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Abstract: Background: Glioblastoma (GBM), which has a poor prognosis, accounts for 31% of
all cancers in the brain and central nervous system. There is a paucity of research on prognostic
indicators associated with the tumor immune microenvironment in GBM patients. Accurate tools for
risk assessment of GBM patients are urgently needed. Methods: In this study, we used weighted gene
co-expression network analysis (WGCNA) and differentially expressed gene (DEG) methods to screen
out GBM-related genes among immune-related genes (IRGs). Then, we used survival analysis and
Cox regression analysis to identify prognostic genes among the GBM-related genes to further establish
a risk signature, which was validated using methods including ROC analysis, stratification analysis,
protein expression level validation (HPA), gene expression level validation based on public cohorts,
and RT-qPCR. In order to provide clinicians with a useful tool to predict survival, a nomogram based
on an assessment of IRGs and clinicopathological features was constructed and further validated
using DCA, time-dependent ROC curve, etc. Results: Three immune-related genes were found:
PPP4C (p < 0.001, HR = 0.514), C5AR1 (p < 0.001, HR = 1.215), and IL-10 (p < 0.001, HR = 1.047).
An immune-related prognostic signature (IPS) was built to calculate risk scores for GBM patients;
patients classified into different risk groups had significant differences in survival (p = 0.006). Then,
we constructed a nomogram based on an assessment of the IRG-based signature, which was validated
as a potential prediction tool for GBM survival rates, showing greater accuracy than the nomogram
without the IPS when predicting 1-year (0.35 < Pt < 0.50), 3-year (0.65 < Pt < 0.80), and 5-year
(0.65 < Pt < 0.80) survival. Conclusions: In conclusion, we integrated bioinformatics and experimental
approaches to construct an IPS and a nomogram based on IPS for predicting GBM prognosis. The
signature showed strong potential for prognostic prediction and could help in developing more
precise diagnostic approaches and treatments for GBM.

Keywords: immune-related prognostic signature; glioblastoma; bioinformatics; experiment; nomogram;
prognosis; WGCNA

1. Introduction

Gliomas account for 31% of all cancers in the brain and central nervous system (CNS),
and 81% of malignant brain and CNS tumors diagnosed in the United States [1]. The World
Health Organization’s (WHO) grading criteria are used to classify these malignancies.
Among the gliomas, GBM is the most common type of primary malignant brain tumor,
accounting for 16% of all primary brain and CNS malignancies [2]. The 5-year survival
rate is only 3.3%. The average incidence of the disease is 3.19/100,000, and the median
age at the time of diagnosis is 64 years old [2]. Today, the basic treatment approach is still
surgery, combined with radiotherapy, chemotherapy, and other comprehensive treatment
methods [3]. Even with the progress made in surgical resection, GBM patients still have a
poor prognosis, with median survival of 15 months [1,3].
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As a result of the poor prognosis for glioblastoma, novel prognostic biomarkers are ur-
gently required. Immunotherapy is a sort of cancer treatment that uses the immune system
to combat cancer [4]. However, immunotherapy has made little progress in glioblastoma
over the past 10 years because of the intracranial location and heterogeneity of tumors,
and the distinct immunosuppressive tumor microenvironment. New prognostic biomark-
ers should be developed [5]. In recent years, continuous progress in bioinformatics has
promoted the use of public database mining for identifying cancer biomarkers. With the
deepening of theoretical research, IRGs (immune-related genes) have shown promise in
immunotherapy for a variety of cancers [6,7]. Fu et al. explored immune-related prog-
nostic markers of prostate cancer and their possible mechanisms, providing a basis for
individualized diagnosis and treatment [8]. Tao et al. found immune-related prognostic
biomarkers that could strengthen immunotherapy efficacy. Using IRGs to screen for prog-
nostic biomarkers has undoubtedly become a hub of tumor immunotherapy research [6,9].
There is a paucity of research on prognostic indicators associated with prognosis in GBM
patients; the research is still limited to a few special genes, and research on its mechanism
is lacking. Our research is intended to re-establish a novel IRG-based prognostic model.
Comprehensively including more gene targets and combining molecular drugs may be
important in the treatment of GBM. Thus, we attempted to construct an immune-related
prognostic biomarker that could be verified as an independent biomarker that could guide
appropriate treatment for improved outcomes in GBM.

2. Materials and Methods
2.1. GBM Tissue Specimen Collection

Five specimens of surgically removed GBM tissues were collected from the Department
of Neurosurgery of Zhongnan Hospital of Wuhan University from December 2021 to June
2022, and six specimens of normal peritumoral tissues were collected. All patients had a
pathologically confirmed GBM diagnosis and signed an informed consent form, and the
study was approved by the ethics committee.

2.2. Collection of Datasets and Immune-Associated Genes

Figure 1 depicts the research steps of this study, indicating the recognition and authen-
tication of immune-associated biomarkers for GBM prognosis. The Cancer Genome Atlas
(TCGA) database (https://genomecancer.ucsc.edu/ accessed on 10 May 2022) was used to
obtain the fragments per kilobase per million mapped reads (FPKM) standardized data of
GBM. We excluded tumor samples that did not have enough clinical information for further
analysis. In total, 167 GBMs with complete survival data and underlying clinical variables
(age, tumor, gender, grade, and stage) and 5 normal samples were used in the present
study. The R package DEseq.2 [10] was used to perform TCGA-GBM data normalization
(including library-size normalization and log transformation).

In addition, 5 independent data cohorts (GSE15824 [11], GSE4290 [12], GSE51062 [13],
GSE2817 [14], and GSE4412 [15]) were collected through the Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/ accessed on 10 May 2022). We
merged GSE15824, GSE4290, and GSE51062 because they all used the same application
platform (GPL570). First, we downloaded the original data for the 3 datasets and used
the R package affy [16] to perform RMA normalization on the original data. In addition,
we used the R package insilico-Merging to preprocess, merge, and adjust the 3 datasets.
We then used the GPL570 annotation file probes to match probe IDs to gene symbols.
MMD1 was created by combining 28 normal tissues with 151 GBM tissues, which was used
for differentially expressed gene (DEG) identification. Furthermore, GSE2817, including
25 GBMs with complete survival information, and GSE4412, including 85 GBMs with com-
plete survival information, were merged as MMD2 (n = 110), and was used for prognostic
value identification.

https://genomecancer.ucsc.edu/
http://www.ncbi.nlm.nih.gov/geo/
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The IRGs came from the ImmPort database (https://www.import.org/ accessed on
10 May 2022). We collected 2498 IRGs from the database and selected 1617 genes that
coincided with the TCGA-GBM gene list for further investigation.
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2.3. WGCNA to Filter Key Module

An expression matrix of the 1617 IRGs obtained from TCGA-GBM data was con-
structed using 2 methods, the sample network method and the goodSamplesGenes
function. Exceptional values were also discovered using the cut-off Z.Ku < −2.5
(Z.ku = (ku-mean(k))/(sqrt(var(k)))). Unqualified samples were not included in the analy-
sis, and we obtained 170 samples. Next, we established co-expression networks through
the R package WGCNA [17], and the IRGs were divided into gene modules by the branch
cutting method [18]. Some important parameters were set in the branch cutting method,
including minClusterSize = 30 and deepSplit = 2. After segmenting the IRGs, a line seg-
ment with a correlation of 0.76 was chosen to join the highly correlated modules, which
was carried out by examining the difference in module eigengenes. We initially assessed
gene significance (GS) to look for hub modules linked to disease status (the chosen illness
characteristic is GBM or normal). In addition, GS was used to compute module significance
(MS). MS was calculated as the average GS of all genes in this module. Following the
steps outlined above, we selected the most relevant module, which was estimated to be the
most important module. In addition, genes with |cor.geneModuleMembership| > 0.8 and
|cor.geneTraitSignificance| > 0.2 were also considered as key genes in WGCNA and were
subsequently collected.

2.4. Identification of Differentially Expressed Immune-Related Genes

Based on MMD1, with 151 GBMs and 28 normal samples, we identified DEGs from
GBMs and normal tissues using the R package limma [19]. DEGs were discovered using
the expression matrix of 1242 IRGs in MMD1 based on limma, and those with adjusted
p-value < 0.05 and |log2FC| ≥ 1.0 were further analyzed.

2.5. Identification of the Hub Gene

Genes that were discovered in both WGCNA and DEG analysis were designated as
hub genes for future study.

2.6. Potential Prognostic Gene Identification

After identifying overlapping hub genes in WGCNA and DEG analysis, we tried to
filter out potential prognostic biomarkers. The R package survival [20] was used to generate
2 independent survival analyses: overall survival (OS) and disease-specific survival (DSS).
The cut-off criteria was p < 0.05. Genes that showed significant values were considered as
potential prognostic genes in both survival analyses. OS was further subjected to univariate
Cox analysis for these potential prognostic biomarkers. The potential prognostic genes
were functionally annotated by the R package clusterProfiler [21] for KEGG pathway and
GO enrichment analyses. To define significant BPs and KEGG pathway terms, we used
p < 0.05 as the criterion.

2.7. Transcription-Level Expression Validation by RT-qPCR

Total RNA was extracted from GBM tumors and normal peritumoral tissues and
quantified by a nanophotometer (Implen GmbH, München, Germany) using RNAiso Plus
(Takara, Kusatsu, Shiga, Japan). Absorbance ratios of 260/280 and 260/230 nm were
calculated to assess RNA quality. HiScript® III RT SuperMix (Vazyme, Nanjing, China)
and ChamQ Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) were used for
RT-qPCR with 500 ng total RNA according to the kit’s instructions. In order to determine
the relative mRNA expression level, we employed the 2(−Ct) technique. Supplementary
Table S1 lists the primers used in this investigation.
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2.8. Validation of Internal Expression Level of Potential Prognostic Genes

After screening out potential prognostic genes, we validated the difference in the
transcription expression levels of these genes between GBM and normal tissues by using
the Gene Expression Profiling Interactive Analysis (GEPIA) webtool (http://gepia.cancer-
pku.cn/ accessed on 14 May 2022) [22]. We also explored the associations among these
genes using this webtool. In addition, translation-level expression differences between
normal samples and GBMs were acquired from the Human Protein Atlas (HPA) database
(https://www.proteinatlas.org/ accessed on 14 May 2022).

2.9. Establishing a Prognostic Risk System

We investigated the prognostic value of the potential prognostic genes by combining
the regression coefficients (Coef) of prognostic biomarkers in univariate Cox analysis of
OS with the prognostic biomarker expression levels and established a prognostic risk
assessment system. The GBM sample risk score (RS) was defined as follows:

Risk score =
n

∑
i=1

Coefi × Expi

In the equation, Coef represents the regression coefficient, which is determined by mul-
tivariate Cox regression analysis, and Exp represents the expression level of the prognostic
biomarker. The risk system’s predictive value was measured using the RSs of GBM samples
derived from TCGA-GBM data and MMD2. The GBM samples in all datasets were split
into 2 groups (low-risk and high-risk) based on the median RS in each dataset. We used the
R package survival to perform OS analysis. Additionally, the R package survivalROC [23]
was used to display time-dependent (1-, 3-, and 5-year) receiver operating characteristic
(ROC) curves.

2.10. Analysis of Cox Proportional Hazards Regression

In order to validate the prognostic significance of the system, the risk score was
evaluated by the system, and other basic clinical features (such as chemotherapy, age, and
gender) in the TCGA-GBM data were selected and subjected to univariate Cox analysis of
OS. Factors with p-value < 0.05 were screened via multivariable Cox analysis to determine
whether they were independent of other clinical factors predicting OS in GBM patients.
Visualization was carried out by using the R software package forestplot [24].

2.11. Creation and Validation of Nomogram

To better understand the clinical use of this risk system, we attempted to establish
a nomogram. First, we performed cross-validation to avoid overfitting, and using the
obtained immune-related prognostic risk system, the nomogram was constructed by using
the R package rms. A calibration curve was then drawn to examine the nomogram.
Correspondingly, the best prediction potential was the 45◦ line. Furthermore, we carried
out a decision curve analysis using the R package rmda [25] to investigate the nomogram’s
clinical utility.

2.12. Functional Exploration of Prognostic Risk System

Gene set enrichment analysis can be beneficial for clarifying the role of a prognostic
risk system in biological behavior. From the TCGA-GBM data, we first calculated the
risk score system’s median value. Then, the 167 GBMs were divided into 2 groups: low-
expression and high-expression. The annotated gene set was c2.cp.kegg.v7.4.symbols.gmt.
Once this work was carried out, only FDR < 25% and gene size n ≥ 20% were found to
be significantly enriched by GSEA (http://software.broadinstitute.org/gsea/index.jsp/
accessed on 14 May 2022) [26] and KEGG pathways, with p < 0.05, |ES| > 6.

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
https://www.proteinatlas.org/
http://software.broadinstitute.org/gsea/index.jsp/
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2.13. Association between Immune Cells and Hub Gene Expression

It is recognized that immune cells may be independent predictors of cancer survival.
Therefore, the relationship between prognostic biomarkers and immunocytes was obtained
through TIMER (https://cistrome.shinyapps.io/timer/ accessed on 16 May 2022) [27].
Factors with p-value < 0.05 and |correlation coefficient (cor)| ≥ 0.2 were deemed highly
related to the degree of immune cell infiltration, as previously noted. We also used the
Cell Type Identification via Estimating Relative Subsets of RNA Transcripts (CIBERSORT)
(https://cibersort.stanford.edu/ accessed on 16 May 2022) [28] to assess the interaction
between immunocytes and the immune-related prognostic signature.

2.14. Statistical Analysis

All the data were analyzed and plotted using the R software (version 4.0.2). The
survival curve was plotted using the log-rank test, the Wilcoxon rank-sum test was used
to assess differential expression, and Student’s t-test was applied to analyze continuous
variables, with p < 0.05 (two-tailed) considered statistically significant.

3. Results
3.1. Identification of Key Module

After removing 5 outliers, 162 GBMs were included in WGCNA (Figure 2A). The
soft threshold (β) = 3 (slope = −1.28) was set to evaluate adjacency (Figure 2B). IRGs
were then identified and divided into gene modules. As seen in Figure 2C, 11 modules
were discovered. Genes with low correlation with the interest trait were classified into
gray modules, which were not included in subsequent analysis. Among the modules,
four modules showed a significant association with disease status (normal or GBM): blue
(p = 1 × 10−32, R2 = 0.76), black (p = 4 × 10−7, R2 = −0.38), turquoise (p = 1 × 10−5,
R2 = −0.33), and purple (p = 2 × 10−4, R2 = −0.28) (Figure 2D). Among the 10 modules,
the blue module had the strongest correlation with disease status, and the GS and MM of
the blue module were significantly correlated (cor = 0.81, p = 1.7 × 10−51), as shown in
Figure 2E. We also explored the relationship between MM and GS in the black, turquoise,
and purple modules, and the results were meaningful: black (cor = 0.71, p = 2.8 × 10−12),
purple (cor = 0.39, p = 0.023), and turquoise (cor = 0.45, p = 1.8 × 10−14). As shown in
Figure 2I, the MS of the four modules was the highest among the 10 modules. Therefore, we
had reason to think that those four were key modules. The network heatmap of these IRGs
is shown in Figure 2J. The classic MDS diagram (Figure 2K) shows that the 10 modules are
independent of each other.
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Figure 2. Associated module connected to clinical characteristic recognition. (A) Trait heatmap and
sample dendrogram. Color intensity indicates patient condition. (B) Scale-free fit index analysis
of soft-thresholding powers (β); mean connectivity index analysis of soft-thresholding powers; his-
togram of frequency distribution when β = 3; check scale-free topology when β = 3. (C) Dendrogram
of clusters of differentially expressed genes based on dissimilarity measure (1-TOM). (D) Heatmap
showing relationship between module eigengenes and ccRCC clinical data. (E–H) Scatter diagrams
of gene module membership correlation in blue, black, turquoise, and purple modules with gene
significance. (I) Average gene significance distribution in modules linked to GBM illness status.
(J) Network heatmap plot for all genes in WGCNA. (K) Traditional MDS plot with TOM dissimilarity
as its input. Module assigns color for each gene-designated dot.
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3.2. Hub Gene Screening

According to the set cut-off criteria, 209 DEGs (121 overexpressed and 87 under-
expressed) were screened using MMD1 (Figure 3A). We also drew a heatmap to show
the expression differences of DEGs between normal and tumor tissues (Figure 2B). In
addition, 86 genes were identified in WGCNA. Finally, 29 overlapping hub genes be-
tween TCGA-GBM-based DEGs and WGCNA-based hub genes were selected for further
analysis (Figure 3C).
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(D) Result of independent survival analysis for 29 IRGs in TCGA-GBM(OS). (E) Result of independent
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3.3. Potential Prognostic Gene Screening

We subsequently obtained 29 hub genes in the total survival and disease-specific
survival analyses. Only three hub genes, PPP4C, C5AR1, and IL10, showed survival
difference in OS (Figure 3D). In addition, six genes, IL10, PPP4C, C5AR1, CD74, PIK3R5, and
RNASE2, had p-values < 0.05 in DSS analysis (Figure 3E). Furthermore, three genes, C5AR1,
IL10, and PPP4C, overlapping in OS and DSS analyses were identified as predictive genes.
Figure 4 shows the survival curves for the three prognostic genes. GBM patients with higher
C5AR1 expression showed worse OS (p = 0.022; Figure 4A) and DSS (p = 0.013; Figure 4D).
Similarly, patients with higher IL10 expression had worse OS (p = 0.025; Figure 4B) and
DSS (p = 0.0038; Figure 4E) than those with lower IL10 expression. Furthermore, as shown
in Figure 4C, patients with high PPP4C expression had better OS than those with low
expression (p = 0.0048). In the DSS analysis of PPP4C, the outcome matched what we found
in OS analysis (p = 0.0068; Figure 4F). We then obtained the three prognostic genes for Cox
regression analysis. The findings also revealed that C5AR1 (p < 0.001, HR = 1.215), IL10
(p < 0.001, HR = 1.047), and PPP4C (p < 0.001, HR = 0.514) were prognostic biomarkers for
GBM (Figure 5A).
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3.4. Potential Function of the Prognostic Biomarkers

For the purpose of investigating the functions of these prognostic biomarkers, we
included the three genes in GO and KEGG enrichment analysis. As shown in Figure 5B, GO
BP analysis indicated that the three prognostic biomarkers were highly enriched in adap-
tive immunological response, based on immunoglobulin superfamily domain-dependent
somatic recombination of immune receptors, positive regulation of cytokine production,
adaptive immune response, macrophage activation, lymphocyte-mediated immunity, adap-
tive immune response based on somatic reorganization of immune receptors formed by
immunoglobulin superfamily domains, lymphocyte activation involved in immune re-
sponse, regulation of immune effector process, presentation of peptide antigen, antigen
processing, and T cell activation. KEGG analysis indicated that the prognostic biomarkers
mainly acted in cytotoxicity mediated by natural killer cells, tuberculosis, inflammatory
bowel disease, leishmaniasis, asthma, Th1 and Th2 cell differentiation, Staphylococcus aureus
infection, African trypanosomiasis, allograft rejection, and amoebiasis (Figure 5C).
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3.5. Multilayered Validation of Prognostic Biomarkers

For the purpose of obtaining accurate conclusions, we performed a comprehensive
validation of the three prognostic biomarkers. Compared with normal tissues, C5AR1
(p < 0.05; Figure 6A), IL10 (p < 0.05; Figure 6B), and PPP4C (p < 0.05; Figure 6C) were all
highly expressed in GBM. We further explored the associations among prognostic biomark-
ers. C5AR1 showed a strong correlation with IL10 (R = 0.75, p < 0.05; Figure 6D). There
was a weak correlation between C5AR1 and PPP4C (R = −0.18, p = 0.025; Figure 6E).
As shown in Figure 6F, there was no obvious relationship between IL10 and PPP4C
(R = −0.15, p = 0.057; Figure 6F). These results indicate that the prognostic biomarkers might
have a combined influence on the prognosis of GBM. Using the HPA database, we validated
the translation expression level of the prognostic biomarkers with three GBM-HPA samples
and three normal-HPA samples. We observed strong or moderate staining of the prognostic
biomarkers: C5AR1, high staining (Figure 7B); IL10, high staining (Figure 7D); and PPP4C,
medium staining (Figure 7F). These results imply that the translation levels of prognos-
tic biomarkers were high in GBM samples. In the three normal samples, the prognostic
biomarkers showed weak or no staining: C5AR1, no staining detected (Figure 7A); IL10, no
staining detected (Figure 7C); and PPP4C, low staining (Figure 7E). We also found higher
expression of C5AR1 (p < 0.05; Figure 8A), IL10 (p < 0.05; Figure 8B), and PPP4C (p < 0.05;
Figure 8C) in GBM tissues than in normal peritumoral tissues by RT-qPCR.
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Figure 7. Hub gene expression in normal human and GBM tissue detected by immunochemistry.
(A) Representative IHC staining of C5AR1 in normal human tissue; (B) IHC staining typical for
C5AR1 in human GBM tissue; (C) IHC staining typical for IL10 in normal human tissue; (D) IHC
staining typical for IL10 in human GBM tissue; (E) IHC staining typical for PPP4C in normal human
tissue; (F) IHC staining typical for PPP4C in human GBM tissue.
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Figure 8. Relative mRNA levels of (A) C5AR1, (B) IL10, and (C) PPP4C in GBM (n = 5) were
significantly higher than in normal peritumoral tissues (n = 6) (Student’s t-test, * p < 0.05).

3.6. Establishing an Immune-Related Prognostic Signature (IPS)

Following this, we built a risk-predicting system (immune-related prognostic signature)
using all the prognostic biomarkers (C5AR1, IL10, and PPP4C) to characterize the risk of
GBM patients. Risk scores for the GBM samples were calculated using the following formula:
risk score = 0.194 * ExpC5AR1 + 0.046 * ExpIL10–0.665 * ExpPPP4C, which was determined by
multivariate Cox regression analysis (Figure 5A). With this risk system, the data of 165 GBM
patients from TCGA-GBM were divided into two groups (high-risk group, n = 82; low-risk
group, n = 83) by setting the median risk score as the cut-off criterion. We found that GBM
patients with lower risk scores had better OS than those with higher risk scores by survival
analysis (p = 0.032; Figure 9A). Figure 9B shows the risk system’s ROC values (1-year AUC:
0.529; 3-year AUC: 0.685; 5-year AUC: 0.771). By examining the distribution between the two
groups (Figure 9C), we discovered that patients in the high-risk group had a higher mortality
rate than the low-risk group. We repeated the process with MMD2 to test the repeatability
and accuracy of this signature. We still classified GBM into the high-risk (n = 55) and low-risk
(n = 55) groups. GBM patients with higher risk scores had significantly worse OS (p = 0.0062;
Figure 9D), in line with previous conclusions. The predicted values at 1, 3, and 5 years
were accurately assessed by MMD2 as 0.639, 0.748, and 0.754, respectively (Figure 9E). The
conclusions in Figure 9F are similar to those from the TCGA-GBM data.
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Figure 9. Cox regression analysis and construction of new immune-related prognostic signature.
(A) Based on TCGA-GBM data, graphs show Kaplan–Meier OS curves for high- and low-risk groups.
(B) ROC curve shows accuracy of immune-related prognostic signature for OS. (C) Distribution of risk
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scores among GBM patients according to TCGA-GBM data; number of survivors (red) and non-
survivors (blue) with various risk scores according to MMSD. (D) Kaplan–Meier OS curves for
high- and low-risk groups using MMD2 data. (E) ROC curves showing precision of immune-related
prognostic signature for OS. (F) Distribution of GBM patient risk ratings; proportion of survivors and
non-survivors with various risk ratings depending on MMSD.

3.7. Creation of Nomogram of Clinical Usefulness Depending on Immune-Related
Prognostic Signature

To provide a visual prognosis prediction tool for clinicians, we attempted to construct
a nomogram assessed by the IPS. We first obtained the risk score evaluated by the IPS and
some essential clinical factors. Univariate Cox analysis indicated that risk score (p = 0.027)
and additional pharmaceutical therapy (p = 0.014) were found to be strongly related to the
OS of GBM patients (Figure 10A). Consequently, the risk score (p = 0.009) can then be used
to reliably assess the prognosis of GBM patients, according to multivariate Cox analysis
(Figure 10B). Then, based on the risk score and extra pharmaceutical therapy, we created a
nomogram (Figure 10C). As concluded from the calibration curve, the nomogram could
effectively predict the survival of GBM patients (Figure 10D–F), regardless of long-term
mortality (5-year survival rate prediction; Figure 10F). DCA was also used to determine
the nomogram’s net clinical benefit. The result suggests that when predicting the 1-year
survival rate (0.35 < Pt < 0.50; Figure 10G), 3-year survival rate (0.65 < Pt < 0.80; Figure 10H),
and 5-year survival rate (0.65 < Pt < 0.80; Figure 10I), the nomogram based on risk score
was more efficient than one without risk score assessed by the IPS.
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and pharmaceutical therapy based on TCGA-GBM data. (C) Immune-related prognostic signature-
based nomogram for estimating percentage of patients with 1-, 3-, or 5-year OS. Scales are used to
indicate the range of values for each variable on the corresponding line segment, and the length
of the line segment reflects the contribution of this factor to the outcome event. (D–F) Calibration
charts for predicting 1-, 3-, and 5-year OS, respectively. (G–I) DCA for assessment of clinical utility
of immune-related prognostic signature for 1-, 3-, and 5-year OS; percent of threshold probability is
shown on x-axis, net benefit is shown on y-axis.

3.8. Identification of KEGG Signaling Pathways with Risk Signatures

In order to investigate the potential function of the IPS, we conducted GSEA. Based on
the previously set standards, we concluded that the IPS plays a significant role in adhesion
molecules (CAMS), chemokine signaling pathway, cytokine–cytokine receptor interaction,
JAK STAT signaling pathway, natural killer cell-mediated cytotoxicity, T cell receptor
signaling pathway, and Toll-like receptor signaling pathway. The detailed information of
these pathways is shown in Figure 11A.
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sociations between risk score and six types of immune cells found in TIMER. (C) Associations between
risk score and 22 immune cell behaviors found in CIBERSORT. * p < 0.05, ** p < 0.01.

3.9. Correlation of IPS with Immune Infiltration Levels in GBM

We also wanted to see whether there was a relationship between our index and
immune cells. As indicated in Figure 11B, this signature was significantly associated with
B cells, (p < 0.05), macrophages (p < 0.01), myeloid dendritic cells (p < 0.01), neutrophils
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(p < 0.01), and CD4+ T cells (p < 0.01). We also explored the association between genes
(used for IPS construction) and immune cell types. C5AR1 was positively associated with
macrophages (p < 0.01), myeloid dendritic cells (p < 0.01), CD4+ T cells (p < 0.01), and
neutrophils (p < 0.01). IL10 was positively correlated with B cells (p < 0.01), macrophages
(p < 0.01), myeloid dendritic cells (p < 0.01), and neutrophils (p < 0.01). PPP4C was positively
associated with macrophages (p < 0.01), myeloid dendritic cells (p < 0.01), CD4+ T cells
(p < 0.01), and neutrophils (p < 0.01). We also validated the relationships between IPS and
immune cell types by using CIBERSORT (Figure 11C), and the results were similar to those
when using TIMER.

4. Discussion

Glioblastoma (GBM), with an annual incidence of 5.26/100,000 and 17,000 new diag-
noses per year, is thought to be the most common primary malignant brain tumor. GBM
often portends a poor quality of life and poor prognosis for patients [29]. The 5-year mortal-
ity rate exceeds 90%. Median survival of GBM is only 12.6 months [30]. The development
of resection techniques, chemotherapy strategies, and radiation therapy for treating GBM
has slowed. What is worse, the progress has not translated into significant improvements
in patient survival [30]. Obviously, effective therapeutic targets and prognostic biomarkers
are urgently needed in clinical practice. Thus, we attempted to identify novel prognostic
biomarkers to provide new options for prognosis prediction and immunotherapy of GBM.

Immunotherapy is an important method to prevent and treat tumors, and it is a
research hotspot [31]. Currently, more researchers are working on screening new prognostic
biomarkers relevant to the immune microenvironment, but similar studies on GBM are
still scarce. The purpose of this research is to find biomarkers related to the prognosis
of GBM. For the first time, Hou et al. explored the correlation between GBM prognosis
and immune-associated genes by using GSE4290, GSE50161, and GSE2223 [31]. They
investigated 48 immune system genes that may influence GBM prognosis. However, there
was a paucity of validation for those 48 genes. The study by Liang et al. confirmed the role
of immune-related genes in predicting the GBM prognosis [32], but similarly, the problem
with this study was the lack of validation of the prediction model. To learn the strengths
and to avoid the weaknesses of these studies, we attempted to explore immune-related
prognostic markers using several approaches based on multiple datasets and databases.

We performed not only DEG identification, as they did, but also WGCNA using IRGS
collected from the ImmPort database. Then, we selected 29 overlapping genes between the
results of the two analyses. Three IRGs (complement C5a receptor 1 (C5AR1), interleukin
10 (IL10), and protein phosphatase 4 catalytic subunit (PPP4C)) were further determined
by conducting two kinds of survival analysis. In this way, we identified these three IRGs
as potential biomarkers for predicting the prognosis of GBM and further validated them
with different methods. TCGA-GBM data, GEPIA, and the HPA database showed that the
three IRGs were highly expressed in GBM tissues compared to normal tissues. Previous
studies concluded that C5AR1 was highly expressed in certain types of cancer. C5AR1
was also shown to induce breast cancer glycolysis by regulating m6A methylation [33].
Furthermore, C5AR1 was identified as a master regulator in colorectal tumorigenesis via
immune modulation [34]. A study by Cheng et al. analyzed the immune-related gene set
in glioblastoma and identified IL10 as one of the eight genes with the greatest prognostic
value [35]. This result confirms the reliability of the results of the present study. It has been
reported that the transcription level of PPP4C is higher in pancreatic cancer than in the
normal pancreas and is associated with the pathogenesis and progression of pancreatic
cancer [36]. Moreover, inhibiting the expression of PPP4C by siRNA can significantly
inhibit the proliferation and migration of breast cancer cells [37]. PPP4C plays a prominent
role in the progression of breast cancer and is used as a new biomarker to improve the
accuracy of breast cancer diagnosis [37].

Altogether, this study verifies the notion that the three IRGs are closely related to
tumor prognosis and might serve as new immune-related prognostic biomarkers in GBM.
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Furthermore, we found an IPS via these three prognostic biomarkers. It is worth mentioning
that the IPS, which was relatively well-constructed (combining DEG and WGCNA), may be
the first risk-prediction system based on multiple datasets with good clinical applicability.
We created a nomogram using the prognostic signature and additional pharmaceutical
therapy to turn the risk signature into a clinical reality. The IPS-based nomogram was
instantly confirmed as a predictor of OS probability in GBM.

This study had certain limitations. As multi-dataset-based research, although this
bioinformatics study was reasonably designed, it lacked external experimental validation.
In future research, more experiments are needed to further clarify the molecular mechanism
of prognostic biomarkers in GBM. In addition, we could collect clinical data and validate
the prediction value of this IPS by using our own data in the near future.

5. Conclusions

In this study, three IRGs were discovered and confirmed to be novel immune-related
prognostic biomarkers in GBM. The establishment of a prognostic signature to assess and
predict GBM prognosis will facilitate the establishment of more effective immunother-
apy strategies. At the same time, a nomogram was constructed based on the immune-
related prognostic index, which was helpful in predicting the prognosis of GBM patients
more intuitively.
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