organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,9-Diiodohexacyclo-[9.3.1.1^{2,6}.1^{4,8}.1^{9,13}.0^{1,8}]octadecane

Savvas Ioannou* and Eleni Moushi

Chemistry Department, University of Cyprus, Nicosia 1678, Cyprus Correspondence e-mail: ioannou.savvas@ucy.ac.cy

Received 13 May 2012; accepted 13 June 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.032; wR factor = 0.085; data-to-parameter ratio = 14.8.

The title compound, $C_{18}H_{24}I_2$, has an adamantanoid structure with tetrahedral cages having four C atoms lying on the same plane [(I-)C-C-C-C(-I) torsion angle = 0°]. The plane is extended by the two I atoms, each having a deviation of 1.0 (6) Å $[C-C-C-I \text{ torsion angle} = 178.9 (4)^{\circ}]$. The central C-C bond connecting the two quaternary carbons seems enlarged [1.593 (9) Å] in comparison to the corresponding bond in [2]diadamantane [1.554 (3) Å]. This is attributed to the presence of the electronegative I atoms, which affect inductively the C atoms of the four-C-atom plane, making the central C-C bond weaker.

Related literature

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989, 1996); Vázquez & Camps (2005). the synthesis of the precursor, heptacyclo-For [9.3.1.1^{2,6}.1^{4,8}.1^{9,13}.0^{1,9}.0^{2,8}]octadecane, see: Ioannou & Nicolaides (2009); Renzoni et al. (1986) and for the synthesis of [2]diadamantane, see: McKervey (1980); Graham et al. (1973). For related reactions on diadamantane systems, see: Sosnowski et al. (1984). For the use of iodine as a trapping agent for the intermediate radicals of a reaction, see: Castello (1984); Wojnarovits & Laverne (1996). For iodine as a catalyst, see: Mullineaux & Raley (1963); Slaugh et al. (1963).

Experimental

Crystal data

$C_{18}H_{24}I_2$	
$M_r = 494.17$	
Triclinic, $P\overline{1}$	
a = 6.8912 (8) Å	
b = 6.9725 (9) Å	
c = 8.9927 (10) Å	
$\alpha = 67.964 \ (11)^{\circ}$	
$\beta = 74.368 \ (10)^{\circ}$	

Data collection

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.085$ S = 1.101346 reflections 91 parameters

 $\gamma = 78.258 \ (10)^{\circ}$ V = 383.16 (9) Å³ Z = 1Mo $K\alpha$ radiation $\mu = 4.09 \text{ mm}^{-3}$ T = 100 K $0.18 \times 0.05 \times 0.03~\text{mm}$

Diffraction, 2008) $T_{\min} = 0.527, \ T_{\max} = 1.000$ 2333 measured reflections 1346 independent reflections 1284 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

18 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 1.50 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.62 \text{ e } \text{\AA}^{-3}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

We are grateful to the Research Promotion Foundation $(I\Pi E)$ of Cyprus and the European Structural Funds for grant ANABA $\Theta/\Pi A \Gamma IO/0308/12$, which allowed the purchase of the XRD instrument, NEK Π /0308/03 enabling the purchase of a 500 MHz NMR spectrometer, of the RSC journal archive and for access to Reaxys and financial support to SI (ΠΕΝΕΚ/ ENIXX/0308/01). Partial financial support (SI) was also provided by the SRP "Interesting Divalent Carbon Compounds" granted by UCY. The A. G. Leventis Foundation is gratefully acknowledged for a generous donation to the University of Cyprus, enabling the purchase of the 300 MHz NMR spectrometer. Dr Athanassios Nicolaides and Dr Anastasios Tasiopoulos are thanked for illuminating comments.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2079).

References

- Borden, W. T. (1989). Chem. Rev. 89, 1095-1109.
- Borden, W. T. (1996). Synlett, pp. 711-719.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Castello, G. (1984). J. Chromatogr. 303, 61-66.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Graham, W. D., Schleyer, P. von R., Hagaman, E. W. & Wenkert, E. (1973). J. Am. Chem. Soc. 95, 5785-5786.

Ioannou, S. & Nicolaides, A. V. (2009). Tetrahedron Lett. 50, 6938-6940.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- McKervey, M. A. (1980). Tetrahedron, 36, 971-992.
- Mullineaux, R. D. & Raley, J. H. (1963). *J. Am. Chem. Soc.* **85**, 3178–3180. Oxford Diffraction (2008). *CrysAlis CCD* and *CrysAlis RED*. Oxford
- Diffraction Ltd, Abingdon, England. Renzoni, G. E., Yin, T. & Borden, W. T. (1986). J. Am. Chem. Soc. 108, 7121-
- 7122.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Slaugh, L., Mullineaux, R. D. & Raley, J. H. (1963). J. Am. Chem. Soc. 85, 3180-3183.
- Sosnowski, J. J. & Murray, R. K. (1984). *J. Org. Chem.* **49**, 4471–4475. Vázquez, S. & Camps, P. (2005). *Tetrahedron*, **61**, 5147–5208.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wojnarovits, L. & Laverne, J. (1996). Radiat. Phys. Chem. 57, 99-101.

supplementary materials

Acta Cryst. (2012). E68, o2340-o2341 [doi:10.1107/S1600536812026797]

2,9-Diiodohexacyclo[9.3.1.1^{2,6}.1^{4,8}.1^{9,13}.0^{1,8}]octadecane

Savvas Ioannou and Eleni Moushi

Comment

Adamantanoids are cage structures having adamantane as a repeated unit (McKervey 1980\). Their nomenclature derives from the number of the common carbon atoms connecting every adamantane unit to each other (Graham *et al.* 1973\). 2,9-Diiodo [2]diadamantane (title compound) was the main product of thermolysis of heptacyclo [9.3.1.1^{2,6}.1^{4,8}.1^{9,13}.0^{1,9}.0^{2,8}] octadecane in the presence of iodine at 150°C. Iodine was used as a trapping agent (Castello 1984\, Wojnarovits *et al.* 1996\) for the intermediate radicals of the reaction. The corresponding iodides helped in the understanding of the reaction mechanism. Iodine was applied initially at the reaction conditions (5 min, 350°C) predefined for the synthesis of pentacyclo [9.3.1.1^{2,6}.1⁴,8.1^{9,13}] octadeca-di-1(2),8(9)-ene but it acted as a catalyst instead (Slaugh *et al.* 1963\, Mullineaux *et al.* 1963\), leading the reaction spontaneously to the more favored thermodynamically product [2]diadamantane (figure 3). At lower temperature (150°C) the title compound was isolated as the main product of the reaction among other minor products. Another method of producing 2,9-diiodo[2]diadamantane quantitatively is by refluxing the starting material in dichloromethane with 2 equivalents of iodine (lower temperature). Other solvents were used as well, like carbon tetrachloride and chloroform but the reaction was slower having lower yields. Dichloromethane was the most suitable solvent probably due to its bigger dipole moment that helps the homolysis. The title compound has its own interest as the first substituted [2]diadamantane at the specific positions considered by others as the more difficult positions to functionalize (Sosnowski *et al.* 1984\).

Experimental

Synthesis of 2,9-diiodo-hexacyclo[9.3.1.1^{2,6}.1^{4,8}.1^{9,13}.0^{1,8}]octadecane. Heptacyclo[9.3.1.1^{2,6}.1^{4,8}.1^{9,13}.0^{1,9}.0^{2,8}]octadecane (68 mg, 0.28 mmol), iodine (131 mg, 0.52 mmol) and dichloromethane (10 ml) were refluxed in a round bottom flask for 5 h. Another 10 ml of dichloromethane were added when the mixture cooled down and extracted with 1x30 ml saturated aqueous sodium thiosulfate for the removal of the iodine excess. The organic phase was then dried with anhydrous Na₂SO₄ and removed under vacuum to give 86 mg (62%) of a white solid (title compound) that was recrystallized (hexane/dichloromethane 5:1) to give pure colorless crystals(mp 240–242°C).

Refinement

The H atoms are positioned with idealized geometry and refined using a riding model with $U_{iso}(H) = 1.2$ of $U_{eq}(C)$.

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008\); cell refinement: *CrysAlis CCD* (Oxford Diffraction, 2008\); data reduction: *CrysAlis RED* (Oxford Diffraction, 2008\); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008\); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008\); molecular graphics: *DIAMOND* (Brandenburg, 2006\) and *Mercury* (Macrae *et al.*, 2006\); software used to prepare material for publication: *WinGX* (Farrugia, 1999\) and *publCIF* (Westrip, 2010\).

Figure 1

Structure of the title compound 2,9-Diiodo-hexacyclo [9.3.1.1^{2,6}.1^{4,8}.1^{9,13}.0^{1,8}] octadecane with the atom-labelling. Displacement elipsoids are drawn at the 50% probability level.

Figure 2

Molecular packing of the title compound, viewed along [0 1 0].

Figure 3

Synthesis of the title compound.

2,9-Diiodohexacyclo[9.3.1.1^{2,6}.1^{4,8}.1^{9,13}.0^{1,8}]octadecane

Crystal data

 $C_{18}H_{24}I_{2}$ $M_r = 494.17$ Triclinic, P1 a = 6.8912 (8) Å b = 6.9725 (9) Åc = 8.9927 (10) Å $\alpha = 67.964 (11)^{\circ}$ $\beta = 74.368 \ (10)^{\circ}$ $\gamma = 78.258 \ (10)^{\circ}$ $V = 383.16(9) \text{ Å}^3$

Data collection

Oxford Diffraction SuperNova Dual (Cu at 0) Atlas diffractometer Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4223 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008\)

Refinement

Refinement on F^2 Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.032$ Hydrogen site location: inferred from $wR(F^2) = 0.085$ neighbouring sites S = 1.10H-atom parameters constrained 1346 reflections where $P = (F_0^2 + 2F_c^2)/3$ 91 parameters 18 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 1.50 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.62 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Z = 1F(000) = 238 $D_{\rm x} = 2.141 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1750 reflections $\theta = 3.1 - 28.8^{\circ}$ $\mu = 4.09 \text{ mm}^{-1}$ T = 100 KPolyhedral, colorless $0.18 \times 0.05 \times 0.03 \text{ mm}$

 $T_{\rm min} = 0.527, T_{\rm max} = 1.000$ 2333 measured reflections 1346 independent reflections 1284 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -8 \rightarrow 8$ $l = -10 \rightarrow 10$

Secondary atom site location: difference Fourier $w = 1/[\sigma^2(F_o^2) + (0.0358P)^2 + 1.7753P]$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.33440 (5)	0.02562 (5)	0.21656 (4)	0.01697 (17)	
C1	0.0899 (7)	0.4075 (7)	0.0021 (6)	0.0031 (10)	
C2	0.0901 (8)	0.2866 (8)	0.1856 (6)	0.0050 (10)	
C3	-0.1085 (8)	0.1932 (7)	0.2800 (6)	0.0050 (10)	
H3A	-0.1001	0.1131	0.3930	0.006*	
H3B	-0.1335	0.1009	0.2306	0.006*	
C4	-0.2820 (8)	0.3723 (8)	0.2741 (6)	0.0055 (10)	
H4	-0.4107	0.3142	0.3315	0.007*	
C5	-0.2919 (8)	0.5004 (8)	0.0951 (6)	0.0054 (10)	
H5A	-0.4017	0.6128	0.0921	0.006*	
H5B	-0.3203	0.4124	0.0436	0.006*	
C6	0.1293 (8)	0.4238 (8)	0.2722 (6)	0.0056 (10)	
H6A	0.1357	0.3414	0.3853	0.007*	
H6B	0.2576	0.4803	0.2173	0.007*	
C7	-0.0445 (8)	0.6011 (8)	0.2666 (6)	0.0053 (10)	
H7	-0.0197	0.6915	0.3191	0.006*	
C8	-0.0557 (8)	0.7290 (8)	0.0884 (6)	0.0052 (10)	
H8A	0.0695	0.7912	0.0319	0.006*	
H8B	-0.1661	0.8408	0.0861	0.006*	
C9	-0.2454 (8)	0.5112 (8)	0.3588 (6)	0.0072 (10)	
H9A	-0.2393	0.4303	0.4722	0.009*	
H9B	-0.3554	0.6230	0.3576	0.009*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0167 (2)	0.0151 (2)	0.0163 (3)	0.00018 (16)	-0.00330 (17)	-0.00354 (17)
C1	0.0030 (13)	0.0030 (13)	0.0038 (13)	-0.0003 (9)	-0.0010 (9)	-0.0017 (9)
C2	0.005 (2)	0.006 (2)	0.006 (2)	0.0000 (19)	-0.002 (2)	-0.003 (2)
C3	0.008 (2)	0.002 (2)	0.005 (2)	-0.0021 (19)	-0.001 (2)	-0.0014 (19)
C4	0.0049 (13)	0.0056 (13)	0.0058 (13)	-0.0009 (9)	-0.0009 (9)	-0.0017 (9)
C5	0.0045 (13)	0.0057 (13)	0.0057 (13)	-0.0008 (9)	-0.0008 (9)	-0.0016 (9)
C6	0.005 (2)	0.009 (2)	0.003 (2)	-0.001 (2)	-0.001 (2)	-0.002 (2)
C7	0.005 (2)	0.006 (2)	0.007 (3)	-0.001 (2)	-0.002 (2)	-0.004 (2)
C8	0.007 (2)	0.006 (2)	0.004 (2)	-0.003 (2)	0.000 (2)	-0.002 (2)
C9	0.007 (2)	0.008 (2)	0.005 (3)	-0.002 (2)	0.001 (2)	-0.001 (2)

Geometric parameters (Å, °)

I1—C2	2.202 (5)	С5—Н5А	0.9700	
C1—C2	1.545 (7)	C5—H5B	0.9700	
C1-C8 ⁱ	1.549 (6)	C6—C7	1.532 (7)	
$C1-C5^i$	1.550 (7)	C6—H6A	0.9700	
C1-C1 ⁱ	1.593 (9)	C6—H6B	0.9700	
C2—C3	1.529 (7)	C7—C8	1.528 (7)	
C2—C6	1.541 (7)	С7—С9	1.530 (7)	
C3—C4	1.539 (7)	С7—Н7	0.9800	

С3—НЗА	0.9700	C8—C1 ⁱ	1.549 (6)
С3—Н3В	0.9700	C8—H8A	0.9700
C4—C9	1.529 (7)	C8—H8B	0.9700
C4—C5	1.532 (7)	С9—Н9А	0.9700
C4—H4	0.9800	С9—Н9В	0.9700
C5—C1 ⁱ	1.550(7)		
C2—C1—C8 ⁱ	113.1 (4)	C4—C5—H5B	109.4
C2-C1-C5 ⁱ	112.8 (4)	C1 ⁱ —C5—H5B	109.4
$C8^{i}$ — $C1$ — $C5^{i}$	106.0 (4)	H5A—C5—H5B	108.0
C2-C1-C1 ⁱ	106.0 (5)	C7—C6—C2	108.3 (4)
$C8^{i}$ — $C1$ — $C1^{i}$	109.7 (5)	С7—С6—Н6А	110.0
$C5^{i}$ — $C1$ — $C1^{i}$	109.2 (5)	С2—С6—Н6А	110.0
C3—C2—C6	108.4 (4)	С7—С6—Н6В	110.0
C3—C2—C1	112.5 (4)	С2—С6—Н6В	110.0
C6-C2-C1	112.2 (4)	H6A—C6—H6B	108.4
$C_3 = C_2 = I_1$	106.6 (3)	C8 - C7 - C9	109.7(4)
C6-C2-I1	105.3(3)	C8 - C7 - C6	109.9(4)
C1 - C2 - I1	100.0(3)	C9 - C7 - C6	109.8(4)
$C_2 - C_3 - C_4$	108.4(4)	C8 - C7 - H7	109.0 (1)
$C_2 = C_3 = H_3 A$	110.0	C9 - C7 - H7	109.1
$C_2 = C_3 = H_3 \Lambda$	110.0	Сб-С7-Н7	109.1
$C_2 = C_3 = H_3R$	110.0	$C_{0} = C_{1} = M_{1}$	109.1
$C_2 = C_3 = H_3 B$	110.0	$C_7 = C_8 = C_1$	100.3
$H_{3A} = C_{3} = H_{3B}$	108.4	C^{1i} C8 H8A	109.3
$C_{1}^{0} C_{4} C_{5}^{0}$	100.4	$C_1 - C_0 - H_{RR}$	109.3
$C_{9} = C_{4} = C_{3}$	109.9(4) 100.5(4)		109.3
$C_{9} - C_{4} - C_{3}$	109.3(4)		109.5
C_{3}	109.7 (4)	$H\delta A = C\delta = H\delta B$	108.0
C9-C4-H4	109.2	C4 = C9 = C7	108.3 (4)
C3—C4—H4	109.2	C4—C9—H9A	110.0
$C_3 - C_4 - H_4$	109.2	C/-C9-H9A	110.0
$C4 = C5 = C1^4$	111.3 (4)	C4—C9—H9B	110.0
C4—C5—H5A	109.4	C/-C9-H9B	110.0
С1-С5-Н5А	109.4	Н9А—С9—Н9В	108.4
$C8^{}C1^{}C2^{}C3^{}$	-58.8 (5)	C9—C4—C5—C1 ¹	61.2 (5)
C5 ¹ —C1—C2—C3	-179.0(4)	$C3 - C4 - C5 - C1^{1}$	-59.2 (5)
$C1^{1}$ — $C1$ — $C2$ — $C3$	61.4 (6)	C3—C2—C6—C7	-62.1 (5)
$C8^{i}$ — $C1$ — $C2$ — $C6$	178.6 (4)	C1—C2—C6—C7	62.7 (5)
$C5^{i}$ — $C1$ — $C2$ — $C6$	58.4 (5)	I1—C2—C6—C7	-175.9 (3)
C1'-C1-C2-C6	-61.1 (6)	C2—C6—C7—C8	-59.0 (5)
C8 ¹ —C1—C2—I1	60.8 (5)	C2—C6—C7—C9	61.7 (5)
$C5^{i}$ — $C1$ — $C2$ — $I1$	-59.4 (4)	C9—C7—C8—C1 ⁱ	-61.8 (5)
$C1^{i}$ — $C1$ — $C2$ — $I1$	-178.9 (4)	C6C7C8C1 ⁱ	59.0 (5)
C6—C2—C3—C4	62.2 (5)	C5—C4—C9—C7	-59.8 (5)
C1—C2—C3—C4	-62.4 (5)	C3—C4—C9—C7	60.8 (5)
I1—C2—C3—C4	175.2 (3)	C8—C7—C9—C4	60.0 (5)

supplementary materials

C2—C3—C4—C9	-62.1 (5)	C6—C7—C9—C4	-60.9 (5)	
C2—C3—C4—C5	58.6 (5)			

Symmetry code: (i) -x, -y+1, -z.