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Role of interleukins in heart failure with reduced ejection fraction

Introduction

Heart failure (HF) is an insufficiency of the cardiac output to 
fulfill the demands of organs and tissues. It can represent the 
end-stage of several cardiovascular diseases, including isch-
emic disease, myocardial infarction, or myocarditis, which lead 
to pathological changes in the myocardium. HF is the leading 
cause of morbidity and mortality in developed countries, and it 
is the primary cause of mortality in the elderly worldwide (1). 
Its typical clinical presentations include shortness of breath, 
fatigue, and impaired exercise tolerance. Despite several im-
provements in the management of HF, it is still an incurable and 
a progressive disease. Its 5-year mortality has been estimated 
to range between 50% and 70% in the American population (2).

The mechanisms of the HF development are complicated, 
and several factors have been implicated in its pathophysiology. 
Many studies confirmed that HF is not only a “pump illness”. In 
fact, it is a systemic disease, and persistent overactivation of 
different compensatory systems, such as the renin–angiotensin 
and β-adrenergic system, is one of the most relevant causes 
of HF. Nevertheless, the use of inhibitory agents blocking those 

systems did not influence morbidity and mortality satisfactorily, 
which may suggest that we still miss some significant pathways. 
Several trials demonstrated that the process of inflammation 
might be responsible for the initiation and progression of HF (3-
8). Inflammation can be defined as the biological response to 
tissue injury or irritation. Immune activation may be the result 
of direct stimulation by foreign antigens, such as in viral myo-
carditis, or can be indirect, caused by cardiac injury and subse-
quent exposure to self-antigens, which could be responsible for 
the response against the heart. Recurrent and sustained immune 
system activation is implicated in the left ventricular hypertrophy 
and its progression to HF. Chemical transmitters playing role in 
mediating the inflammatory signaling from the site of local injury 
to whole body are known as cytokines. Cytokines recruit cells to 
the site of inflammation, stimulate cell division, proliferation, and 
differentiation. In HF there is an activation of the immune system, 
production and release of autoantibodies, pro-inflammatory cy-
tokines, including tumor necrosis factor-α (TNF-α), and comple-
ment system recruitment (3-6). High levels of circulating cyto-
kines correlate with the severity of HF, measured with the use 
of the New York Heart Association (NYHA) classification, and 
prognosis of the disease (3, 4, 6, 7). They also cause the altera-
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tions in the heart function due to the increase of cardiomyocyte 
apoptosis, cardiac hypertrophy, and matrix metalloproteinase 
activation (4, 7). The process of T-cell migration to the left ventri-
cle was shown as important in the HF development (8); however, 
its mechanisms are not well known. An overexpression of TNF-α 
leads to the development of dilated cardiomyopathy in animal 
studies (9), which implies that cytokines themselves may cause 
the initiation and progression of HF. 

The processes of the inflammatory response activation, pro-
duction, and release of pro-inflammatory cytokines, activation of 
the complement system, production of autoantibodies, and over-
expression of Class II major histocompatibility complex mole-
cules contribute to the HF pathogenesis. However, the treatment 
with several immune pathways inhibitors did not improve the HF 
outcomes. TNF-α inhibitors had no positive effect on patients’ 
survival. In fact, high doses of infliximab, a chimeric monoclo-
nal antibody to TNF-α, were found to increase the mortality rate 
(10, 11). Several trials demonstrated a decreased inflammatory 
factors concentration after colchicine application. However, 
it did not improve the clinical state of HF patients (12). The use 
of nonspecific immunomodulation therapy in HF demonstrated 
beneficial effects only in some groups of patients (13). On the 
other side, the levels of inflammatory cytokines did not decrease 
after traditional therapy was used in acute HF decompensation, 
even when clinical parameters showed improvement (14). What 
is more, the use of amiodarone has been associated with up-
regulated concentrations of TNF-α in serum (15).

This review presents the role of interleukins, which contrib-
ute to the HF initiation and progression, the importance of their 
pathways in transition from myocardial injury to HF, and the role 
of interleukins as markers of disease severity and outcome pre-
dictors. 

Interleukin-1β and its receptor as a therapeutic target in HF 
and myocardial infarction
Interleukin-1β (IL-1β) is a pro-inflammatory cytokine, which 

triggers up-regulation of several downstream signaling mol-
ecules involved in immune response. After binding to its recep-
tor, multiple adaptor proteins are recruited, including the myeloid 
differentiation factor 88 (MyD88), which activate the IL-1R as-
sociated kinases (IRAKs) and tumor necrosis factor receptor-
associated factor 6 (TRAF-6). These all cause the activation of 
several transcriptional factors. IL-1 triggers transcriptional and 
posttranslational alterations in sarcoplasmic/endoplasmic retic-
ulum calcium ATPase (SERCA) and overexpression of nitric ox-
ide synthase (NOS) (16). IL-1 signaling pathway and downstream 
effector molecules are presented in Figure 1. Myocardial injury 
induces the synthesis of a macromolecular structure, denoted 
inflammasome, which is responsible for the cleavage of pro-IL-
1β by caspase-1, and therefore activates IL-1β. IL-1β initiates the 
migration of leukocytes to the site of cardiac insult and triggers 
the synthesis of other cytokines. The IL-1β concentration was 
proportional to the ischemia duration in the studies on mice (17). 

IL-1β has been implicated in cardiac remodeling after isch-
emia and in changes in ventricles contractility and relaxation. 
The level of IL-1β was proportional to the NYHA’s functional 
class and was regardless of the cause of HF (18). Studies dem-
onstrated that even more patients had elevated concentrations 
of IL-1 soluble receptor/receptor antagonists than IL-1 (18). An 
overexpression of IL-1, which caused alterations in myocardium, 
was noted in sepsis (19) and viral myocarditis (20). Moreover, in-
hibiting this cytokine suppressed the progression to HF (21).

Treatment with IL-1β promoted contractile dysfunction in 
cell culture and in vivo studies, and it reduced the LV contractil-
ity reserve, evaluated according to the responsiveness to iso-
proterenol, which is a β agonist. Moreover, the negative influ-
ence of IL-1β was reversible (22). IL-1β blocker administration in 
acute ischemia in animal model prevented from the left ventricle 
dysfunction, even when used 10 weeks after injury (22, 23). The 
injection of patients’ plasma, which suffered from acute HF to 
healthy mice, caused a development of diastolic dysfunction (24, 
25). Moreover, treatment with anakinra, which is an IL-1 recep-
tor antagonist, or an IL-1β antibody, protected from the cardiac 
function depression (23, 25). The administration of plasma from 
stable systolic HF patients resulted in a lower contractile re-
serve, whereas the contractile function was unchanged (24). 

Figure 1. IL-1 Signaling pathway and downstream effector molecules
IL-1R - interleukin-1 receptor; IL-1RAcP - IL-1 receptor accessory protein; TIR - Toll/
interleukin-1 receptor kinase; MyD88 - myeloid differentiation factor 88; IRAK - IL-
1R associated kinase; TRAF-6 - tumor necrosis factor receptor-associated factor-6; 
SERCA - sarcoplasmic/endoplasmic reticulum calcium ATPase; NOS - nitric oxide 
synthase; TNF-α - tumor necrosis factor-α
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Patients with rheumatoid arthritis treated with anakinra had 
a better systolic and diastolic function of ventricles, greater in-
crease in coronary flow reserve, and improved endothelial func-
tion, whereas the use of triamcinolone did not affect the myo-
cardial function (26). Similar results were observed in clinical 
trials VCU-ART (27) and VCU-ART2 (28), which aimed to verify 
the effect of anakinra on patients with the ST-segment elevated 
myocardial infarction (STEMI) treated with primary percutane-
ous coronary intervention. These studies demonstrated a lower 
level of inflammatory transmitters, better cardiac function, and 
decreased extent of pathological remodeling in patients admin-
istered with anakinra. However, it did not have an impact on 
myocardial infarction recurrence or the infarct size. VCU-ART3 
is a still continued double-blind randomized clinical trial, which 
evaluates the effect of high doses of anakinra in comparison to 
standard doses of anakinra and measures the effects on the 
acute rise and fall of the plasma C-reactive protein (CRP) levels 
during the first 14 days after myocardial infarction. Patients with 
the non-STEMI injected with anakinra had a lower level of CRP, 
but also, unfortunately, an unchanged infarct size and a higher 
risk of adverse cardiac events (29). Mice administered with a re-
combinant human IL-1 receptor antagonist after treatment with 
doxorubicin (30) or chest irradiation (31) had preserved myocar-
dial systolic and diastolic function. Losartan, which is an angio-
tensin II receptor antagonist, prevented the depression of the 
cardiac function after the IL-1 treatment in an animal model (32).

Interleukin-6 and its antagonists as potential therapeutic 
options in HF
Interleukin-6 (IL-6) is a pleiotropic cytokine implicated in 

thymocytes, macrophages, and natural killer cells activation; B- 
and T-cell differentiation; and inducing the acute-phase proteins 
synthesis (33). This cytokine initiates the leucocyte infiltration; 
however, a prolonged inflammation can change into destructive 
response causing tissue fibrosis. IL-6 acts through the IL-6 re-
ceptor (IL-6R), which is detected only in some cell types, such 
as hepatocytes or leukocytes. After IL-6 binds to IL-6R, the ubiq-
uitously expressed glycoprotein 130 receptor subunit (gp130) is 
recruited to form a complex. However, another pathway known 
as trans-signaling has been revealed, which uses a soluble form 
of IL-6R (sIL-6R). This receptor binds IL-6 with a similar affinity. 
This dimer can associate with gp130 on cells not expressing IL-
6R. IL-6 trans-signaling is pro-inflammatory, while classic IL-6 
signaling via the membrane-bound IL-6R has anti-inflammatory 
properties. The Gp130 receptor subunit activates three path-
ways, including the Janus kinase/signal transducer and activa-
tor of the transcription 1/3 (JAK/STAT1/3) pathway, which seems 
to be the most important in the HF development, Ras/mitogen-
activated protein/extracellular signal regulated kinases (Ras/
MEK/ERK1/2), and the phosphatidylinositol-3-kinase (PI3K)/Akt 
pathway (34). Janus kinases are a family of tyrosine kinases 
linked with the cytoplasmic domain of cytokine and growth fac-
tor receptors. After the activation, JAK proteins phosphorylate 

and recruit STAT proteins whose phosphorylation leads to their 
homodimerization, and eventually to their translocation to the 
nucleus or mitochondria (35). STAT3 activates the Survivor Acti-
vating Factor Enhancement (SAFE) pathway, which is an intrinsic 
protective signaling program limiting cell death activated by the 
heart and triggers ischemic post-conditioning, which prevents 
the reperfusion injury to occur. The downstream proteins of the 
JAK/STAT3 pathway are among others cyclin D1, E1, p21, Fas, 
Bcl-xL, Bcl-2, Mcl-1, or the vascular endothelial growth factor 
(VEGF). This pathway may also be activated by several factors, 
including high-density lipoproteins, prostaglandins, bradykinin, 
leptin, insulin, erythropoietin, adrenoreceptors, cannabinoid 
agonists, opioids, resveratrol, or biogenic amines present in 
red wine, including ethanolamine and melatonin (36). The IL-6 
signaling pathway and downstream effector molecules are pre-
sented in Figure 2. Studies revealed the presence of a decoy 
receptor, sgp130, which is an endogenous inhibitor of the IL-6 
trans-signaling (37). IL-6 inhibited the sarcoplasmic reticulum 
Ca2+ ATPase (SERCA2) via the transcriptional mechanism (38) 
and decreased the expression of beta- and alpha-myosin heavy 
chain and cardiac-alpha-actin in cell culture (39). 

The levels of IL-6 and soluble IL-6-type receptors were el-
evated in patients with HF (7) and were proportional to the NYHA 

Figure 2. Downstream signaling of IL-6
IL-6R - interleukin-6 receptor; gp130 - glycoprotein 130 receptor subunit; sIL-
6R - soluble interleukin-6 receptor; JAK - Janus-activated kinase; STAT - signal 
transducer and activator of transcription; MEK - mitogen-activated protein kinase; 
ERK - extracellular signal regulated kinase; PI3K - phosphatidylinositol-3-kinase; 
mTOR - mammalian target of rapamycin
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functional class (6, 18) and function of either the left or right ven-
tricle (40, 41). A higher number of patients had an increased IL-6 
than the sIL-6R level (18). Moreover, studies revealed the overex-
pression of their genes in ischemic and nonischemic end-stage 
HF (42). The IL-6 concentration depended on the etiology of HF. It 
was significantly increased in patients with HF caused by isch-
emic heart disease and cardiomyopathy than in those affected 
by valvular heart disease or hypertensive heart disease (43). IL-6 
was linked with the sympathetic nervous system activation and 
correlated with a poor outcome (44). Jug et al. (45) showed that 
IL-6 was an independent predictor of prognosis, even better than 
hsCRP in patients with a chronic stable HF. However, the Corona 
Trial did not demonstrate a correlation between the level of IL-6 
and the endpoints, which were cardiovascular mortality, myo-
cardial infarction, or stroke in patients with chronic symptomatic 
systolic HF (46). Nevertheless, sgp130 was associated with mor-
tality from all causes (46). IL-6 was an independent predictor of 
systolic pulmonary artery pressure in patients with advanced HF 
(47). An increased IL-6 level was associated with a higher HF risk 
in people without previous cardiovascular diseases (48).

In in vitro studies, IL-6 suppressed the systolic function 
in isolated hamster papillary muscles through the myocar-
dial NOS pathway (49). In animal studies, IL-6 had a negative 
inotropic effect on myocardium. Its administration resulted 
in cardiac dilation and the reduction of skeletal muscle mass 
(50). gp130 played a role in cardiac fibroblast growth, neovas-
cularization, and wound healing (51). The loss of gp130 has 
been implicated in the cardiac dilation caused by pressure 
overload (52). Nevertheless, the overexpression of gp130 led 
to ventricular hypertrophy through the trans-signaling process 
(53). Activation of the SAFE pathway was required for the car-
dioprotective effect of ischemic pre- and post-conditioning. 
Ischemic post-conditioning induced the activation of JAK1, 
JAK2, STAT1, and STAT3, and the inhibition of this pathway 
impaired the development of ischemic tolerance (54). The loss 
of STAT3 resulted in neovascularization alterations, enhanced 
fibroblast proliferation, HF progression, increased mortality, 
higher susceptibility to myocardial ischemia/reperfusion injury 
and infarction, raised apoptotic cell rate, and enhanced infarct 
size (55). A similar effect was obtained in IL-6-knockout mice, 
in which the ischemic post-conditioning-induced activation of 
JAK/STAT was down-regulated, and the infarct size was not re-
duced (56). Chronic activation of STAT3 through IL-6 and gp130 
in subacute infarction was responsible for inflammation, left 
ventricular rupture, and HF development (57).

The use of an IL-6 and a gp130 antagonist led to a decreased 
expression of atrial natriuretic peptide (ANP) and beta-myosin 
heavy chain in isolated cardiomyocytes, reduction of its surface 
area, and lower proliferation of fibroblast in cardiomyocyte/fi-
broblast coculture. Fibroblasts, which synthesized angiotensin 
II (AngII), stimulated the IL-6 production. Losartan, which is an 
AT-1 receptor antagonist, neutralized the influence of IL-6 and 
prevented myocyte hypertrophy and fibroblast proliferation (58). 

Tocilizumab is an anti-human IL-6R monoclonal antibody. It binds 
to both the soluble and membrane-bound IL-6R (59), and this may 
be the cause of several serious side effects, including neutrope-
nia and increased susceptibility to infections (60). Another issue 
that questions the use of tocilizumab in patients with HF is the 
fact that it leads to increased cholesterol levels and decreased 
statin effects. However, the concentration of lipoprotein(a), 
which is a known marker of cardiovascular diseases, was lower 
after the treatment (60).

The effect of IL-6 may be both positive and negative, depend-
ing on the duration of this cytokine activation. IL-6 synthesis 
restricted to short period after the injury is curative and could 
protect and preserve the myocardium, while a prolonged syn-
thesis and over-production result in ventricular dilation and HF 
development. Classical, membrane-bound signaling has been 
associated with the favorable, anti-inflammatory influence of IL-
6, whereas the noxious pro-inflammatory pathway is mediated 
by trans-signaling. The anti-inflammatory role of IL-6 varies upon 
the dose, duration, and moment of initiation of its administration 
and type of receptor stimulated.

Interleukin-8 associated with a worse clinical prognosis in 
patients with HF
Interleukin-8 (IL-8) is a key mediator associated with inflam-

mation, which is encoded by the CXCL8 gene. IL-8 plays a role 
in angiogenesis, neutrophil and granulocyte chemotaxis, and 
phagocytosis stimulation, and it is induced by several stimuli 
such as shear stress, ischemia, hypoxia, and other factors that 
activate the nuclear factor kappa–light–chain–enhancer of acti-
vated B cells (NF-κB) pathway (61). IL-8 is synthesized by cells 
with toll-like receptors, including macrophages, epithelial cells, 
smooth muscle cells, and endothelial cells. In human heart, IL-8 
is localized mainly in cardiomyocytes (62). 

IL-8 concentration was up-regulated in patients with HF 
compared to healthy controls (7, 63, 64). Increased IL-8 con-
centrations have been related with a worse clinical prognosis 
in patients with HF (65). However, a small study on explanted 
hearts from patients with end-stage HF showed down-regulated 
IL-8 mRNA levels in patients with HF compared to healthy donors 
(62). The IL-8 concentration was demonstrated to be a predic-
tor of the HF development after myocardial infarction (66). High 
levels of IL-8 were associated with less improvement in left ven-
tricular function during the first 6 weeks after STEMI. The IL-8 
level was not proportional to peak troponin T concentration or 
infarct size after 6 weeks, which suggested that IL-8 might not be 
implicated in the process of necrosis (67).

Interlekin-10 improved the myocardial function and protect-
ed from adverse cardiac remodeling 
Interleukin-10 (IL-10) is an anti-inflammatory cytokine pro-

duced in macrophages, activated T cells and B cells, or mast 
cells. IL-10 inhibits pro-inflammatory cytokines and matrix me-
talloproteinases synthesis. It regulates the growth, differentia-
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tion, and function of cytotoxic and helper T cells, B cells, natural 
killer (NK) cells, granulocytes, dendritic cells, mast cells, kera-
tinocytes, and endothelial cells. IL-10 blocks the infiltration of 
monocytes and macrophages into the injured site and is a strong 
repressor of pro-inflammatory cytokines (68).

The IL-10 level was increased in patients with HF compared 
with healthy people (69) and correlated positively with the NYHA 
class (70). However, another study demonstrated that the con-
centration of IL-10 was not altered in patients with HF (7). In 
studies on mice, IL-10 had a cardioprotective effects. The lack 
of the IL-10 gene resulted in a worse myocardial function and 
up-regulated cardiac myocyte apoptosis in animals with isopro-
terenol- and aortic constriction-induced hypertrophy compared 
with wild types. IL-10 knockout mice treated with recombinant 
IL-10 showed an improved systolic function, reversed cardiac 
remodeling, decreased caspase-3 activation, lowered hypertro-
phic and inflammatory gene expression, and raised anti-apop-
totic Bcl2 concentration. IL-10 acted through STAT3, and it sup-
pressed the nuclear factor-κB activation and blocked the STAT3 
inhibition. A persistent STAT3 activation had effects similar to 
IL-10 administration, a lowered ANP, B-type natriuretic peptide 
(BNP), and TNF-α gene expression (71). 

Several studies demonstrated the important role of IL-10 in 
pathophysiological pathways after myocardial infarction. The 
IL-10 level was up-regulated after myocardial ischemia and 
reperfusion injury in studies on animals, and the highest con-
centration reached 96–120 hours after the reperfusion (72). IL-
10 inhibited infiltration of inflammatory cells and expression 
of pro-inflammatory cytokines in the myocardium, improved 
myocardial function, and protected from adverse cardiac re-
modeling in acute myocardial infarction in animal models (73, 
74). IL-10 knockout mice demonstrated a worse left ventricular 
function, fibrosis, and cardiomyocyte apoptosis (74). The IL-10 
administration led to down-regulation of p38 mitogen-activated 
protein kinase activation, reduced expression of the cytokine 
mRNA-stabilizing protein Hur, a decreased metalloproteinase-9 
(MMP-9) activity, and inhibited fibrosis after myocardial infarc-
tion. IL-10 was responsible for increased STAT3 phosphorylation 
and subsequently up-regulated capillary density in the heart 
(75). Silencing the Hur gene resulted in an improvement in the 
systolic function, similarly to IL-10. It reversed cardiac remod-
eling, down-regulated the TGF-β, MMP-9, and p53 expression, 
inhibited myocyte apoptosis, and reduced the infarct size (74, 
75). Moreover, IL-10 up-regulated the VEGF-A expression in cell 
culture through the STAT-3 pathway and promoted the mobiliza-
tion of bone marrow endothelial progenitor cells (75). IL-10 sup-
pressed pathological autophagy in response to Ang II treatment 
via the PI3K/Akt/mTORC1 pathway (76). Atorvastatin administra-
tion enhanced the IL-10 concentration, reduced the TNF/IL-10 
ratio, inhibited cardiac remodeling, and improved the systolic 
function in rats with HF caused by myocardial infarction (77). 
Regular exercise increased the IL-10 levels in both humans (78) 
and rats (79).

Interleukin-17 implicated in adverse cardiac remodeling
Interleukin-17 (IL-17) is a pro-inflammatory cytokine, which 

is synthesized by T helper cells, macrophages, dendritic cells, 
NK, natural killer T, lymphoid tissue inducer and γδ-T cells. IL-17 
stimulates the production of several cytokines, which eventually 
results in neutrophils and monocytes recruitment to the site of 
inflammation (80). IL-17 acts via several pathways, including the 
NF-κB -DNA pathway, mitogen-activated protein kinase (MAPK), 
c-Jun N-terminal kinase (JNK), and p42/p44 Extracellular signal 
Regulated Kinases (ERK) pathways (81). IL-17 cooperates with 
interferon-γ (IFN-γ) in the inflammatory response activation and 
stimulates several cytokines synthesis, including IL-6, IL-8, C-C 
motif chemokine ligand 5 (CCL5), C-X-C motif ligand 1 (CXCL1), C-
X-C motif ligand 10 (CXCL10), complement component 5a (C5a), 
and soluble intercellular adhesion molecule-1 (ICAM-1) (82).

The IL-17 concentration was increased in patients with HF 
compared with healthy controls and correlated with the NYHA 
class (83). Single nucleotide polymorphisms in the IL-17 gene has 
been implicated with HF development risk. rs8193037 in IL-17 
was an independent risk factor of ischemic and nonischemic HF, 
whereas rs4819554 in IL17RA was a predictor of cardiovascular 
mortality in patients with congestive HF (84). Several alterations 
in the IL-17/gp130-JAK-STAT have been demonstrated in end-
stage HF. The expression of non-receptor tyrosine-protein kinase 
(TYK2), STAT3, and suppressor of cytokine signaling-1 (SOCS3) 
were reduced, whereas the expression of phospho-glycoprotein 
130 (phospho-gp130) and SOCS1 were up-regulated in compari-
son with healthy people (85). IL-17 has been implicated in adverse 
cardiac remodeling after myocarditis and its progression to di-
lated cardiomyopathy in the mouse model (86). IL-17 contributed 
to the process of cardiac fibrosis, activation of matrix metallopro-
teinases, and enhanced cardiac cell death. IL-17 led to increased 
NOS (iNOS) synthesis and subsequently endothelium injury (87). 
It enhanced the release of pro-inflammatory cytokines, such as 
IL-1 and IL-6 (88), and decreased intracellular calcium levels (89).

Pro-inflammatory role of interleukin-18
Interleukin-18 (IL-18) is a pro-inflammatory cytokine, which is 

a member of the IL-1 superfamily. It is produced by macrophages, 
monocytes, keratinocytes, and other cells. IL-18 cooperates with 
IL-12 in activating cell-mediated immunity. IL-18 up-regulates the 
synthesis of several cytokines, including IFN-γ by NK cells and 
T cells (90). IL-18 has been implicated in fibroblast and smooth 
muscle cell proliferation and migration through the activation of 
the JNK and PI3-kinase pathways in in vitro studies (91). Inter-
estingly, acetylsalicylic acid blocks fibroblast migration, reactive 
oxygen species generation, MMP9 activation, and reversion-in-
ducing-cysteine-rich protein with Kazal motifs (RECK) inhibition 
(92). IL-18 activates GATA4, which is a member of the GATA fam-
ily of zinc finger transcription factors, and therefore, it up-regu-
lates the expression of ANP in cardiomyocytes, among others 
(93). IL-18 also stimulates the activation of NF-κB, p38 MAPK, and 
ERK. IL-18 plays a role in apoptosis through both the extrinsic 
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and intrinsic pathway (94) and increases pro-apoptotic effects of 
TNF-α and enhances the caspase-3 activation (95).

The concentrations of IL-18 mRNA and protein were in-
creased in myocardium in patients with ischemic cardiomyopa-
thy. The expression of IL-18-binding protein (IL-18BP) mRNA was 
reduced in end-stage HF, whereas the IL-18 receptor α chain 
(IL-18Rα) level was up-regulated in both ischemic and dilated 
cardiomyopathy (96). The IL-18 concentration was an indepen-
dent risk factor of mortality in elderly patients with HF (97). The 
expression of IL-18, IL-18Rα, and IL-18 mRNA were up-regulated 
in pressure overload-induced hypertrophy and subsequent HF in 
animals, whereas the IL-18BP concentration was unchanged in 
hypertrophied hearts and reduced in HF. Also in in vitro pressure 
overload models, the expression of IL-18 and IL-18Rα were in-
creased. The IL-18 inhibition attenuated hypertrophy (97). Mice 
treated with IL-18 presented with cardiac hypertrophy, reduced 
left ventricular ejection fraction, enhanced end-diastolic pres-
sure, up-regulated expression of ANP mRNA, and decreased 
β-adrenergic responsiveness to isoproterenol (98). Inhibiting 
the IL-18 pathway prevented the HF development (25). Moreover, 
cardiomyocytes incubated with recombinant IL-18 demonstrated 
an enhanced cell surface area, and increased ANP and BNP 
concentration and Akt activation (97). IL-18 knockout mice, which 
underwent pressure overload, demonstrated attenuated ventric-
ular dilatation (99).

Cardioprotective effect of interleukin-33 in HF development 
and progression
Interleukin-33 (IL-33) is a member of the IL-1 superfamily. 

This protein is constitutively expressed in the nuclei of endothe-
lial cells in both small and large blood vessels, in epithelial cells, 
smooth muscle cells, fibroblasts, and keratinocytes (100). IL-33 
acts through IL-1 receptor-like 1 (IL1RL1, ST2) and IL-1 receptor 
accessory protein (IL-1RAcP) dimeric receptor complex, which 
promotes the activation of NF-κB and MAPK pathways. Two 
isoforms of the IL-33 receptor have been discovered, denoted 
a soluble (sST2) receptor and membrane-bound (ST2L) recep-
tor, which are present in cardiomyocytes and fibroblasts. sST2 
is a soluble decoy receptor, which is a mechanically induced 
cardiomyocyte protein and inhibits anti-hypertrophic effects of 
IL-33 (101). IL-33 by signaling via the MyD88, IRAK-1/4, and TRAF 
activates the Th2 type immune responses. In endothelial cells, 
IL-33 stimulates the synthesis of IL-6, IL-8, monocyte chemoat-
tractant protein-1 (MCP-1/CCL2), vascular cell adhesion mol-
ecule-1 (VCAM-1), ICAM-1 and endothelial selectin (E-selectin), 
increases the vascular permeability and promotes angiogenesis 
(102). The IL-33 signaling pathway and downstream effector mol-
ecules are presented in Figure 3 IL-33 inhibits the atherosclerotic 
plaques formation via the induction of IL-5 and ox-LDL antibodies 
(103) and decreases adiposity, lowers fasting glucose, and im-
proves glucose and insulin tolerance in obesity as revealed by 
studies on animals (104). In myocardium, it is produced mainly in 
cardiac fibroblasts in response to mechanical stress (105). IL-33 

prevents angiotensin II- and phenylephrine-induced hypertrophy. 
Moreover, IL-33 activates NF-κB and blocks the phosphorylation 
of inhibitor of NF-κB caused by angiotensin II or phenylephrine 
(105). IL-33 plays a dual role, and under certain circumstances, it 
can act both as a pro-inflammatory or anti-inflammatory protein. 

A previous study demonstrated a decreased concentration 
of IL-33 in patients with HF in comparison with healthy controls 
(106). Another study indicated that both IL-33 and ST2 were down-
regulated in patients with unstable HF submitted to Left Ventricu-
lar Assist Device (LVAD) Support compared to those with stable 
HF. The ST2 expression was proportional to markers of inflam-
mation. Treatment with LVAD resulted in an increase of IL-33 and 
ST2 level, and therefore, it was hypothesized that the IL-33/ST2 
pathway was implicated in mechanical unloading and probably 
in inhibiting adverse remodeling (107). However, a recent study 
showed that the serum level of IL-33 was increased in patients 
with HF, whereas its bioactivity was reduced (108). IL-33 was 

Figure 3. IL-33 signaling pathway and downstream effector molecules
ST2 - interleukin-1 receptor-like 1; IL-1RAcP - IL-1 receptor accessory protein; 
TIR - Toll/interleukin-1 receptor kinase; MyD88 - myeloid differentiation factor 88; 
IRAK - IL-1R associated kinase; TRAF - tumor necrosis factor receptor-associated 
factor; VCAM-1 - vascular cell adhesion molecule-1; ICAM - intercellular adhesion 
molecule-1

Th 2 Response

IL-1RAcP

ST2

VCAM-1
ICAM-1

IL-6
IL-8
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proportional to serum concentration of oxidative stress markers, 
whereas the IL-33/sST2 ratio was inversely proportional to the 
malondialdehyde (MDA) level. IL-33 directly down-regulated the 
MDA and reactive oxygen species production and enhanced the 
superoxide dismutase activity in cultured cells stimulated by an-
giotensin II (108).

Mice administered with IL-33 demonstrated decreased hy-
pertrophy, cardiac remodeling, fibrosis, and a better survival 
rate after the pressure overload (105). Under hypoxic conditions, 
cardiomyocytes incubated with IL-33 expressed a higher level of 
antiapoptotic proteins, including XIAP, cIAP1, and survivin. IL-33 
used in rats subjected to the ischemia–reperfusion injury led to 
a decreased caspase synthesis and therefore prevented apop-
tosis. It reduced the infarct size and fibrosis, and improved the 
systolic function. These effects were not seen in ST2 knockouts 
animals, and therefore, positive IL-33 effects could be mediated 
through the ST2 pathway (101). 

IL-33 knockout mice subjected to pressure overload pre-
sented with more severe hypertrophy, reduced fractional short-
ening, adverse fibrosis, inflammation, poorer prognosis, and 
an increased level of natriuretic peptides RNA, including BNP 
and C-Myc. They also showed an up-regulated level of Th1 cy-
tokines mRNA expression and infiltration of inflammatory cells 
in myocardium (109). Animals treated with IL-33 demonstrated 
lower expression of natriuretic peptides RNA (105). Studies on 
animals showed that the mRNA levels of IL-33 were enhanced in 
the heart up to 12 weeks after the infarction, whereas the sST2 
expression was up-regulated in the first week and reduced at 4 
weeks after the infarction. The level of sST2 mRNA was corre-
lated with the expression of inflammatory, including IL-6, TNF-α, 
TGF-β and MCP-1, and fibrosis markers (110). 

Studies on animals revealed that the lack of ST2 led to a more 
pronounced systolic dysfunction, left ventricular hypertrophy, 
adverse remodeling, myocardial fibrosis, and worse survival in 
both ischemic and nonischemic HF (105). sST2 competed with 
ST2L for IL-33 binding, inhibiting the interaction of IL-33 and 
ST2L. Clinical trials revealed that serum sST2 levels predicted 
an adverse outcome and death in patients with myocardial in-
farction or chronic HF (111). ST2L mediated the effect of IL-33 on 
Th2-dependent inflammatory processes, whereas sST2 has been 
implicated in the attenuation of Th2 inflammatory responses. 
Moreover, an increased concentration of sST2 in healthy sub-
jects preceded adverse outcomes (112). The change in the ST2 
level in patients with acute HF was predictive of 90-day mortality 
and was independent of BNP or N-terminal pro-brain natriuretic 
peptide (NT-proBNP) concentration (113).

Other interleukins playing an important role in HF
Interleukin-5 (IL-5) is a cytokine, implicated in the growth and 

differentiation of eosinophils and B cells. It plays a role in the im-
munoglobulin production and eosinophil activation. It is synthe-
sized by Type 2 T helper cells and mast cells (114). The IL-5 plas-
ma concentration was reduced in patients with HF and inversely 

proportional to disease duration in the NYHA Class III and IV in 
patients with ischemic cardiomyopathy (64). The expression of 
IL-5 in heart was down-regulated in mice after myocardial infarc-
tion (115).

Interleukin-7 (IL-7) acts as a hematopoietic growth factor, 
promoting the maturation of multipotent hematopoietic stem 
cells into lymphoid progenitor cells. It is produced by stromal 
cells in the thymus and bone marrow, fibroblastic reticular cells 
in T-cell zones of lymph nodes, dendritic cells, epithelial cells, 
hepatocytes, intestinal epithelial and epithelial goblet cells, and 
neurons. IL-7 is responsible for the development, homeostasis, 
and survival of B cells, T cells, and NK cells (116). This interleukin 
was down-regulated in patients with HF (64). Local IL-7 synthesis 
played an important role in growth and maintenance of CD8+ T 
cells in heart, which have been implicated in myocardial damage 
in chronic Chagas’ disease cardiomyopathy (117). 

Interleukin-9 (IL-9) is a cytokine that plays a role in regulating 
the differentiation of hematopoietic cells, their proliferation, and 
prevention of cell death. IL-9 stimulates T, B, and NK cells and the 
mast cell growth and function, and it induces the Th2 cytokine 
production. Its secretion by mast cells, NK cells, Th2, Th17, Treg, 
ILC2, and Th9 cells is stimulated by IL-2, IL-4, IL-25, IL-33, and 
TGF-β, among others. IL-9 acts through the STAT pathway (118). 
This cytokine was increased in patients with HF and was nega-
tively proportional to the left ventricular ejection fraction (64). 
The presence of IL-9 in blood was found to be a risk factor of ad-
verse outcome in patients with HF, and it was correlated with an 
impaired cardiopulmonary functional capacity (119). IL-9 acted 
through activating the Gp130/JAK/STAT pathway protecting from 
progression to HF (120).

Interleukin-13 (IL-13) is produced by CD4 cells, eosinophils, 
basophils, mast cells, NK cells, NK T cells, and lymphoid tissue 
associated with the gastrointestinal tract. IL-13 stimulates the im-
munoglobulin E (IgE) class switching, mediates synthesis of IgE in 
B cells, up-regulates the CD23 and MHC Class II expression, and 
modulates the resistance to intracellular parasites. It has been 
implicated in B-cell maturation and differentiation, reduction of 
the macrophage activity, and therefore inhibiting the production 
of pro-inflammatory cytokines (121). Plasma concentration of 
IL-13 in HF patients was up-regulated in comparison to healthy 
people. It was positively correlated with the NYHA functional 
class, brain natriuretic peptide and CRP levels, and negatively 
correlated with the left ventricular ejection fraction (122).

Conclusion

HF is a systemic disease with a multifactorial etiology. A great 
amount of studies demonstrated that the activation of inflam-
mation is implicated as an important factor in the initiation and 
progression of HF. The immune system plays an important role in 
myocardial remodeling, hypertrophy, apoptosis, and fibrosis. In 
HF, there is an imbalance between pro-inflammatory and anti-in-
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flammatory cytokines. Concentrations of several interleukins are 
increased in HF, including IL-1β, IL-6, IL-8, IL-9, IL-10, IL-13, IL-17, 
and IL-18, whereas the levels of IL-5, IL-7, or IL-33 are down-reg-
ulated. Concentrations of inflammatory mediators are associated 
with cardiac function and can be HF markers and predictors of 
adverse outcomes or mortality. IL-6 is an independent predictor 
of prognosis in chronic stable HF and is associated with a higher 
risk of HF in people without previous cardiovascular diseases. 
The IL-8 concentration was demonstrated to be a predictor of HF 
development after myocardial infarction. IL-18 was an indepen-
dent risk factor of mortality in elderly patients with HF, whereas 
the presence of IL-9 in blood was found to be a risk factor of 
adverse outcomes in HF. The comparison of interleukins regard-
ing their effects in cell culture, animal and clinical studies, and 
their role as a predictor of prognosis is demonstrated in Table 1. 
However, although a great number of trials have been conducted, 
the exact role of interleukins and pathophysiological pathways 
are not fully understood. Unfortunately, all attempts to use anti-
inflammatory treatment in HF appeared to be ineffective. More-
over, several interleukins play a dual role and can act as both 
pro- or anti-inflammatory factors and have either cardioprotec-
tive or deleterious properties. This could be dependent on their 
concentration, period of their synthesis, and types of receptors 
they activate. A moderate activation of the SAFE pathway has a 
protective effect. Nevertheless, the chronic activation of STAT3 
is responsible for inflammation, left ventricular rupture, and HF 
development. Therefore, further studies regarding the assess-
ment of inflammatory pathways in HF in view of identifying new 
opportunities to improve the quality of life, slow disease progres-
sion, and improve the survival need to be carried out.
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