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Measuring finite-range phase coherence
in an optical lattice using Talbot interferometry
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One of the important goals of present research is to control and manipulate coherence in a

broad variety of systems, such as semiconductor spintronics, biological photosynthetic

systems, superconducting qubits and complex atomic networks. Over the past decades,

interferometry of atoms and molecules has proven to be a powerful tool to explore coherence.

Here we demonstrate a near-field interferometer based on the Talbot effect, which allows us

to measure finite-range phase coherence of ultracold atoms in an optical lattice. We apply

this interferometer to study the build-up of phase coherence after a quantum quench of a

Bose–Einstein condensate residing in a one-dimensional optical lattice. Our technique of

measuring finite-range phase coherence is generic, easy to adopt and can be applied in

practically all lattice experiments without further modifications.
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F
irst- and second-order correlations are among the most
important observables in ultracold quantum gas
experiments. First-order correlations reflect the phase

coherence between the atoms and are visible in the contrast of
interference experiments1,2 in time of flight expansion. For long
expansion times, all atoms interfere with each other and the
contrast of the interference pattern measures the global phase
coherence3,4. Second-order correlations can be accessed via
Bragg scattering5 or the measurement of the density fluctuations.
The latter has been demonstrated for time of flight absorption
images6, the detection of metastable atoms7,8 and single-atom-
sensitive in-situ detection methods9–11.

A very peculiar method to measure first-order correlations
has been developed for one-dimensional (1D) quantum
gases. There, the interference with a twin system12 is used to
investigate the local phase evolution of the gas. Analysing the
full distribution function of the interference contrast13, it is
possible to study non-equilibrium many-body dynamics such as
the appearance of prethermalization in isolated, 1D quantum
systems14 or the properties of generalized Gibbs ensembles15.
A similar experimental approach in two dimensions has
also recently been developed16. Related physical questions in
three-dimensional (3D) optical lattices have been addressed via
the measurement of the global coherence of the matter wave
interference pattern and the emergence of phase coherence after a
quantum quench4. The advent of quantum gas microscopy9,17,18

has established a superb tool to measure the density distribution
and second-order correlation functions in optical lattices
with single-site resolution. However, a complementary protocol
for single-site resolved measurements of first-order correlations
is so far missing.

Here we describe a Talbot interferometer, which is capable
to probe the phase coherence of ultracold atoms in an optical
lattice for well-defined distances. We experimentally demonstrate
this interferometer by measuring the build up of phase coherence
after a quantum quench of a Bose–Einstein condensate (BEC)
in a 1D optical lattice19. The interferometric protocol is applicable
in practically any optical lattice experiment without further
modification. For high-resolution in-situ imaging techniques,
the measurement principle can be combined with spatially
resolved readout, thus paving the way to locally probe finite-
range phase coherence in many-body quantum systems.

Results
Near-field interferometry. The Talbot effect was first discovered
in optics20 and has later been applied to study matter wave
interference with atomic and molecular beams21–23. In a typical
setup, the light or matter wave with wavelength l passes two
consecutive gratings with lattice constant d, separated by the
distance L. After integer multiples of the Talbot distance
LT¼ 2d2/l, one observes a self-imaging of the wave and
maximum transmission, see Fig. 1a. Complementary, the Talbot
effect can also be observed in the temporal domain studying
ultracold atoms in optical lattices24,25, see Fig. 1b. The
corresponding Talbot time is given by TT¼ 2Md2/h, where
M is the mass of the particles and h is Planck’s constant, and is
connected to the Talbot distance via the deBroglie relation. Our
near-field interferometer is based on the temporal Talbot effect
and relies on a fast blanking of the lattice potential. Upon
switching off, all lattice sites emit matter waves, that interfere with
each other. After a variable time of free evolution, the lattice
potential is switched on again and the matter wave is projected
back onto the original lattice potential. The atoms are then
allowed to thermalize. At integer multiples of the Talbot time, the
atomic density distribution shows revivals, where the emerging

contrast depends on the phase coherence between the interfering
wave packets. Thereby, later revivals correspond to the
interference of matter waves from more distant lattice sites.

We start describing the basic principle of the Talbot effect
and its adaption to ultracold atoms in optical lattices. In the
following, we treat the atoms in the tight-binding limit
and neglect interactions. We will justify later on, why this is
a good approximation in all practical cases.

The on-site wave function is approximated by a Gaussian with
width s

cðxÞ¼ 1
p1=4

ffiffiffi
s
p exp � x2

2s2

� �
: ð1Þ

For the sake of simplicity, we consider a 1D array with lattice
spacing d. The extension to higher-dimensional cubic lattices is
straight forward. At each lattice site, which we enumerate with n,
the matter wave can have an individual phase fn, such that the
total wave function reads

Cðx; t¼0Þ¼
X1

n¼�1
c x� ndð Þexp ifnð Þ: ð2Þ

Here we have assumed s�d, so that the wave packets do not
overlap significantly and can be normalized individually. We are
interested in the expectation values

Cn� n0¼ exp i fn�fn0ð½ �h i; ð3Þ
which describe the phase correlation between atoms in the lattice
sites n and n0. It is noteworthy that we further assume that the
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Figure 1 | Spatial and temporal Talbot effect. (a) A plane wave with

wavelength l passes a grating with lattice constant d. At integer multiples

of the Talbot distance LT¼ 2d2/l, the interference pattern shows revivals.

These revivals are probed by the transmission of a second identical grating.

(b) A coherent matter wave is trapped in a periodic potential and starts to

interfere after switching off the potential. After integer multiples of the

Talbot time TT¼ 2Md2/h, where M denotes the mass of the particles and

h is Planck’s constant, the matter wave shows revivals.
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system is translationally invariant, such that the phase correlators
Cn� n0 only depend on the relative distance n� n0 between
the sites. For identical phase factors, that is, fn¼f, we have
Cn� n0 ¼ 1 and equation (2) describes a matter wave, which is
coherently spread over the entire lattice. Values smaller than 1
correspond to partial coherence. By definition, we have C0¼ 1.
The interferometric sequence consists of a blanking of the
optical lattice for a short time interval. Upon switching off
the lattice potential, the matter wave starts to expand freely
along the direction of the lattice. The momentum wave function
is given by

Fðk; tÞ¼p1=4
ffiffiffiffiffi
2s
p

exp � k2s2

2
� i

‘ k2

2M
t

� � X1
n¼�1

exp indkþ ifnð Þ:

ð4Þ

We first consider identical phase factors, that is, fn¼f, in all
lattice sites, as it is the case in the ideal Talbot effect. The sum in
equation (4) can then be rewritten with the help of the Poisson
sum formula (see equation (18) in the Methods) from ref. 26 in
terms of a Dirac comb, which has only components at integer
multiples of the lattice vector 2p/d. This yields

Fðk; tÞ¼p1=4
ffiffiffiffiffi
2s
p 2p

d
eif

X1
m¼�1

d k� 2p
d

m

� �

exp � 2p2s2

d2
þ 2pi

t
TT

� �
m2

� �
;

ð5Þ

where we have defined the Talbot time TT¼ 2Md2/h. We find
that the wave function is restored at integer multiples l of the
Talbot time

F k; lTTð Þ¼Fðk; 0Þ: ð6Þ

These periodic revivals of the matter wave field form the basis of
the Talbot effect. It is noteworthy that the presence of
interactions, inhomogeneities or fluctuations can damp or wash
out these revivals.

In the above presented realization of the temporal Talbot effect,
the time evolution is governed by the kinetic energy only, because
no external force is present. The matter wave packets therefore
interfere in real space but not in momentum space, where
they simply acquire dynamical phase factors, which re-phase
after the Talbot time. This is complementary to the realization
of the temporal Talbot effect in ref. 25, where the lattice
potential is kept on, tunnelling is suppressed and an additional
parabolic potential is applied. In this case, the matter
wave packets interfere in momentum space, while they acquire
in each lattice site phase factors, which re-phase after the
Talbot time.

The interferometric sequence is completed by switching
the optical lattice potential on again in a non-adiabatic way.
As the density distribution after the Talbot time TT is identical to
the initial one, it perfectly fits to the lattice potential.
Consequently, the lattice potential can be switched on without
introducing additional potential energy to the atoms. For any
other time, however, the density distribution is different
from the initial one and the non-adiabatic loading in the lattice
results in partially populating higher bands, thus adding
potential and kinetic energy to the atoms. For this reason, we
introduce an additional hold time in our experimental sequence,
during which the excess energy is converted into heating.
Consequently, a measurement of either the band population
immediately after the switching on of the lattice or of
the temperature after relaxation is expected to show oscillations
with revivals which are equal to integer multiples of the

Talbot time. Figure 2 summarizes the different steps of the
interferometric sequence.

An essential aspect of the Talbot effect is the near-field
character of the interference pattern. This can be seen by
Fourier transforming the momentum distribution in equation (5)
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Figure 2 | Experimental protocol. (a) Ultracold atoms are adiabatically

loaded in an optical lattice potential. The red solid line indicates the height

of the optical lattice potential, given in units of the recoil energy Er (see

Methods). After ramping up the lattice potential (vertical dashed black

line), the atoms dwell for 50 ms in the lattice potential. The potential is then

blanked for a short time, during which the matter waves are allowed to

freely expand along the lattice direction. Afterwards, the lattice potential is

switched on again. After a subsequent hold time of 100 ms, during which

the atoms thermalize, the atomic density distribution is imaged in time of

flight. (b) Evolution of the density distribution of a coherent matter wave

released from a periodic potential. After the Talbot time TT¼ 2Md2/h, the

initial density distribution is recovered. The arrows indicate the dominant

contribution for the density in the central site after one Talbot time (see

also text). In case of a partially coherent matter wave, the amplitude of the

first revival will depend on the phase coherence between the next nearest

neighbours. (c) Time-of-flight absorption images and integrated line

profiles for different evolution times. The red solid lines are Gaussian fits to

the profiles.
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back to position space:

Cðx; tÞ¼
ffiffiffi
s
p

p1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þ id2t=p

p X1
n¼�1

exp � x� ndð Þ2

2 s2þ id2t=pð Þ þ ifn

� �
:

ð7Þ
Here t¼ t/TT measures the time in units of the Talbot time.
Upon switching on the lattice potential, the wave function (7) is
projected back onto the original array of Wannier functions
(equation (1)). The resulting density overlap with one site is then
given by

n0ðtÞ¼ cðxÞh jCðx; tÞij j2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2

2s2þ id2t=p

s X1
n¼�1

exp � d2n2

2 2s2þ id2t=pð Þ þ ifn

� ������
�����

2

:

ð8Þ
Averaging over many experimental realizations, we find in the
limit d�s (see Methods):

n0 t¼Nð Þ �
ffiffiffiffiffi
2p
p

s
d

X1
n¼�1

C2Nn exp � 2p2s2

d2
n2

� �
; ð9Þ

n0 t¼N þ 1=2ð Þ �
ffiffiffiffiffi
2p
p

s
d

X1
n¼�1

ð� 1ÞnCð2N þ 1Þn exp � 2p2s2

d2
n2

� �
;

ð10Þ
where N is an integer. At integer multiples of the Talbot time,
equation (9) describes the revivals of the matter wave. In the
presence of phase fluctuations, however, the phase correlators C2Nn

are smaller than 1, thus reducing the amplitude of the revivals. For
half integer multiples of the Talbot time, equation (10) describes
the density halfway between the revivals of the matter wave, which
is illustrated in the central picture in Fig. 2b.

For typical experimental parameters, the numerical factor in
the exponent of equations (9) and (10) is close to 1. In our
particular example, it amounts to 2p2s2/d2E0.89 (see Methods).
We can therefore restrict the sum to the first two non-trivial
leading terms:

n0 t¼Nð Þ �
ffiffiffiffiffi
2p
p

s
d

1þ 2C2N exp � 2p2s2

d2

� �
þ . . .

� �
; ð11Þ

n0 t¼N þ 1=2ð Þ �
ffiffiffiffiffi
2p
p

s
d

1� 2C2N þ 1 exp � 2p2s2

d2

� �
þ . . .

� �
:

ð12Þ
The above expressions represent the central result of this work.
They have a straightforward interpretation: the consecutive
maxima and minima in the Talbot signal can be directly
connected to the phase correlators between lattice sites with a
well-defined distance (n� n0). Therefore, we can map the pulse
time t of the Talbot signal to a spatial coordinate for the phase
correlation according to

N¼2� t
TT
; ð13Þ

where N¼ n� n0 measures the distance in units of the
lattice constant (see Fig. 3a). This fundamental relation enables
the measurement of finite-range first-order correlations in an
optical lattice.

Experiment. In the following, we apply this interferometry to
experimentally measure the spreading of phase coherence in a 1D
optical lattice after a quantum quench. In a first experiment, we
adiabatically load a cigar-shaped BEC of 87Rb atoms in a 1D

optical lattice of depth s¼ 5. Here, s measures the lattice lattice
potential in units of the recoil energy (see Methods). Each lattice
site is occupied by a large number of atoms (E800 in the trap
centre.) Details of the experimental setup can be found in the
Methods. We then blank the lattice for time intervals between 0
and 1 ms. Subsequently, we keep the atoms in the same lattice for
another 100 ms to allow for thermalization. We choose the total
width of the density distribution of the time of flight absorption
image (see Fig. 2c) as the interferometer signal. The result is
shown in Fig. 3a and reveals pronounced oscillations of the fitted
cloud width. We observe up to seven revivals of the matter wave
field. Fitting an exponentially damped sine function, we find a
Talbot time of 123±1ms, which is close to the theoretical value of
130 ms. The small deviation by B5% might stem from a small
misalignment in the experiment, see also Methods. The contrast
of the interferometer has a decay constant of 525±40 ms. We
attribute this decay to the presence of interactions in the system.
For the chemical potential of m¼ h� 1.4 kHz, we can calculate an
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Figure 3 | Near-field interferometric measurement of phase coherence in

an optical lattice. (a) A BEC is adiabatically loaded in a 1D optical lattice

with depth s¼ 5. The peaks are labelled with the corresponding phase

correlator CN. The vertical dashed line denotes the Talbot time

TT¼ 123±1ms. (b) Same as a after performing a quantum quench from a

deep lattice with s¼ 20 to a lattice depth of s¼ 5 within 500 ms. The

interferometric sequence was started 1, 10 and 100 ms after the quench.

With increasing wait time, the interference pattern approaches that of the

reference (a). The solid lines are fits with an exponentially damped sine.

The error bars indicate the s.d. of the mean of ten images per data point.
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associated typical time scale of h/mE700 ms, on which interaction
effects are expected to become important. A more detailed
discussion of the influence of the interactions is given in the
Methods section.

It is remarkable that even in the presence of interactions,
the Talbot effect can be observed. This is because the Talbot
effect acquires its kinetics from the localized Wannier function
in the lattice, which expands on a time scale, which is about one
order of magnitude faster than the typical interaction-induced
dynamics. Therefore, treating the atoms non-interacting is indeed
a good approximation for the first revivals. This separation of
time scales automatically emerges, whenever the quantum
gas resides in the lowest band of the lattice potential. The
method is therefore applicable in many experiments with
ultracold atoms in optical lattices.

As concluded from equations (11) and (12), each maximum
and minimum in the Talbot signal corresponds to a consecutive
phase correlator CN. In the present experiment, the maximum
distance over which the phase correlations can be probed is about
14 lattice constants, see Fig. 3a.

So far, we have not evaluated the absolute value of the Talbot
signal in the minima and maxima. This is, indeed, a more
complex task as it requires the precise modelling of how the
lattice blanking converts into band occupation or deposited
energy. However, as we will show in the next paragraph,
this is not a necessary requirement for measuring finite-range
phase coherence.

Spreading of phase correlations. We now study the quantum
quench of a BEC residing in a 1D optical lattice19. The quench
is realized by adiabatically loading the BEC in a deep lattice
with s¼ 20, where tunnelling is strongly suppressed and only
little phase coherence between the sites exists, and suddenly
switching to a shallow lattice with s¼ 5, where tunnelling sets in
and phase coherence starts spreading, see Fig. 4a for an
illustration. The quench is done within 500ms, which is much
faster than the tunnelling time and slow enough to preserve the
band occupancy. After a variable equilibration time tQ in
the shallow lattice, during which the phase coherence between
the sites builds up, we perform the interferometric sequence
as described above. Figure 3b shows the measured interference
pattern for three different equilibration times tQ. It is clearly
visible how the later revivals gain more and more contrast for
increasing tQ and the reference without quantum quench
of Fig. 3a is approached. This gives a first qualitative picture
of how the coherence spreads over the lattice.

To further evaluate the data, we fit an exponentially damped
sine to the individual Talbot signals. The results are shown
in Fig. 3b as solid lines, well matching the experimental data.
We then convert the resulting decay time tT into the spatial
decay length x0¼ 2tT/TT according to equation (13), where
x0 measures the distance in units of the lattice constant. The
build-up of phase coherence after the quench can then be seen
by an increase of the decay length with tQ, as shown in
Fig. 4b. Directly after the quench (tQ¼ 1 ms), we find residual
correlations, which extend over almost two lattice sites. We
attribute this to an incomplete dephasing of the system during the
preparation phase and a build-up of short range phase coherence
during the first millisecond. The decay length increases up
to tQ¼ 150 ms, where it overlaps within the error bar with
that of the reference.

The reference system is well in the condensate phase, which
exhibits long-range order and implies an infinite coherence
length. As discussed above, the observed decay of the reference
(Fig. 3a) can be explained with the presence of interactions.

We therefore assume in the following that the reference
corresponds to a system with infinite coherence length.
The measured exponential decay of the Talbot signal x0 has
now two contributions: the first one is the bare decay of the
phase correlations, denoted by the coherence length xcoh.
The second one is the interaction induced decay, given by
the decay length xref of the reference. As both decay mechanisms
act together, the corresponding constants add according to
1/x0¼ 1/xcohþ 1/xref. Figure 4c shows the resulting coherence
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(b) Temporal evolution of the spatial decay length x0, derived from the

Talbot signal shown in Fig. 3b (blue dots). The black dashed line shows the

decay of the reference in Fig. 3a. The grey shaded area and the blue vertical
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The red dashed line indicates the fastest possible linear spread of phase
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. All three curves are locked

to the first data point. For comparison, the two models and the fit are also

shown in b, incorporating the decay of the reference.
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length xcoh in dependence of tQ. By fitting a power law (solid
line), we find a scaling p taQ with the exponent a¼ 0.6±0.1.

We now compare our results to theoretical models. In the
system under investigation, that is, a 1D array of two-dimensional
(2D) condensates, the quantum quench induces elementary
excitations and we expect the occurrence of phase slips or
soliton-like excitations along the lattice. Owing to the two
transverse degrees of freedom in each lattice site, these excitations
can further decay, for instance, in vortices. As a result, complex
microscopic quantum dynamics set in. For long equilibration
times tQ, however, we expect (and also observe) a system,
which is close to thermal equilibrium again and whose excitations
have eventually relaxed.

A quantitative description of these complex non-equilibrium
dynamics is not feasible due to the high occupation number in
each lattice site. However, two related, conceptually simpler
scenarios were studied numerically in ref. 27: for a 3D Mott
insulator, which was quenched to a superfluid, it was found that
the coherence length shows a scaling p

ffiffiffiffiffi
tQ
p

after the quench.
Furthermore, in a strictly 1D scenario, a linear scaling p tQ was
detected. Although our experimental results are closer to the
prediction of the 3D quench scenario, none of the two scenarios
is fully applicable here, as our system combines 1D, 2D and
3D properties in a non-trivial way.

Easier to treat are the limiting cases for the spreading of phase
correlations. The fastest possible speed at which excitations can
move through the system is given by coherent tunnelling
dynamics, where the coherence increases linearly in time.
For a phase difference of p/2 between neighbouring sites, the
group velocity of a matter wave becomes maximum, vmax¼ 2dJ/:.
Here, J is the tunnelling coupling and :/JE1.3 ms is the
tunnelling time for the given experimental parameters.
This result applies for interacting and non-interacting systems
and sets an upper velocity, with which the phase coherence can
spread. A corresponding lower bound can be derived by
considering a classical random walk. In this model, a particle
transports the phase information and hops randomly through
the lattice with the rate J/:. The result is a diffusive motion,
whose spatial width grows as d

ffiffiffiffiffiffiffiffi
J=‘

p ffiffiffiffiffi
tQ
p

. In Fig. 4c, we show
both limiting cases. The experimental data lie well within this
corridor, being closer to the diffusive motion. This is also in
accordance with the result for the power law exponent.

Our results hence indicate that the phase coherence after the
quench does not build up light-cone like, as it was observed, for
example, for particle-hole excitations in a 1D Mott insulator
background11, but rather like a diffusive process. We know from
own previous studies on the same experimental system28,29, that
the transverse degrees of freedom within each lattice site are
important for the dynamics of our system (see also Methods).
This renders the system dynamics 3D, even though we eventually
measure 1D phase coherence. This could explain, why we
do not find a linear spread of phase coherence, as it is predicted
in ref. 27. For a more quantitative understanding of our
results, however, a detailed microscopic modelling of the
experimental situation would be mandatory.

Discussion
Several extensions of the near-field interferometer can be
foreseen. In higher-dimensional optical lattices, the phase
coherence can be measured independently in all lattice
directions by only switching the appropriate lattice axis.
Provided the read-out of the contrast observable can be made
spatially resolved, such as in high resolution in situ detection
experiments17,18,30, the technique can be used to measure locally
the degree of phase coherence in an optical lattice. In combi-

nation with single-site-resolved quantum gas microscopy, even
nearest-neighbour phase correlations might become accessible.
How powerful such techniques can be has been demonstrated in
experiments with 1D quantum gases14,15.

The possibility to probe finite-range phase correlations in an
ultracold lattice gas offers many perspectives for the study of
ground-state properties and non-equilibrium dynamics, especially
in the context of quantum quenches. The demonstrated near-field
interferometer technique is general, versatile and can be applied
in practically all lattice experiments without major modifications.
It has the potential to become a standard diagnostic tool in
experiments with optical lattices, complementing advanced
techniques for the measurement of atomic densities.

Methods
Experimental setup. In the experiment, we prepare a BEC of 87Rb atoms in a 1D
optical lattice with a nominal lattice spacing of d¼ 547 nm. The lattice is produced
by two laser beams with wavelength l¼ 774 nm and waist w¼ 500 mm intersecting
under an angle of 90±2�. The angle uncertainty, which is due to geometrical
constraints of the setup, results in a systematic error of the Talbot time in the order
of a few percent. The transverse confinement is provided by an optical dipole trap
of wavelength l¼ 10.6 mm with a trapping frequency of o? ¼ 2p� 170 s� 1. For a
typical number of 50,000 atoms, about 800 atoms are residing in each lattice site.
The overall system can therefore be considered as a 1D array of weakly coupled 2D
BECs19. The chemical potential in the centre of the trap is derived from the
transverse extension of the atomic cloud in the central lattice sites and amounts to
m¼ h� 1.4 kHz. The lattice depth V0¼ s�Er is expressed in terms of the recoil
energy Er¼ p2:2/(2Md2), where M is the rubidium mass. For the interferometric
sequence, we always chose s¼ 5, for which we have dE5s. For this lattice depth,
the oscillation period in the transverse direction is on the same order as the
tunnelling coupling. Atoms tunnelling from one site to another can partially
explore the transverse degree of freedom before tunnelling into another site.
The overall dynamics is therefore not 1D but has rather 3D characteristics.

Calculation of phase correlators. Here we show in detail that averaging the
density overlap equation (8) over many experimental realizations yields in the limit
d�s the equations (9) and (10). To this end we analyse the density overlap
equation (8) averaged over the phase fluctuations fn, which yields

n0ðtÞ¼
2s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4s4 þ t2d4

p2

q X1
n¼�1

X1
n0¼�1

Cn� n0

exp � s2d2

4s4 þ t2d4=p2
n2 þ n02
� 	

þ itd4=ð2pÞ
4s4 þ t2d4=p2

n2 � n02
� 	� �

;

ð14Þ

Here we have introduced the phase correlator equation (3) so that the phase
fluctuations depend only on the distance between the lattice sites and are homo-
geneous over the extension of the cloud. The resulting missing population of atoms
in the initial ground state results in a population of higher bands and leads to
heating during the hold time.

As a next step we rearrange the double sum in equation (14) in the
following manner. We define new summation indices k¼ nþ n0 and l¼ n� n0,
so that we have conversely n¼ (kþ l)/2 and n0 ¼ (k� l)/2, which implies
n2þ n02¼ (k2þ l2)/2 and n2� n02¼ kl. It is now crucial to it is crucial to
distinguish between two different cases with respect to the new summation indices.
Either we could have both k¼ 2K and l¼ 2L to be even or k¼ 2Kþ 1 and
l¼ 2Lþ 1 to be odd. As a result, the density overlap in equation (14) decomposes
into the two terms

n0ðtÞ¼
X1

L¼�1
C2LF2LðtÞþC2Lþ 1F2Lþ 1ðtÞ½ �; ð15Þ

where the respective weights of the phase correlators with an even number of lattice
sites turns out to be

F2LðtÞ¼
2s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4s4 þ t2d4

p2

q exp � 2s2d2L2

4s4 þ t2d4=p2

� �

X1
K¼�1

exp � 2s2d2K2

4s4 þ t2d4=p2
þ 2itd4LK=p

4s4 þ t2d4=p2

� �
;

ð16Þ
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whereas for an odd number of lattice sites we obtain

F2Lþ 1ðtÞ ¼
2s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4s4 þ t2 d4

p2

q exp � 2s2d2 Lþ 1=2ð Þ2

4s4 þ t2d4=p2

� �

�
X1

K¼�1
exp � 2s2d2 K þ 1=2ð Þ2

4s4 þ t2d4=p2
þ 2itd4 Lþ 1=2ð Þ K þ 1=2ð Þ=p

4s4 þ t2d4=p2

� �
:

ð17Þ
As a cross-check we observe that, indeed, n0 0ð Þ¼ 1 due to d�s. The series for the
respective weights of the phase correlators in equations (16) and (17) can also be
dual transformed. To this end we use the Poisson sum formula26,

X1
m¼�1

dðx�mÞ¼
X1

n¼�1
exp 2pinxð Þ: ð18Þ

which implies the dual transformation of a series

X1
m¼�1

f ðmÞ¼
X1

n¼�1

Z þ1

�1
dx f ðxÞ exp 2pinxð Þ: ð19Þ

Applying equation (19) yields for the weights of the phase correlators in
equation (16)

F2LðtÞ¼
ffiffiffiffiffi
2p
p

s
d

exp � ð2LÞ2
2t2d2

p2s2 1þ 4p2s4

t2 d4

� 	
" #

X1
n¼�1

exp � L� 1þ 4p2s4

t2 d4

� 	
tn


 �2

2s2

d2 1þ 4p2s4

t2d4

� 	
( ) ð20Þ

and, correspondingly, for equation (17)

F2Lþ 1ðtÞ¼
ffiffiffiffiffi
2p
p

s
d

exp � ð2Lþ 1Þ2
2t2d2

p2s2 1þ 4p2s4

t2 d4

� 	
" #

X1
n¼�1

ð� 1Þnexp � Lþ 1
2 � 1þ 4p2s4

t2d4

� 	
tn


 �2

2s2

d2 1þ 4p2s4

t2 d4

� 	
( )

:

ð21Þ

To quantify this idea further, we observe that, when the propagation time
coincides with integer and half-integer multiples of the Talbot time, the density
overlap (equation (15)) with the weights equations (20) and (21) reduces to
equations (9) and (10) due to the limit d � s.

Interaction induced decay of the Talbot signal. We here present a
semi-quantitative derivation, why the interaction between the atoms, characterized
by the chemical potential m, induces a decay of the Talbot signal during the
interferometric sequence. We start with considering the normalized axial density
n(x) in a single lattice site, given by the square of the Wannier function
equation (1). If we ignore an interaction induced broadening of the on-site
wave function, the interaction energy in a mean field description is given by
Eint(x)¼ mn(x). Upon switching off the lattice potential, the atoms experience
a force F(x)¼ �E0int(x), generated by the gradient of the interaction energy,
which acts symmetrically on both sites. We estimate an average force, which pushes
the atoms to one side by

F¼
R1

0 FðxÞnðxÞdxR1
0 nðxÞdx

¼ m
ps
: ð22Þ

After switching off the optical lattice, the momentum wave function consists
initially of a series of d-functions (see equation (5) evaluated at t¼ 0), which are
separated by the width of the Brillouin zone Dp¼ 2:p/d. The interaction induced
force leads to a symmetric broadening of each momentum peak. We now assume
that half of this force, that is, �F=2, is constantly present during the Talbot sequence.
This can be justified by an inspection of the density distribution in Fig. 2b at
different times. Although at t¼ 0.5TT and t¼TT, the average force is the same as
calculated above, it is only half as strong at times t¼ 0.25TT and t¼ 0.75TT.
For times in between, the density distribution is even smoother. After the time
t¼Dp/�F, each momentum peak has broadened over the whole Brillouin zone.
Consequently, the momentum peaks start to overlap and the interference gets lost.
Thus, the observation of the temporal Talbot effect is restricted due to interaction
effects to a time interval of Bt¼ 450 ms. This is compatible with the measured
decay time of the reference of 525 ms.

Regarding the harmonic confinement along the lattice direction, its influence on
the Talbot effect should be negligible. The largest distance over which we can
measure phase correlations amounts to 14 lattice sites. The sample itself extends
over 150 lattice sites. Thus, atoms interfering in the trap center over a distance of
14 lattice sites explore a potential energy shift of less than 10% of the chemical
potential. The associated time scale is on the order of 10–15 ms, more than one
order of magnitude slower than the observed decay time of the reference.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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