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Data indicate endothelium-dependent dilation (EDD) may be preserved in the skeletal
muscle microcirculation of young, obese adults. Preserved EDD might be mediated
by compensatory mechanisms, impeding insight into preclinical vascular dysfunction.
We aimed to determine the functional roles of nitric oxide synthase (NOS) and
cyclooxygenase (COX) toward EDD in younger obese adults. We first hypothesized
EDD would be preserved in young, obese adults. Further, we hypothesized a reduced
contribution of NOS in young, obese adults would be replaced by increased COX
signaling. Microvascular EDD was assessed with Doppler ultrasound and brachial artery
infusion of acetylcholine (ACh) in younger (27 ± 1 year) obese (n = 29) and lean (n = 46)
humans. Individual and combined contributions of NOS and COX were examined with
intra-arterial infusions of L-NMMA and ketorolac, respectively. Vasodilation was quantified
as an increase in forearm vascular conductance (�FVC). Arterial endothelial cell biopsies
were analyzed for protein expression of endothelial nitric oxide synthase (eNOS). �FVC
to ACh was similar between groups. After L-NMMA, �FVC to ACh was greater in obese
adults (p < 0.05). There were no group differences in �FVC to ACh with ketorolac. With
combined NOS-COX inhibition, �FVC was greater in obese adults at the intermediate
dose of ACh. Surprisingly, arterial endothelial cell eNOS and phosphorylated eNOS
were similar between groups. Younger obese adults exhibit preserved EDD and eNOS
expression despite functional dissociation of NOS-mediated vasodilation and similar
COX signaling. Compensatory NOS- and COX-independent vasodilatory mechanisms
conceal reduced NOS contributions in otherwise healthy obese adults early in life, which
may contribute to vascular dysfunction.
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INTRODUCTION

While it is clear obese adults in middle age and beyond
exhibit poor vascular function leading to overt cardiovascular
disease, the etiology of preclinical vascular changes in younger
obese adults remains uncertain. This knowledge holds clinical
relevance because individuals who are obese as adolescents
are unlikely to attain a healthy weight (Fildes et al., 2015),
as up to 63% will remain obese into adulthood (Serdula
et al., 1993). The association between obesity and increased
risk of cardiovascular disease is well established in older
adults, and vascular impairments are considered to be an
early marker of disease onset (Davignon and Ganz, 2004;
Landmesser et al., 2004). Early awareness of mechanistic changes
in endothelium-dependent dilation (EDD) is paramount for
starting interventions aimed at restoring lost mechanisms or
leveraging compensatory mechanisms to preserve EDD and
prevent development of cardiovascular disease.

The effect of obesity on EDD in the absence of aging remains
unclear. Discrepancies in data likely stem from differences in the
age of subjects, limb differences, and presence of co-morbidities
such as hypertension. Impaired EDD has been observed in
conduit arteries of older (>65 year) obese adults (Acree et al.,
2007) and in the microvasculature of middle-aged (>40 year)
obese adults (Perticone et al., 2001; Van Guilder et al., 2008).
Steinberg et al. reported decreased EDD in the leg of obese adults
(∼35 year; Steinberg et al., 1996), whereas we recently reported
preserved EDD in the forearm of obese adults (∼33 year; Limberg
et al., 2013) that has yet to be confirmed.

The primary vascular control mechanisms responsible for
eliciting EDD appear compromised in humans at increased
risk of cardiovascular disease. Older (Taddei et al., 2001)
and hypertensive (Taddei et al., 1998) adults exhibit reduced
contribution of nitric oxide synthase (NOS) and restraint of EDD
by cyclooxygenase (COX). On the other hand, NOS and COX
can work in a compensatory fashion, where reductions in one
signal can increase the other (Osanai et al., 2000; Dinenno and
Joyner, 2004). Further, if NOS is uncoupled or not functioning,
vasodilation may rely more heavily on an alternate vasodilatory
mechanism (e.g., cytochrome P450; Durand and Gutterman,
2013; Spilk et al., 2013). Given the pathologic progression of
obesity toward overt cardiovascular disease, EDD may appear
preserved in younger obese adults (Limberg et al., 2013) while
vascular signaling mechanisms can be subtly altered decades
prior to development of clinical disease.

We studied a substantial number of carefully selected young
adults using invasive approaches and pharmacological tools
because small preclinical vascular changes are challenging
to detect. We aimed to confirm earlier results of intact
microvascular EDD in younger obese adults, and directly
test vasodilatory mechanisms potentially masking vascular
dysfunction. Forearm microvascular function was tested in
young (<40 years) lean and obese adults matched for age
and physical activity, in the absence of confounding clinically
relevant cardiovascular risk factors, such as age, hypertension,
diabetes, or dyslipidemia. We hypothesized EDD would be
preserved in young, obese adults due to a shift in the balance of

NOS and COX signaling mediating EDD. Hypothesized results
would be consistent with the concept of young obese adults
exhibiting preserved endothelial function with early mechanistic
changes contributing to the development of obesity-induced
cardiovascular disease.

MATERIALS AND METHODS

Subjects
Seventy-five subjects participated in this study (lean n =
46, obese n = 29). Subjects were younger (18–40 year),
healthy, physically inactive (<60min per week), non-smokers,
and not taking cardiovascular medications. Obesity was defined
as a body mass index (BMI) ≥ 30 kg m−2 or a waist
circumference > 102 cm (males) or > 88 cm (females). Healthy
controls were lean (BMI < 25 kg m−2). Female subjects were
not pregnant (urine test) and studied on days 1–5 of the
menstrual cycle to minimize effects of female hormones. Females
on hormonal contraception (lean n = 13, obese n = 10) were
studied during the placebo phase. Subjects were instructed to
refrain from caffeine, exercise, non-steroidal anti-inflammatory
drugs, and alcohol for 24 h prior to the study. All subjects
provided written informed consent. Study procedures were
approved by the Institutional Review Board at the University of
Wisconsin-Madison, and obeyed the standards of the Declaration
of Helsinki.

Measurements
Height and weight were measured for calculation of BMI (kg
m−2) and waist circumference was measured. Dual-energy x-ray
absorptiometry (GE Lunar Prodigy; Milwaukee, WI) measured
body composition, forearm mass, and lean forearm mass. Blood
was collected following a 12-h fast for measurement of glucose
and lipids. Plasma was stored at −80◦C and later analyzed for
insulin and leptin (Millipore; Billerica, MA, USA).

Brachial Artery Catheterization
Following local anesthesia (2% lidocaine), a 20-gauge catheter
was inserted in the brachial artery of the non-dominant
forearm (antecubital fossa) under aseptic conditions. The
catheter was used for blood sampling, local infusion of
drugs, arterial endothelial cell biopsies, and blood pressure
measurements.

Blood Flow
Doppler Ultrasound (Vivid 7, General Electric) measured
brachial artery blood velocity and diameter for calculation of
forearm blood flow (FBF). The 12MHz linear array probe was
placed over the brachial artery with an insonation angle ≤
60◦ and the sample volume adjusted to include the width of
the brachial artery (Limberg et al., 2013). The angle-corrected,
intensity-weighted Doppler audio information from the GE
Vivid ultrasound was processed into a velocity signal by a custom
interface unit via Fourier transform with a calibrated scale (Herr
et al., 2010) and sampled in real time at 400Hz (PowerLab,
ADInstruments). Brachial artery diameter was measured as
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reported previously (Limberg et al., 2013). FBF was calculated
as the product of vessel cross sectional area (CSA, cm2) and
mean blood velocity (MBV, cm s−1) and is reported in mLmin−1

[FBF= (MBV) (CSA) (60 s min−1)].

Drug Infusions
Pharmaceuticals were mixed for each study visit to standard
concentrations [Acetylcholine (ACh), Bausch and Lomb;
Nitroprusside (NTP), Hospira, Inc.; l-NG-monomethyl arginine
citrate (L-NMMA), Clinalfa; ketorolac (Keto), Wockhardt]. ACh
assessed endothelial function (1, 4, and 16µg 100 g−1 min−1)
and NTP tested vascular smooth muscle function (0.5, 1, and
2µg 100 g−1 min−1; Taddei et al., 2001; Schrage et al., 2005).
L-NMMA inhibited NOS (loading dose: 10mg min−1 for 5min,
maintenance dose: 1mg min−1; Dinenno and Joyner, 2003,
2004) and Keto inhibited COX (loading dose: 1.2mg min−1

for 5min, maintenance dose: 0.1mg min−1; Dinenno and
Joyner, 2004; Schrage et al., 2004). ACh and NTP infusions were
adjusted for lean forearm mass to minimize systemic responses,
to standardize drug concentrations across conditions, and to
control for differences in lean forearm size between subjects.
Finally, the majority of drug was delivered to muscle tissue as
muscle blood flow is at least 2.5–5 times greater than adipose
tissue (Delp et al., 1998) and adipose tissue blood flow remains
relatively constant under resting conditions (Heinonen et al.,
2012).

Study Protocol
Five study conditions were conducted in the supine position.
ACh and NTP were infused in randomized and counterbalanced
order at three increasing doses for 3min each. Trials were
separated by 10min to allow baseline hemodynamics to return
(Kirby et al., 2009; Limberg et al., 2013). After control ACh
and NTP infusions, the loading dose of L-NMMA or Keto
(random order) was infused over 5min and followed by the
maintenance dose for the remainder of the study visit. A second
ACh trial was conducted with L-NMMA or Keto infusion. Then,
the loading dose of the second inhibitor was infused over 5min
followed by themaintenance dose to induce combined inhibition.
Finally, a third ACh and second NTP trial were performed under
combined L-NMMA and Keto infusion.

Arterial Endothelial Biopsy
In a subset of subjects, prior to drug infusions, arterial
endothelial cells (ECs) were harvested from the brachial
artery using 0.018 inch diameter J-shaped wires introduced
via the arterial catheter (Colombo et al., 2002; Donato
et al., 2007; Silver et al., 2007; Pierce et al., 2009). The
distal portion of the wire was transferred to a conical tube
containing dissociation buffer (0.5% bovine serum albumin,
2mM EDTA, and 100µg ml−1 heparin in PBS, pH 7.4)
kept at 4◦C. After rinsing 10min with dissociation buffer,
ECs were recovered by centrifugation and fixed with 3.7%
formaldehyde in PBS for 10min. Cells were washed, transferred
to slides (Sigma), air-dried at 37◦C, and stored at −80◦C until
immunofluorescent staining. Cells were rehydrated and non-
specific binding sites were blocked with 5% donkey serum.

Cells were first incubated with primary antibody against
endothelial nitric oxide synthase (eNOS, BD Transduction)
or phosphorylated-eNOS S1177 (p-eNOS, Abcam) followed
sequentially by Alexaflour 555 fluorescent secondary antibody
(Life Technologies), Von-Willebrand Factor primary antibody
(VWF, Abcam), and Alexaflour 488 fluorescent secondary
antibody (Life Technologies). For analysis, slides were viewed
with an epifluorescence microscope (Zeiss). Cell images (≥14
and >20 images for most subjects) were captured by a
digital camera. ECs were identified by positive staining for
VWF and nuclear integrity was confirmed with DAPI (4′,6′-
diamidino-2-phenylindole). Protein expression in cells was
quantified as background-corrected average pixel intensity
(Adobe Photoshop CS5) and normalized to a concurrently
stained human umbilical vein endothelial cell (HUVEC) slide
to minimize potential confounding effects of differences in
staining intensity across staining sessions (Colombo et al., 2002;
Donato et al., 2007; Silver et al., 2007; Pierce et al., 2009).
Technicians were blinded to subject identity during staining and
analysis.

Data Acquisition and Analysis
Blood pressure and heart rate (ECG; Datex-Ohmeda)
were digitized throughout each trial at 400Hz (PowerLab,
ADinstruments). Data were analyzed off line using LabChart7
software to yield average arterial blood pressure, heart
rate, and MBV during the last 30 s of rest and each drug
dose (MBV used for FBF calculation, see Section Blood
Flow). FBF (mL min−1) calculations were normalized
for mean arterial blood pressure (MAP) as forearm
vascular conductance [FVC (mL min−1 100mmHg−1) =
FBF/MAP] to account for group differences in blood pressure
(Table 1).

Statistical Analysis
Statistical analysis was performed using Minitab Version 16
(Minitab, Inc.). The main dependent variable was a change
in FVC in response to drug infusions (�FVC = FVCInfusion
– FVCBaseline). �FVC accounts for baseline FVC differences
resulting from group differences in resting blood pressure and/or
the effect of inhibitors on blood pressure. Primary analysis
was a non-parametric ANCOVA to investigate the between-
group differences in �FVC at each ACh dose without and
with inhibitors (L-NMMA, Keto, or combined inhibition). In
close consult with our collaborating biostatistician (coauthor
RC Serlin), an ANCOVA was used to compare �FVC between
groups at each NTP dose with and without combined inhibition.
Group comparisons at each dose of ACh and NTP provide
the greatest amount of power to detect group differences,
and minimize Type I error rate. Another major advantage
of the ANCOVA is the elimination of irrelevant comparisons
imbedded in an ANOVA (e.g., high dose ACh in leans vs.
low dose ACh + L-NMMA in obese). A Kruskal-Wallis test
investigated the effect of blockade order (L-NMMA first vs.
Keto first) on �FVC in response to ACh with combined
inhibition. Mann-Whitney tests determined the significant
effect of group on subject characteristics and eNOS and
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TABLE 1 | Subject characteristics.

Lean Obese

n (M/F) 48 (24/24) 29 (10/19)

Age (year) 26± 6 29± 7

Height (cm) 172± 9 171± 11

Weight (kg) 66± 8 106± 22*

Waist (cm) 78± 6 111± 14*

BMI (kg m−2) 22± 2 36± 6*

Body fat (%) 27± 9 48± 10*

Forearm mass (g) 882± 195 1240± 288*

Lean forearm mass (g) 785± 214 856± 243

MAP (mmHg) 83± 11 88± 12*

Total cholesterol (mg dL−1) 154± 32 159± 29

LDL (mg dL−1) 86± 21 93± 23

HDL (mg dL−1) 55± 17 46± 13*

Triglycerides (mg dL−1) 74± 27 94± 32*

Glucose (mg dL−1) 70± 9 72± 8

Insulin (µU mL−1) 9± 3 18± 9*

PAQ (kcal wk−1) 1273± 897 1142± 908

Data are presented as mean± SE. M, male; F, female; BMI, body mass index; MAP, mean
arterial blood pressure; LDL, low-density lipoprotein; HDL, high-density lipoprotein; PAQ,
physical activity questionnaire score. *p < 0.05 vs. Lean.

p-eNOS protein expression. Significance was determined a
priori at p < 0.05. Data are presented as mean (standard
deviation).

RESULTS

Subject characteristics of 46 lean controls and 29 obese adults
are summarized in Table 1. Groups were well matched for
age and physical activity. By design, obese adults exhibited
significantly greater weight, waist circumference, BMI, and
percent body fat (p < 0.05). Obese adults displayed
greater forearm mass (p < 0.05), but similar lean forearm
mass. Further, the obese adults displayed higher MAP, higher
triglycerides, and lower HDL (p < 0.05), though all were
within clinically healthy ranges. Despite similar blood glucose,
total cholesterol, and LDL cholesterol between groups, obese
adults exhibited higher insulin concentration (p < 0.05).
Collectively, subject selection criteria controlled for many
common cardiovascular risk factors, allowing the study to
focus on the primary impact of obesity on skeletal muscle
EDD.

Endothelium-Dependent Dilation
FBF and FVC responses to ACh are summarized in
Supplementary Table 1. The increase in FVC (�FVC) with
ACh was not different between groups at any dose (Figure 1).
With L-NMMA, �FVC was lower in lean adults at the 4 and
16µg 100 g−1 min−1 doses (Figure 2B, p < 0.05). With Keto,
�FVC was similar between groups at all doses (Figure 3B).
�FVC with combined NOS-COX inhibition was greater in
the obese adults at the 4µg 100 g−1 min−1 dose (Figure 4B,
p < 0.05), and the difference was quantitatively similar at

FIGURE 1 | ACh responses. Change in forearm vascular conductance
(�FVC) with intra-arterial ACh infusion. �FVC without inhibition was not
different between lean (n = 46) and obese (n = 29) adults.

16µg 100 g−1 min−1, but did not achieve statistical significance.
The order of inhibition (L-NMMA first vs. Keto first) did
not impact �FVC during combined NOS-COX inhibition.
Analysis of �FBF resulted in similar conclusions (data not
shown).

MAP values for both groups during ACh trials are presented
in Supplementary Table 1. Across most trials, ACh infusion
decreased MAP (1–4mmHg) in both groups (p < 0.05). L-
NMMA increased baseline MAP only in lean subjects (p < 0.05).
Keto did not change baseline MAP in either group. Combined
NOS-COX inhibition increased baseline MAP in both groups
during ACh trials (p < 0.05).

Endothelium-Independent Dilation
Endothelium-independent vascular responses to NTP are listed
in Supplementary Table 2. �FVC was not different between
groups at any dose (Figure 5A). Combined NOS-COX inhibition
did not alter �FVC responses (Figure 5B). Analysis of �FBF
revealed no group differences, similar to �FVC (data not
shown).

MAP values for both groups duringNTP infusions are listed in
Supplementary Table 2. In general, NTP infusion decreasedMAP
(5–8mmHg) in both groups (p < 0.05). Combined NOS-COX
inhibition increased baseline MAP only in lean subjects during
NTP trials (p < 0.05).

Endothelial Cell Biopsy
Arterial endothelial cell eNOS expression was similar between
lean (n = 14) and obese (n = 7) adults (Figures 6A–C).
Phosphorylated eNOS (p-eNOS) expression was also
similar between lean (n = 16) and obese (n = 5)
adults (Figures 6D–F). Sample sizes are smaller than
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FIGURE 2 | ACh responses with l-NMMA. Change in forearm vascular conductance (�FVC) with intra-arterial ACh infusion and NOS inhibition (L-NMMA). (A)
�FVC without inhibition was not different between lean (n = 18) and obese (n = 21) adults. (B) �FVC with L-NMMA was greater in obese adults (n = 21) than lean
adults (n = 18) at 4 and 16µg 100 g−1 min−1. *Significant group difference, p < 0.05.

FIGURE 3 | ACh responses with Keto. Change in forearm vascular conductance (�FVC) with intra-arterial ACh infusion and cyclooxygenase inhibition (Keto). (A)
�FVC was not different between lean (n = 26) and obese (n = 7) adults. (B) �FVC with Keto was not different between lean (n = 26) and obese (n = 7) adults.

drug studies due to technical challenges of harvesting an
adequate number of cells and because subjects declined the
procedure.

DISCUSSION

We hypothesized young, otherwise healthy obese adults would
exhibit preserved EDD with subclinical alterations in NOS and
COX signaling. The main findings of this in vivo mechanistic
human study were as follows. First, we confirm results from
our earlier study that EDD is preserved in young (∼30

year), obese adults prior to the development of additional
clinical-grade cardiovascular risk factors. Second, the functional
contribution of NOS to endothelial stimulation is abolished
in obese adults. Third, obese humans demonstrate preserved
eNOS and p-eNOS expression in arterial ECs. Fourth, the
contribution of COX appears similar between the groups.
Current results indicate early microvascular alterations in
human obesity compensate for a functional loss of NOS
to preserve EDD, disguising early mechanistic changes. The
clinically undetectable reduction in NOS activity may contribute
to the onset of cardiovascular disease. Findings provide
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FIGURE 4 | ACh responses with combined inhibition. Change in forearm vascular conductance (�FVC) with intra-arterial ACh infusion and combined NOS-COX
inhibition (L-NMMA and Keto). (A) �FVC was not different between lean (n = 46) and obese (n = 29) adults (same as Figure 1). (B) �FVC with combined NOS-COX
inhibition was greater in obese adults (n = 29) than lean adults (n = 46) at 4µg100−1 g min−1. *Significant group difference, p < 0.05.

FIGURE 5 | NTP responses with combined inhibition. Change in forearm vascular conductance (�FVC) with intra-arterial NTP infusion. (A) �FVC without
inhibition was not different between obese (n = 26) and lean (n = 44) adults. (B) �FVC with combined NOS-COX inhibition was not different between obese adults
(n = 19) and lean adults (n = 36).

microvascular and cellular insight to encourage strategies to
minimize or reverse the negative vascular impact of human
obesity.

Endothelium-Dependent Dilation in Obesity
Current findings strengthen the concept of preserved
microvascular EDD in younger, obese adults (Figure 1;
Limberg et al., 2013). Our data are consistent with observations
in obese men of similar age (Nielsen et al., 2004) and extend
the observation to obese women. In contrast, several studies
support a decrement in ACh-mediated vascular responses in

obese adults (Steinberg et al., 1996; Perticone et al., 2001; Van
Guilder et al., 2006a, 2008; Weil et al., 2011). The discrepancy
may be explained by differences in subject age, vascular bed
studied, or methods used to quantify blood flow. We focused
on adults under 40 years old in the present study, whereas
select studies were conducted in adults ranging from 40 to
71 years old (Perticone et al., 2001; Van Guilder et al., 2006a,
2008; Weil et al., 2011). In relatively younger adults (∼35 year),
Steinberg et al. reported endothelial dysfunction in the leg of
obese adults. This suggests early-life vascular changes with
obesity might be circulation specific (Steinberg et al., 1996).
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FIGURE 6 | eNOS and p-eNOS expression. Endothelial NOS (eNOS) and phosphorylated eNOS (p-eNOS) protein expression from arterial cell biopsies.
Representative images of arterial eNOS staining from a lean (A) and obese (B) subject. eNOS protein expression was similar between a subset of lean (n = 14) and
obese (n = 7) adults (C). Representative images of arterial p-eNOS staining from a lean (D) and obese (E) subject. p-eNOS protein expression was similar between a
subset of lean (n = 16) and obese (n = 5) adults (F).

Perhaps the additional 8 years of aging beyond the current
subjects contributed to dysfunction. Alternatively leg blood flow
was expressed as a percent increase, such that the 18% larger
basal blood flow in obese men created an underestimation of
dilation for a given absolute increase in blood flow (Steinberg
et al., 1996). Taken in context with data from older obese adults
and previously published data from our lab (Limberg et al.,
2013), present findings emphasize forearm microvascular EDD
is preserved in young, obese adults.

Role of NOS
Despite preserved EDD in obese adults, L-NMMA infusion
caused a group difference in �FVC (Figure 2). This suggests
obese adults have lost the capacity to activate nitric oxide-
mediated dilation. The increase in baseline MAP with L-
NMMA infusion observed in lean adults, but not obese, further
supports the loss of NOS in obese adults (Supplementary
Table 1). Reduced NOS signaling has previously explained
reduced EDD in hypertension (Taddei et al., 1998), healthy
aging (Taddei et al., 2001), and diabetes (Huang et al., 2012),
but not obesity (Nielsen et al., 2004). The obese adults in
the Nielsen et al. study were older, on average, and some
obese adults had a BMI <30 kg m−2. Van Guilder et al. also
reported obesity does not decrease NOS contribution to ACh-
dilation in middle-aged adults (Van Guilder et al., 2008), but
the older lean adults in the study may have lost some NOS
function with healthy aging (Taddei et al., 2001), making a small
difference exceedingly difficult to detect. Our functional EDD
data, combined with similar brachial artery eNOS and p-eNOS

protein expression between groups, indicate eNOS is functionally
dissociated from endothelial stimulation in young, obese adults.
These findings are consistent with the idea that a compensatory
pathway is upregulated in obesity, masking the functional loss of
NOS.

A potential alternate NOS-independent signal in obese
subjects is generation of hydrogen peroxide, a known
endothelium-dependent hyperpolarizing factor. eNOS is
capable of producing substantial vasoactive hydrogen peroxide
in response to ACh (Matoba et al., 2000) that is insensitive
to NOS inhibition (Yada et al., 2003). ACh-mediated dilation
in obese rats is insensitive to NOS inhibition, but is largely
inhibited by buffering hydrogen peroxide (catalase; Focardi
et al., 2013). This establishes hydrogen peroxide as an alternative
vasodilatory mechanism in obesity. In middle-aged and older
humans, venous endothelial cell catalase expression is strongly
correlated with adiposity, consistent with excess superoxide
production during aging or disease progression (Silver et al.,
2007). However, we recently demonstrated buffering reactive
oxygen species with ascorbic acid infusion did not reduce EDD
in younger obese adults (Limberg et al., 2013). While these
findings might be explained by ascorbic acid infusion restoring
7,8-dihydrobiopterin (BH2) to tetrahydrobiopterin (BH4) and
recoupling eNOS (Huang et al., 2000), an alternative explanation
is an upregulation of endothelium-derived hyperpolarizing
factor in younger obese adults independent of reactive oxygen
species. Infusion of a cytochrome P450 antagonist reduces
basal forearm blood flow in young adults (Spilk et al., 2013).
Further, this mechanism is operative when NOS is intact, but
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may become more important when NOS is impaired (Durand
and Gutterman, 2013; Spilk et al., 2013). Specifically, NOS can
be lost in obese rats (Chadha et al., 2010) or metabolic syndrome
humans (Vigili de Kreutzenberg et al., 2003), while EDHF is
upregulated to compensate (Chadha et al., 2010). Future studies
aimed at investigating alternate vasodilatory mechanisms will
be challenging, due to safety and regulatory concerns regarding
pharmacologic tools available for infusion into humans.

Role of COX
Based on literature, COX signaling is able to compensate when
NOS signaling is inhibited (Osanai et al., 2000; Dinenno and
Joyner, 2004). Our data support the notion COX does not
contribute to ACh-mediated responses in healthy adults (Taddei
et al., 1998; Perticone et al., 2001; Schrage et al., 2005). Contrary
to our hypothesis, COX inhibition did not create a group
difference in �FVC to ACh (Figure 3). Previous studies indicate
COX limits ACh responses in isolated visceral adipose tissue
vessels (Farb et al., 2014) and the forearm of middle-aged (40
year) obese adults (Perticone et al., 2001). Differences may be
due to the relatively young age of current subjects, vascular bed
studied, or method of COX inhibition. Thus, the contribution of
COX to ACh-mediated vasodilation is minimal and unaltered by
obesity in younger adults. Further, evidence supports that COX is
not the compensatory signal for preserved EDD in young, obese
adults.

Combined NOS-COX Inhibition
We investigated the effect of combined NOS-COX inhibition on
EDD. Combined inhibition did not create a group difference
in ACh responses, except at the 4µg 100 g−1 min−1 dose of
ACh (Figure 4). Given the group difference with L-NMMA alone
and no difference with Keto alone, we expected there to be a
difference between groups with a similar pattern to L-NMMA
alone (Figure 2). However, we propose the significant difference
at 4µg 100 g−1 min−1 and the larger quantitative difference
at 16µg 100 g−1 min−1 are physiologically relevant (Figure 4).
Taking all data into consideration, it appears obesity primarily
shifts ECs away from NOS signaling.

Endothelium-Independent Dilation
Evidence suggests adiposity may reduce vascular smooth muscle
sensitivity to nitric oxide (Christou et al., 2012). However, our
data are consistent with previous research in our lab (Limberg
et al., 2013) and the body of literature demonstrating preserved
vascular smooth muscle function in the arm (Perticone et al.,
2001; Nielsen et al., 2004; Van Guilder et al., 2006a, 2008;
Weil et al., 2011) and leg (Steinberg et al., 1996) of obese
adults. Further, combined NOS-COX inhibition did not create
group differences in �FVC to NTP (Figure 5). Though data are
sparse regarding combined NOS-COX inhibition in young obese
adults, our data coincide with research demonstrating NOS-COX
inhibition has no effect onNTP responses in young healthy adults
(Schrage et al., 2005), and NOS inhibition alone (L-NMMA) does
not affect NTP responses differently in younger obese adults
(Nielsen et al., 2004). Similar responses to NTP allow for clear
interpretation of EDD in obesity.

Etiology of Altered Endothelial Signaling
Although we provide novel evidence of preserved EDD along
with preserved eNOS and p-eNOS protein expression in arterial
cells, we did not determine the physiologic cause of decreased
contribution of NOS to EDD in young, obese adults. Though
biomarkers of obesity are beyond the scope of the current
aims, we speculate younger obese adults exhibit low-grade
inflammation (Van Guilder et al., 2006b), which disrupts
endothelial function (Donato et al., 2012). It is also feasible obese
adults display early signs of decreased vascular insulin sensitivity.
Insulin typically stimulates nitric oxide production (Steinberg
et al., 1994). The obese group exhibited twice the fasting plasma
insulin concentration of the lean group (Table 1) with lower
contribution of NOS (Figure 2). Perhaps chronically elevated
insulin reduces the contribution of NOS to EDD (Duncan et al.,
2008).

Though mainly involved in metabolism, leptin can cause
deleterious effects on the endothelium when in excess (Schinzari
et al., 2013). Plasma leptin concentration was over seven times
higher in the obese subjects (subset of subjects; 21 obese: 60± 35,
18 lean: 8± 5 ngmL−1). Given the negative effects insulin, leptin,
and adiposity may have on vascular function, we correlated these
three values to �FVC and the change in �FVC with L-NMMA
(absolute and relative). None were significant (data not shown).
The absence of significant correlations is expected given the
preclinical level of these specific risk factors. On average the
obese subjects had significantly greater MAP and triglycerides,
and lower HDL cholesterol. None of these three variables reached
a level considered to be a clinical risk factor for cardiovascular
disease (Pescatello and American College of Sports Medicine,
2014). Discerning a definitive cause of altered NOS signaling
is beyond the scope of the current aims; however, this study
emphasizes that preclinical endothelial changes are difficult to
detect in humans, particularly when overall EDD presents as
“normal.” Our data support the hypothesis that excess adiposity
combined with chronically elevated insulin and leptin reduce
NOS signaling in the face of preserved eNOS and p-eNOS protein
expression.

Experimental Considerations
The obese adults exhibited significantly larger forearms, but
similar lean forearm mass (Table 1). We dosed ACh and NTP
relative to lean forearm mass, not total forearm volume (Taddei
et al., 2001; Schrage et al., 2005). We propose this is the
most appropriate method of agonist dosing for between-group
comparisons as muscle blood flow at rest is much greater
than adipose blood flow (Heinonen et al., 2011), such that the
vast majority of infused drugs are delivered to the lean tissue.
Surprising, we had a less robust effect of L-NMMA compared to
other studies; however, our dosing of L-NMMA is expected to be
sufficient, as it was equal to or greater than previously reported
(Dinenno and Joyner, 2003; Schrage et al., 2004; Van Guilder
et al., 2008; Casey and Joyner, 2009). The difference in L-NMMA
effects speaks to the variability in NOS signaling in individuals.

Current findings confirm previous data of preserved EDD
in young, obese adults (Limberg et al., 2013), yielding greater
confidence in our results. Another strength of the current
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study was the use of L-NMMA and Keto individually, in
combination, and in reverse order. Though our design did
not enable identification of compensatory mechanism(s) that
replace NOS signaling in obese adults, current results rule
out COX. Furthermore, recent findings from our lab do not
support reactive oxygen species as a compensatory vasodilator
(Limberg et al., 2013). Future studies will consider inhibiting
alternate hyperpolarizing mechanisms (e.g., potassium channels,
cytochrome P450).

CONCLUSION

Endothelial dysfunction is considered an early marker of
overt cardiovascular disease, but the time course of onset
and progression of vascular dysfunction has yet to be fully
determined. This study contributes to our understanding of the
advancement of obesity toward clinical-grade cardiovascular
disease. Data demonstrate younger, obese adults retain
microvascular endothelial function despite reduced contribution
of nitric oxide. Importantly, ECs retain normal eNOS and
p-eNOS protein expression, but obesity leads to functional
separation of endothelial stimulation and NOS signaling. Data
further indicate obesity induces microvascular changes in
early adulthood to maintain EDD prior to manifestation of
endothelial dysfunction and overt cardiovascular disease. We
speculate an early-life loss of NOS signaling contributes to
systemic inflammation and when it is combined with advancing
age and/or duration of obesity, it becomes the culprit of
endothelial dysfunction and overt cardiovascular disease.
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