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A B S T R A C T   

Photoacoustic imaging is a good method for biological imaging, for this purpose, materials with 
strong near infrared (NIR) absorbance are required. In the present study, machine learning 
models are used to predict the light absorption behavior of polymers. Molecular descriptors are 
utilized to train a variety of machine learning models. Building blocks are searched from chemical 
databases, as well as new building blocks are designed using chemical library enumeration 
method. The Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) method is 
employed for the creation of 10,000 novel polymers. These polymers are designed based on the 
input of searched and selected building blocks. To enhance the process, the optimal machine 
learning model is utilized to predict the UV/visible absorption maxima of the newly designed 
polymers. Concurrently, chemical similarity analysis is also performed on the selected polymers, 
and synthetic accessibility of selected polymers is calculated. In summary, the polymers are all 
easy to synthesize, increasing their potential for practical applications.   

1. Introduction 

The nanotechnology has rapidly developed over the past few decades, leading to the development of nano-diagnostic devices. 
Integrating multi-diagnostics and therapeutics is the beauty of nanomedicine. Several imaging techniques have been developed in 
recent years as important diagnostic tools in clinics, including computed tomography (CT), ultrasound, positron emission tomography 
(PET) and magnetic resonance imaging (MRI). As a hybrid imaging technique that combines optical excitation with ultrasonic 
recognition, photoacoustic imaging (PAI) is a noninvasive hybrid imaging technique [1]. The photoacoustic contrast agent is injected 
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into the body and irradiated by a laser to degenerate the temperature. After the sound wave is diffused by thermoelasticity, an image is 
constructed at the detector with a high spatial resolution and tissue penetration depth [2,3]. Various types of near-infrared organic 
fluorescent contrast enhancement agents have been used for PA imaging, such as Indocyanine green (ICG), Poly-L-lysine (PLL), and 
Prussian blue nanoparticles (PBNP) [4,5]. The low light stability, short emission wavelength, toxicity, aggregation and photothermal 
conversion efficiency of organic fluorescent materials are major challenges for PA imaging [6]. However, these drawbacks can be 
overcome by designing a hybrid combination of organic and inorganic semiconducting polymeric nanoparticles (SPNPs). SPNPs are a 
promising type of organic photonic agent in which electrons can move along the polymer backbone and mainly depend on the chemical 
structures of semiconducting polymers delocalized by an electron [7,8]. These conjugated polymers generally have excellent photo-
stability and a wide absorption range suitable for multifunctional applications. In addition, donor–acceptor (D–A) polymers are getting 
significant interest due to their many advantages, such as enhanced light absorption, good biocompatibility, tunability and stability of 
the acceptor energy levels, over conventional polymer/fullerene [9–11]. 

In this modern era, polymers are an essential part of many products, and researchers have been paying much attention to enhancing 
their functional properties through careful structural manipulation [12–14]. In recent years, theoretical studies on polymers have been 
considered significant for their successful commercialization. Moreover, theoretical modeling-based prediction develops more effi-
cient processes in less time and resources, allowing scientists to understand the nature of polymers efficiently [15,16]. Therefore, 
theoretical principles play a proficient role in developing novel and specified polymers that tailor their properties according to the 
applications [17,18]. 

Machine learning, the subcategory of artificial intelligence and computer science, is an exciting and powerful technique for 
extracting meaningful information from large-scale or solving complex patterns in recent years [19–21]. The learning and building 
process of a machine learning algorithm can be divided into three components: an error function, a decision process, and a modal 
optimization process [22,23]. Machine learning has been applied in various directions outside materials science and engineering, such 
as navigation, product recommendation, language translation, and work sectors. The prediction from data can provide way to 
accelerate the work. 

In addition, machine learning provides a vital tool for the advancement of polymer studies [24,25]. The researchers can uncover 
patterns and relationships of polymers by leveraging machine learning algorithms, which is impossible for traditional methods. This 
allows a more accurate understanding of complex processes such as material properties, performance, and longevity in short time. 
Moreover, machine learning can be used to improve the design of polymers, developing better structures for specific applications [26, 

Fig. 1. The importance of features (descriptors).  

Table 1 
Mean absolute error (MAE) and R2 values for different machine learning models (test set).  

Model MAE (nm) R2 

Random forest regression 40 0.91 
Bagging regression 45 0.86 
Gradient boosting regression 49 0.85 
Linear regression 61 0.62  
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27]. Machine learning is very fast as compare with quantum chemical calculations [28]. It can be applied to study any property for 
which enough data is available or can be generated. The development of more accurate algorithm has increased the potential of 
machine learning [29]. 

The purpose of this study is to develop machine learning models that can predict the light absorption behavior of polymers. Various 
machine learning models undergo training using molecular descriptors. Simultaneously, building blocks are sourced from chemical 
databases, and novel ones are generated through the chemical library enumeration method. This approach leads to the creation of 
10,000 new polymer designs. To anticipate the UV/visible absorption maxima of these polymers, the most proficient machine learning 
model is employed. Additionally, a chemical similarity analysis is executed on the chosen polymers, followed by the computation of 
the synthetic accessibility of these selected compounds. 

Fig. 2. Analysis of the scatter plot between true and predicted values (a) Random forest regression (b) Bagging regression (c) Gradient boosting 
regression (d) Linear regression. 
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2. Computational methods 

2.1. Statistical analysis (machine learning) 

UV/visible absorption data of 600 organic semi-conductors is collected from literature. Molecular descriptors (features) are 
calculated using Dragon software [30]. About four thousand descriptors were generated. Only those descriptors were further short-
listed that exhibited the statistically significant values. The particular descriptors with the constant values, missing values, zero values, 
and having high self-correlation were excluded from the analysis. After data cleaning, the descriptors are used for machine learning. 

Fig. 3. Structure of reference polymer and reference building blocks.  

Fig. 4. Top search hits B1 from Harvard Clean Energy Project database.  
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For the ML modelling and data visualization, a variety of Python-based libraries were used, including Matplotlib, Scikit-Learn, Sea-
born, etc. The absorption maxima was elected as the target feature and the selected features (descriptors) were utilized as the inde-
pendent variables for model training. 

Fig. 5. Top search hits for B2 from Harvard Clean Energy Project database.  

Fig. 6. Top search hits for B1 from GDB17 chemical database.  
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Fig. 7. Top search hits for B2 from GDB17 chemical database.  

Fig. 8. B1 fitness score for generated building blocks.  
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2.2. Chemical similarity analysis 

Chemical similarity analysis is implanted on the python based software named as RDKit [31]. Using Chemical similarity analysis 
similar structures can be searched from databases. Tanimoto similarity index is selected for structural comparison, it is calculated using 
Extended Connectivity Fingerprints (ECFP4) [32]. 

2.3. Library generation 

The library of electron-deficient and electron-rich building blocks is generated using DataWarrior software [33]. To generate li-
braries of similar molecules, an evolutionary algorithm is employed. A random structural modification of a reference structure is 
applied to create new molecules. For each generated molecule, a fitness score is generated. Generated molecules which are structurally 
more similar to reference molecules will receive a higher score. 

2.4. Monomer design 

BRICS (Breaking Retrosynthetically Interesting Chemical Substructures) is a method for breaking and joining building blocks 
together in order to form monomers using a variety of combinations of electron-rich and electron-deficient building blocks [34]. 

3. Results and discussion 

3.1. Results of machine learning 

Machine learning analysis need input that can be in several formats. We have used molecular descriptors for machine learning 
analysis. About 4000 descriptors (features) with the applicability of Dragon software are further screened based on univariate 
regression. Descriptors are typically integers, matrix, vector, or other data structures notably special characters are also feasible. This is 

Fig. 9. The top eight building blocks that are similar to B1.  
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a process used for machine learning to anticipate a molecule’s property. These can be classified into theoretical and experimental 
descriptors. The structural formula or empirical formula are two examples of theoretical descriptors generated from the symbolic 
representation of molecules. Five classes can be made from this group of descriptors. The five kinds of theoretical descriptors are shown 
in the accompanying graphs along with the correlation between their dimensionality, the data they include, and the convenience of 
calculation. It is worthy to mention that machine learning model training does not benefit from all features (descriptors) equally. 
Therefore, it is essential to find the important features. The importance of features is given in Fig. 1 nR08 is most important feature and 
nF8HeteroRing is less important feature. 

The type of machine learning models affects the performance machine learning analysis [35,36]. Therefore, we have tried multiple 
models to find best model. Additionally, cross-validation (CV) is performed, and results of 10-fold CV have shown higher performance. 
Table 1 shows the performance parameters for different models, such as mean absolute error (MAE) values and r-square values. It is 
noted that the performance of random forest regressor and bagging regressor was higher. The hyperparameters of these models are 
optimized. The dependance on the expensive experimental methods can be decreased with the help of accurate prediction [37–41]. 
Fig. 2 is showing the scatter plot between true and predicted values for different models. The reliability of machine learning models is 
checked using external dataset [42]. R2 values for random forest regression, bagging regression, gradient boosting regression and 
linear regression are 0.91, 0.86, 0.85 and 0.62 respectively. Random forest regression is best model. 

3.2. Similarity analysis 

Chemical similarity analysis (CSA) is used to identify the resemblance among molecules [43–45]. The purpose is to check in which 
aspects the molecules resemble and differ. Those compounds that are recognized by this analysis are produced from the reaction of 
various compounds with single reagents by comparison of structures [46–48]. A polymer named as SP1 that is successfully used for 
photoacoustic imaging is selected as reference for the designing of new monomers [49]. The electron-rich (B1) and electron-deficient 
(B2) parts of SP1 are used reference building blocks for data mining and library generation. The standard structures of reference 
polymer and reference building blocks are given in Fig. 3. Similarity analysis is performed using RDKit [31]. 

Harvard Clean Energy Project database is used for similarity analysis [50]. Through high technological designing and screening 
Harvard clean energy project (CEP) advance organic photovoltaic materials are flourished. CEP is used for the advancement of OPV 
from the latest compounds. It is a mechanized and highly efficient system for the in-silico investigation and study of molecular ma-
terials. Top search hits B1 from Harvard Clean Energy Project database are given in Fig. 4. Highest similarity index is 0.386. This 
approach can help to select the unique structures. Top search hits for B2 from Harvard Clean Energy Project database are shown in 
Fig. 5. Here, highest similarity index is 0.393. However, majority of structures are suitable for further designing due to non-availability 
of connecting sites. 

Fig. 10. B2 fitness score of generated building blocks.  
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Fig. 11. A list of the top eight building blocks that are similar to B2.  

Fig. 12. Distribution of predicted λmax values.  
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GDB17 chemical database is also used to search building blocks [51]. This database contains large number of drugs that contain 
hydrogen, carbon, nitrogen, oxygen, sulfur and halogen atoms. This database has large number of nonaromatic heterocycles and 
quaternary centers. There are much chances to find unique compounds. Top search hits for B1 from GDB17 chemical database are 
given in Fig. 6. Highest similarity index is 0.368. However, most of structures cannot be used for further designing because these 

Fig. 13. Structures and λmax values (nm) of best monomers.  
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structures cannot be connected in a proper way to get suitable polymers. Top search hits for B2 from GDB17 chemical database are 
given in Fig. 7. These structures are also not very good building blocks for the designing polymers. 

3.3. Library generation 

Library enumeration is the process used for generating the building blocks through automatic method [52–54]. The goal is to 
assemble a group of molecules that reflect a certain property or performance metric. Without investigation, the model prediction of 
molecules for specific application is not possible. The most significant features of the system may, however, be identified and used to 
guide the selection process. Library generation is done using DataWarrior software [33]. As shown in Fig. 8, the plot of fitness scores for 
libraries generated using B1 can be seen. The fitness score of only one group exceeds 0.9. The fitness score for the majority of building 
blocks falls in wide range (0.5–0.9). In Fig. 9, structures of top 8 building blocks are given are given. 

Fig. 10 illustrates the fitness score plot for building blocks designed from B2. It is noteworthy that no group has a fitness score 
higher than 0.9 and only a few groups have a score higher than 0.8. The majority of the groups have a fitness score between 0.6 and 0.8. 
Fig. 11 is showing the structures of top 8 budling blocks and B2. 

3.4. Designing of new polymers 

However, designing the polymers with desired functionality is challenging due to their vast chemical space [55–57]. Their rapid 
and rational designing with optimum functionality demands the practical knowledge of molecular chemistry and material processing 
[58–61]. This is again labor-intensive and expensive further limiting their on-demand optimum synthesis with specific features. Due to 
versatile nature of organic building blocks, it is possible to design large number of monomers. Breaking Retrosynthetically Interesting 
Chemical Substructures (BRICS) method was employed to design new monomers using previously searched and generated buildings 
blocks. We have generated 10,000 monomers. The λmax of generated monomers are predicted random forest regression model. The 
distribution of predicted λmax values is given in Fig. 12. 21 monomers are selected on the basis of predicted λmax. Monomers is 
red-shifted absorption are considered. Their structures are given in Fig. 13. 

Additionally, the chemical similarity between selected monomers is computed. The heatmap of chemical similarity is shown in 
Fig. 14. It is indicating high similarity between selected monomers and relatively less similarity between SP1 and selected monomers. 
The similarity is also presented in the form of structures (Fig. 15). The green portion of monomers is similar to reference SP1. 

Fig. 14. Heatmap of structural similarity between selected monomers.  
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Fig. 15. Graphical presentation of structural similarity between selected monomers.  

Table 2 
Synthetic accessibility score of selected monomers.  

Name Synthetic accessibility score 

M1 5.17 
M2 4.57 
M3 3.89 
M4 4.62 
M5 4.35 
M6 4.36 
M7 4.33 
M8 4.46 
M9 4.24 
M10 4.12 
M11 4.51 
M12 4.57 
M13 4.71 
M14 4.47 
M15 4.2 
M16 4.63 
M17 4.73 
M18 5.42 
M19 4.87 
M20 4.62 
M21 5.52  
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3.5. Synthetic accessibility 

The synthetic accessibility score (SAS) is a measure of the ease with which a molecule can be synthesized. It considers all the 
possible factors including availability and cost of starting materials, number of synthetic steps involved, and the possibility of side 
reactions taking place during synthesis. We have calculated synthetic accessibility score using RDkit. Results are given Table 2. 
Synthetic accessibility score values fall between 1 (easy to synthesize) and 10 (difficult synthesize). 6 is considered as a threshold to 
distinguish between easy to synthesize and difficult synthesize [62]. All the selected monomers have synthetic accessibility score 
values lower 6. It is indicating that these compounds are easy to synthesize. 

In present study, only single property is predicted, and monomers are screened on the basis of single property. The availability of 
data of other related properties can increase the chances of more successful screening. Extensive research can increase the develop-
ment in this field. 

4. Conclusions 

The present study uses machine learning models to predict the light absorption behavior of polymers. Through the utilization of 
molecular descriptors, these machine learning models undergo training. In parallel, the building blocks are retrieved from chemical 
databases. Complementing this, new building blocks are generated by enumerating chemical libraries. While, the BRICS method is 
used to design over 10000 new polymers. Both the searched and designed budling blocks are used as input. Using the best machine 
learning model, the UV/visible absorption maxima of designed polymers are predicted. Chemical similarity analysis is also performed 
on the selected polymers. Simultaneously, synthetic accessibility of selected polymers is calculated. It is worth noting that the synthesis 
of all these polymers is straightforward. The method is an effective tool for creating high-performance UV/visible monomers for OSCs, 
and it can accelerate the search for novel materials in this field. 
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