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With the development of science and biotechnology, many
evidences show that ncRNAs play an important role in the
development of important biological processes, especially in
chromatin modification, cell differentiation and proliferation,
RNA progressing, human diseases, etc. Moreover, lncRNAs
account for the majority of ncRNAs, and the functions of
lncRNAs are expressed by the related RNA-binding proteins.
It is well known that the experimental verification of
lncRNA-protein relationships is a waste of time and expensive.
So many time-saving and inexpensive computational methods
are proposed to uncover potential lncRNA-protein interac-
tions. In this work, we propose a novel computational method
to predict the potential lncRNA-protein interactions with the
bipartite network projection recommended algorithm (LPI-
BNPRA). Our approach is a semi-supervised method based
on the lncRNA similarity matrix, protein similarity matrix,
and lncRNA-protein interaction matrix. Compared with three
previous methods under the leave-one-out cross-validation,
our model has a more high-confidence result with the AUC
value of 0.8754 and the AUPR value of 0.6283. We also do
case studies by the Mus musculus dataset to further reflect the
reliability of our approach. This suggests that LPI-BNPRA
will be a reliable computational method to uncover lncRNA-
protein interactions in biomedical research.
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INTRODUCTION
With the development of biological research, people gradually realize
the importance of non-coding RNAs (ncRNAs) over the years.
ncRNAs are classified into sncRNAs (short non-coding RNAs) with
a length of less than 200 nucleotides and lncRNAs (long non-coding
RNAs) with a length of more than 200 nt in molecular biology. More-
over, lncRNAs occupy a large proportion of ncRNAs. In recent years,
more and more ncRNAs are confirmed to be related to many impor-
tant biological processes,1 especially lncRNAs, which are confirmed to
play a critical role in the chromatin modification,2 cell differentiation
and proliferation,3 RNA progressing,4 cellular apoptosis,5 and human
diseases.6 For example, Wang et al.7 in 2017 found that the lncRNA
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ACOD1 can respond to viral infection and rapidly upregulate expres-
sion and further enhance the enzyme activity of metabolic enzyme
GOT2, and it will increase the influence ability of virus. In another
study, Yang et al.8 revealed that lncRNAs can regulate the Warburg
effect of tumor cells in order to promote tumor growth. lncRNAs
do not work alone; they need to combine with the corresponding pro-
teins to play their roles in biological process and complete the delivery
of information. So, it is important to identify the lncRNA-binding
protein interactions9 if we want to understand the molecular mecha-
nism underlying the functions of lncRNAs.10–15

An increasing number of proteins related to RNAs are confirmed16

with the development of biotechnology includes high-throughput
sequencing technology (microarray, RNA-seq, CLIP-seq, etc.),
RNAi, radioimmunoprecipitation (RIP), and so on. However, our un-
derstanding of lncRNA-protein relationships is limited.17 Further, us-
ing experimental methods to predict lncRNA-protein associations is
costly and time consuming.18 Therefore, developing time-saving and
inexpensive computational methods becomes more and more neces-
sary. During recent years, many computational methods are widely
used in the field of bioinformatics, for instance, lncRNA-disease,
genome-cancer, and drug-target interaction predictions.1,19–27 But
there are only a few computational methods that can be used to infer
lncRNA-protein correlations. For instance, Bellucci et al.28 proposed
a method named catRAPID in 2011, which was based on the physi-
cochemical properties, including secondary structure, hydrogen
bonding, and van derWaals propensities, to forecast lncRNA-protein
connections by encoding lncRNA-protein pairs as a feature vector.
Then, in the same year, Muppirala et al.29 developed RPI-seq based
on the sequences of lncRNAs and proteins, which trained RF
(random forest)30 and SVM (support vector machine)31 classifiers
The Authors.
://creativecommons.org/licenses/by-nc-nd/4.0/).
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to indicate RNA-protein interactions. Next, a method was presented
by Wang et al.32 based on naive bias and extended naive bias classi-
fiers based the same dataset and feature with RPI-seq. Thereafter,
Lu et al.33 used hydrogen-bond, Van der Waals propensities and
RSS (six types of RNA secondary structures) to develop a method
named IncPro to infer lncRNA-protein relationships. In 2015, Suresh
et al.34 proposed RPI-Pred, which extracted lncRNA sequences, pro-
tein sequences and high-order 3D structural proteins features to
develop methods based on SVM. Later on, lncRNA-protein bipartite
network inference (LPBNI) was developed by Ge et al.,35 which was
based on a bipartite network to predict lncRNA-protein associations
that only used known lncRNA-protein interactions. lncRNA-protein
interactions prediction using Eigenvalue transformation-based semi-
supervised link prediction (LPI-ETSLP) was presented by Hu et al.36

in 2017, which is a semi-supervised method based on eigenvalue
transformation with the known lncRNA-protein interaction matrix,
the lncRNA and protein similarity matrix to uncover the relationship
between lncRNA and protein. In the same year, Liu et al.37 also
explored a semi-supervised model named LPI-neighborhood regular-
ized logistic matrix factorization (NRLMF) under the same dataset as
LPI-ETSLP to predict unknown lncRNA-protein interactions by
neighborhood-regularized logistic matrix factorization.

There are also some limitations of those traditional machine-learning
methods mentioned above. First, those methods are based on the
confirmed RNA-protein relationships instead of ncRNA-protein rela-
tionships, which would make bias. Second, they are used to infer
lncRNA-protein correlations based on the NPInter38 database, so
that it may bias the forecast because NPInter contains ncRNAs
gene-protein interaction sequences. Third, it is difficult to choose
the features of lncRNAs and proteins in lncRNA-protein relation-
ships by the machine-learning-methods predictions. Fourth, there
are no negative samples to forecast potential lncRNA-protein interac-
tions, which may lead to some biases as well.

LPI-ETSLP and LPI-NRLMF can overcome the above-mentioned
drawbacks of traditional machine-learning models, but they also
have some shortcomings. The model construction of LPI-ETSLP
and LPI-NRLMF is very dependent on the dataset and will bias the
result. In addition, LPI-ETSLP and LPI-NRLMF use theoretical pa-
rameters, and these parameters may not apply to new data. They
also have a complex calculation process and take a lot of time.

Compared with LPI-ETSLP and LPI-NRLMF, our study aims to
explore a novel semi-supervised method based on a bipartite
network-projection-recommended algorithm (LPI-BNPRA) to infer
new lncRNA-protein associations and solve problems mentioned
above as well. In our model, the lncRNA similarity matrix, protein
similarity matrix, and known lncRNA-protein interaction matrix
are also working for forecasting unknown lncRNA-protein correla-
tions with a bipartite network. The calculation process of our work
is not complex and time saving. The Smith-Waterman algorithm is
utilized to calculate the similarity score between lncRNA and lncRNA
(or protein and protein) in this new method. We present a bias-
ratings idea under the degree of lncRNAs or protein sequence similar-
ity and increase the accuracy of the prediction. We also obtain an
optimal threshold according to previous work of Shi et al.,39 which
is not based on the theoretical parameters and performs stably for
the prediction results when we repeat experiments many times. In
addition, we use leave-one-out cross-validation (LOOCV) to verify
the dependability of LPI-BNPRA and get a higher AUC (the area un-
der the ROC curve)40 value of 0.8754 compared with other methods.
Apart from this, we compute other index values of our model as well,
such as area under precision recall (AUPR), precision (PRE), accuracy
(ACC), etc. What’s more, we do case studies under theMus musculus
dataset and get high-confidence lncRNA-protein interaction predic-
tions with the predictive score ranks compared with other methods.
These comparisons show LPI-BNPRA dependability of predicting
new lncRNA-protein relationships.

RESULTS AND DISCUSSION
Comparison with Other Methods Based on NPInter V2.0

In this subsection, we compare the predictive ability of LPI-BNPRA
with RWR,41,42 LPBNI,35 and RPI-seq based on the same dataset to
illustrate the advantage of our method. RPI-seq is a classic ma-
chine-learning method based on the development of RF and SVM.
However, RWR and LPBNI are semi-supervised learning algorithms,
which depend on the similarity matrix of lncRNAs and proteins. Our
method provides an idea on how to forecast lncRNA-protein interac-
tions by the integrating protein similarity matrix, lncRNA similarity
matrix, and lncRNA-protein interaction matrix. Thus, we compare
results of these approaches by LOOCV under the same dataset, and
the comparison results are listed in Figure 1 and Table 1.

As shown in Figure 1, LPI-BNPRA has an AUC value of 0.8754, while
the AUCs of RWR, LPBNI, RPI-seq-RF, and RPI-seq-SVM are
0.8323, 0.8568, 0.3949, and 0.3987. Particularly, the AUCs of RWR
and LPBNI are a little lower than that of LPI-BNPRA. This is because
RWR does the prediction by using protein and lncRNA sequence in-
formation under a multiple network and LPBNI only takes average
strategy under a bipartite network with confirmed lncRNA-protein
interactions. LPI-BNPRA proposes bias ratings regarded as initial re-
sources under the agglomerative hierarchical clustering, where bias
ratings produce transfer rates and makes our model more exact
than those two methods. It is clear that RPI-seq has a lower AUC
value than that of the other three approaches and shows RPI-seq is
not reliable compared with LPI-BNPRA. Because RPI-seq is a clas-
sical machine-learning method, which needs training features and
negative and positive samples to do the prediction. There are many
differences of biological function between RNAs and lncRNAs; it is
also one of the reasons that makes RPI-seq ineffective, because RPI-
seq uses RNA-protein interactions instead of lncRNA-protein inter-
actions. Compared with RPI-seq, LPI-BNPRA is based on the
lncRNA-protein relationships confirmed by experimental verifica-
tions, which makes it possible to avoid the problems of negative sam-
ples. We examine the quality of computational methods by other
index values, for instance, AUPR, PRE, sensitivity (SEN), F1 score,
and so on. It is illustrated in Table 1 that LPI-BNPRA has higher
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Table 1. Comparison of LPI-BNPRA with RWR, LPBNI, RPI-seq-RF, and

RPI-seq-SVM Models

Methods AUC AUPR PRE SEN ACC F1 Score

LPI-BNPRA 0.8754 0.6283 0.6540 0.4841 0.8799 0.5564

RWR 0.8332 0.2893 0.3681 0.3538 0.9536 0.3603

LPBNI 0.8586 0.3306 0.3713 0.3713 0.9581 0.3868

RPI-seq-RF 0.3949 0.0631 0.0983 0.0983 0.4626 0.1481

RPI-seq-SVM 0.3987 0.0698 0.1003 0.1003 0.4823 0.1493

Figure 1. The ROC Curves of LPI-BNPRA, RWR, LPBNI, RPI-Seq-RF, and

RPI-Seq-SVM

The ROC curves of LPI-BNPRA, RWR, LPBNI, RPI-seq-RF, and RPI-seq-SVM are

plotted in red, brown, green, blue, and purple. The light gray line is the ROC curve of

the relationship between LPI-BNPRA and the randomized lncRNA-protein pairs.
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values than RWR and LPBNI apart from AUC value; for example, the
AUPR values of LPI-BNPRA, RWR, and LPBNI are 0.6283, 0.2893,
and 0.3306. The AUPR value of our method is much higher than
those of RWR and LPBNI. The PRE value is 0.6540, which is
43.71%, 43.22% higher than RWR and LPBNI. Although our
approach has a lower ACC value than that of RWR and LPBNI, it
is more reliable to assess unstable dataset with F1 score than using
the ACC value. From Table 1, the F1 score of our model is 0.5564
and obviously higher than that of other three models, further suggest-
ing that our model achieves a reliable prediction. Due to the limited
resources of the lncRNA-protein interactions database and because
we only extract a few available datasets, the predictive results are
also limited. Therefore, with the lncRNA-protein connections
increasingly verified by experiments, the database is continually ex-
panding, and the accuracy and efficiency of LPI-BNPRAwill be corre-
spondingly improved.

Case Studies

From the above studies, using known human lncRNA-protein inter-
actions to forecast potential lncRNA-protein relationships can obtain
a reliable result based on LPI-BNPRA. Therefore, in order to better
assess the predictive ability of this method, we apply it to test its per-
formance based on the Mus musculus dataset. Mice are physiologi-
cally similar to other mammals and humans, and there is also a
high genetic similarity between mice and humans. Mice also have a
strong ability to reproduce and grow up. Experimenters often do ex-
466 Molecular Therapy: Nucleic Acids Vol. 13 December 2018
periments using the mouse as the experimental animal, and there are
a lot of mouse genome-sequencing experiments. Therefore, we use
the Mus musculus dataset to test our model performance.

We do case studies under the Mus musculus dataset extracted from
NPInter v3.0 and list the top 10 inferred new lncRNA-protein con-
nections in Table 2; these new connections are checked in the Mus
musculus dataset finally. Embryonic stem cells are highly undifferen-
tiated cells, which can splinter and proliferate cells to produce various
organs and then generate an organism. Therefore, embryonic stem
cells play a key role in the biological processes. Guttman et al.43 pro-
posed that many lncRNA gene-protein pairs are important in the cir-
cuitry of the mouse to control mouse embryonic stem cell state, for
example, NONMMUG030867-A2AC19, NONMMUG078379-
Q8CHK4, NONMMUG002214-A2AC19, etc. We find these interac-
tion predictions forecasted by our method, which are rank advanced
from Table 2.

Table 2 also lists the rankings of the top 10 lncRNA-protein predicted
interactions of other models. It is evident that the rankings of our
model are more advanced than those of other models, and some of
the top 10 relationship-pair prediction rankings predicted by other
three methods are not very high—for instance, RPI-seq had lower
rankings. Many new interactions found by our model may be ne-
glected in other models. Therefore, LPI-BNPRA achieves a high-
confidence performance compared with other methods as well by
these important lncRNA gene-protein interactions.

Conclusions

lncRNAs have large quantities, large molecular weight, and poor sta-
bility in vitro, and they are also difficult to crystallize. The character-
istics of lncRNAmake it difficult to study its structure, and only a few
studies have reported its structure at present.44 Although the role of
lncRNAs is undoubted in the regulation of gene expression, only a
few lncRNAs have been studied for their function and mechanism
of action.45 Since lncRNAs play a regulatory role in the coordination
of protein molecules, the identification of protein molecules that bind
specific lncRNAs has become the main study to reveal the function
and mechanism of lncRNAs.46 It is well known that lncRNAs are
widely involved in biological processes such as DNA methylation,
protein modification, and chromosome remodeling in vivo. lncRNAs
can directly interact with transcription factors, functional RNA mol-
ecules, and chromatin remodeling modifiers as well. In addition,



Table 2. Top 10 Novel Predicted lncRNA-Protein Interactions Based on LPI-BNPRA and Their Ranks Based on Other Methods

lncRNA Protein Confirmed? LPI-BNPRA RWR LPBNI RPI-seqFR RPI-seqSVM

NONMMUG030867 A2AC19 confirmed 1 17 16 3 157

NONMMUG078379 Q8CHK4 confirmed 2 26 34 124 131

NONMMUG002214 A2AC19 confirmed 3 62 71 98 147

NONMMUG009968 Q8CHK4 confirmed 4 118 101 171 107

NONMMUG022640 Q13185 confirmed 5 136 131 64 156

NONMMUG045923 Q8CHK4 confirmed 6 116 120 122 141

NONMMUG013483 Q9NQR1 confirmed 7 9 42 38 122

NONMMUG035346 O09106 confirmed 8 122 128 129 132

NONMMUG009968 O09106 confirmed 9 127 127 91 79

NONMMUG030867 Q9NQR1 confirmed 10 80 87 102 112
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lncRNAs regulate the target gene expression at the transcriptional
level and post-transcriptional level.47,48 Some lncRNAs are also
involved in the regulation of target genes as precursors for certain
functional sncRNAs, such as small interfering RNAs (siRNAs),
microRNAs, and piwiRNAs.1,49–52 Particularly, the functions of
lncRNAs are expressed by the related lncRNA-binding pro-
teins.10,53,54 Therefore, predicting potential lncRNA-protein interac-
tions is helpful to study the function of lncRNAs. But experimental
methods to forecast lncRNA-protein relationships are costly and
time-consuming. Therefore, some computational methods are devel-
oped to infer unknown lncRNA-protein connections. In this paper,
we propose a method named LPI-BNPRA to predict lncRNA-protein
associations by the known lncRNA-protein interactions matrix, the
lncRNA similarity matrix, and the protein similarity matrix. Further,
the performance of LPI-BNPRA is assessed by LOOCV; it also has a
higher AUC score with 0.8754 than that of RWR, LPBNI, and RPI-
seq. We also calculate many other reliable index values, which show
the perfect performance of our method as well. Besides, in order to
further check the effectiveness of LPI-BNPRA, we apply it to infer
lncRNA-protein correlations on the Mus musculus dataset extracted
from NPInter v3.0; the results show our method also has high-accu-
racy predictability based on the other species datasets. With the devel-
opment of biotechnology, more lncRNA-protein interactions will be
confirmed, and the accuracy of the prediction of LPI-BNPRA will in-
crease as well. In summary, we find that LPI-BNPRA is a reliable
computational method to predict unknown lncRNA-protein relation-
ships in the future.
MATERIALS AND METHODS
Datasets

We got ncRNA-protein interactions downloaded from NPInter
v2.055 in our approach, which is a database includes conformed inter-
actions between ncRNAs and other biomolecules (proteins, RNAs,
and genomic DNAs). We chose lncRNA-protein interactions
involved in human lncRNAs, and lncRNA sequences were down-
loaded from NONCODE.56,57 So, we obtained 141,353 lncRNA se-
quences according to NONCODE 4.0. Then we removed unreliable
lncRNA sequences, which were not human lncRNAs, and obtained
a dataset containing 4,158 high-confidence lncRNA-protein associa-
tions generated by 990 lncRNAs and 27 proteins.58,59 Especially when
we selected reliable datasets, the accuracy of our method was
improved by removing lncRNAs only related to one protein and pro-
teins only related to one lncRNA.
lncRNA-lncRNA Similarity Matrix

The Smith-Waterman algorithm is a sequence algorithm, and we used
it to calculate the similarity scores of every lncRNA-lncRNA pair.
LSM stands for the similarity matrix of lncRNAs, in which the entity
LSMðli; ljÞ reflects the similarity score between lncRNA li and
lncRNA lj. LSMðli; ljÞ was scored according to the following formula:

LSM
�
li; lj

�
=

sw
�
li; lj

�

max
�
swðli; liÞ; sw

�
lj; lj

��; (Equation 1)

where swðli; ljÞ is the sequence similarity score of lncRNA li and
lncRNA lj, which is calculated by the Smith-Waterman algorithm.
Protein-Protein Similarity Matrix

Similar to lncRNA similarity scores, we used the Smith-Waterman al-
gorithm to calculate protein-protein similarity scores as well. The
protein similarity matrix is marked as PSM, where the entity
PSMðpi; pjÞ is the similarity score of protein pi and protein pj.
PSMðpi; pjÞ is defined as

PSM
�
pi; pj

�
=

sw
�
pi; pj

�

max
�
sw
�
pi; pi

�
; sw

�
pj; pj

��; (Equation 2)

where swðpi; pjÞ shows the sequence similarity score between protein
pi and protein pj calculated by Smith-Waterman algorithm.
lncRNA-Protein Interaction Matrix

We computed the interaction scores between lncRNAs and proteins
according to the sequence similarity matrixes. Therefore, the adja-
cencymatrix Y appeared to describe the lncRNA-protein interactions,
in which entity Yðli; pjÞ is 1 if lncRNA li is confirmed to be related to
the protein pj, otherwise 0.
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Figure 2. The Workflow Chart of LPI-BNPRA
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LPI-BNPRA

Figure 2 reflects the flow chart of LPI-BNPRA. First, we obtained the
extracted gene-protein pairs from NPInter v2.0 database. Then, we
removed unreliable lncRNA and protein sequences. Next, we calcu-
lated the lncRNA-lncRNA similarity score and protein-protein simi-
larity score and constructed the bias ratings. Finally, we integrated the
468 Molecular Therapy: Nucleic Acids Vol. 13 December 2018
lncRNA similarity matrix, protein similarity matrix, and lncRNA-
protein interaction matrix with LPI-BNPRA to compute lncRNA-
protein interaction scores and infer potential lncRNA-protein
connections.

We got the bias ratings of every lncRNA for proteins based on the
agglomerative hierarchical clustering. For instance, a given lncRNA
li tends to be relevant to many proteins that have the similar sequence
information. Thus, we can construct bias ratings of this given lncRNA
li to proteins.

The agglomerative hierarchical clustering takes a bottom-up strategy,
which assumes each protein (or each lncRNA) is a single cluster in the
first step, and then combines these single clusters based on the linkage
criterion of minimum variance method. Where LDðli; ljÞ is the dis-
tance between lncRNA li and lncRNA lj, and PDðpi; pjÞ represents
the distance between protein pi and protein pj, LDðli; ljÞ and
PDðpi; pjÞ are denoted as

LD
�
li; lj

�
= 1� LSM

�
li; lj

�
(Equation 3)

PD
�
pi; pj

�
= 1� PSM

�
pi; pj

�
: (Equation 4)

In the same manner, many reliable clusters with an appropriate
threshold are gained after cutting the hierarchical clustering tree. The
threshold performs stably for the prediction results when we repeat ex-
periments many times based on LOOCV. Therefore, we counted the
bias rating of protein pi to lncRNA lj as the following equation

r
�
pi; lj

�
=

ncr
T
�
pi
�; (Equation 5)

where ncr represents the number of the lncRNA lj in the cluster cr,
which includes the lncRNA lj; let TðpiÞ be the number of all the
lncRNAs related to protein pi.

Different proteins have different interaction score ranges, according
to the known lncRNA-protein interaction matrix that contains
confirmed interactions of lncRNA-protein pairs, and we obtained a
bias-rating range of each protein to related lncRNAs by using the
agglomerative hierarchical clustering. Therefore, we get the original
bias rating r

^ðpi; ljÞ as follows:

r
^�
pi; lj

�
=
r
�
pi; lj

�

r
��
pi
� (Equation 6)

r
��
pi
�
=

Xm

j= 1

r
�
pi; lj

�

T
�
pi
� : (Equation 7)

The original bias ratings demonstrate the difference of biases from
every protein to different lncRNAs, which reflect the differences of
lncRNA-protein interactions. Then, the initial resource from
lncRNAs to related proteins is defined as



Figure 3. The Basic Idea of LPI-BNPRA
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Rini

�
lj
�
= r

^�
pi; lj

�
: (Equation 8)

As shown in the Figure 3, there are two resource allocations in our
model under the bipartite network. In the first resource allocation,
we allocated the initial resource from lncRNAs to proteins. Resources
of proteins are allocated to lncRNAs again by the principle similar to
the first allocation in the second resource allocation. So, we need to
calculate the resource of protein RðpiÞ=

Pm
j= 1Rðpi; ljÞ from lncRNA

lj in the first resource allocation.

R
�
pi; lj

�
=

r
^�
pi; lj

�

Xn

k= 1

r
^�
pk; lj

�� Rini

�
lj
�
: (Equation 9)
The resource of protein pi is the sum of the allocated initial resource
from all lncRNAs correlated with protein pi:

R
�
pi
�
=
Xm

j= 1

R
�
pi; lj

�
: (Equation 10)

Similar to the first resource allocation, we assigned a transfer weight
to every link in the second allocation (see Figure 3). Next, we obtained
the final resource from protein pi to lncRNA lj:

Rfin

�
pi; lj

�
=

r
�
pi; lj

�

Xm

k= 1

r
�
pi; lk

�� R
�
pi
�
: (Equation 11)

Then, the final resources of lncRNA lj are allocated from all the pro-
teins connected with the lncRNA lj. The formula is presented as
follows:

Rfin

�
lj
�
=
Xn

i= 1

Rfin

�
pi; lj

�
: (Equation 12)

Finally, we gained a bias-rating score matrix containing the bias rat-
ings from proteins to lncRNAs. Therefore, we can recommend the
corresponding lncRNAs to a given protein with the final resource
scores in a descending order.

For example, the ratings of protein p1 for lncRNAs l1, l2, and l3
confirmed have relation with p1 are 5, 3, and 1, respectively, and
the median is 3. The rest of the numbers on the edge of each link
are the ratings of proteins for its associated lncRNAs. Therefore,
the initial resources from p1 to lncRNAs l1 to l5 are 1.7, 1, 0.3, 0,
and 0 according to the Equations 6 and 7. In the first resource allo-
cation, resources are distributed from lncRNAs to proteins, and pro-
tein p1 gets 1.2 in total by Equations 9 and 10. Then, in the second
resource allocation, resources are transferred back to lncRNAs. In
the first and second resource allocations, the number on the edge
of each link is the resource allocation rate from every lncRNA to
its related protein. lncRNA l4 receives 0.33 in total in the light of
Equations 11 and 12. Similarly, lncRNA l5 obtains 0.21 in total.
Above all, we can predict that lncRNA l4 may be more correlative
with protein p1 than lncRNA l5 based on the final resource scores
of lncRNA l4 and l5.

Performance Evaluation

LOOCV was applied for checking the effectiveness of LPI-BNPRA in
this step. In the cross-validation process, the initial dataset was
divided into K sub-samples, from which an individual sub-sample
was taken as the data for the validation model. K = 4,158 in this
work, and every lncRNA-protein interaction was regarded as one
sub-sample; the other 4,157 samples were used for training. The
cross-validation was repeated 4,158 times until each sub-sample
was verified once, and an estimated value was obtained by averaging
the 4,158 results. We selected a confirmed lncRNA-protein interac-
tion as a testing sample in turn and looked at other confirmed
lncRNA-protein correlations as training samples in our model. We
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plotted the ROC curve (receiver operating characteristic curve) to
describe the performance of our approach. AndAUCwas also utilized
to evaluate the method reliability; AUC = 1 demonstrates the perfect
performance and 0.5 reflects the random performance. We also
computed ACC, PRE, SEN, and F1 to test the ability of LPI-BNPRA.
These index values are denoted as

ACC =
TP +TN

TP + FP + FN +TN
(Equation 13)

REC =
TP
P

(Equation 14)

PRE =
TP

TP + FP
(Equation 15)

F1=
2� TP

2� TP + FP + FN
= 2� PRE � REC

PRE +REC
: (Equation 16)

TP is true positive, TN indicates true negative, FP shows false pos-
itive, FN reflects false negative. The system errors and statistical
biases are marked as ACC. PRE (the precision is regarded as the
number of positive prediction as well) is the example of the related
retrieval fraction, and REC (the recall is regarded as the number of
sensitivity) defines the example of the related retrieval of search
fraction based on the relevant understandings and measures. The
F1 score (also named F degree of measure or F fraction) is more
typical than ACC compared with different classifiers based on the
class imbalance databases, which is because of taking the test accu-
racy and the score of calculation into consideration. F1 is accuracy
weighted average and recall, and our model can reach an optimistic
number if F1 = 1, otherwise F1 = 0 reveals the worst number of our
method.
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