S4, DOCX file, 0.1 MB.
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