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Arsenic trioxide (ATO) has been shown to be effective in treating acute

promyelocytic leukemia. TP53 mutated/null tumor cells are more sensitive

to ATO treatment compared to tumor cells carrying wildtype TP53 gene

copies. However, it is unclear whether TP53 inhibitors can increase the sen-

sitivity of TP53 wildtype tumor cells to ATO. Here we show that breast,

colon, and lung cancer cell lines with mutated/null TP53 are more sensitive

to ATO-induced cell growth inhibition than cells with wildtype TP53.

Moreover, inhibition of TP53 by a TP53 inhibitor, PFTa, increased the

ATO sensitivity of TP53 wildtype tumor cells, coincident with ATO-

induced cell growth arrest and cell apoptosis. Furthermore, combined

treatment with ATO and PFTa synergistically inhibited tumor growth in

mouse xenografts in vivo. Through microarray transcriptional analysis, we

found that ATO-regulated genes were associated with TP53 and cell cycle

signaling pathways. Cotreatment with PFTa enhanced ATO-induced

dynamic transcriptional changes. Overall, our results provide evidence for

using TP53 chemical inhibitors to enhance the ATO-mediated therapeutic

response against TP53 wildtype tumor cells.

TP53 plays critical roles in tumor development and

therapy responses. Half of the tumors are with differ-

ent types of TP53 mutations and the mutated TP53

could promote tumor growth and metastasis [1,2].

TP53 wildtype and TP53 mutated/null cancer cells

have different mechanisms in responding to cancer

treatment, and achieve different clinical outcomes [3].

TP53 stress response systems are required for the effi-

ciency of traditional chemotherapy and radiation

therapy [4,5]. With those treatments, TP53 is activated

and induces apoptosis and cell growth arrest through

the activation of TP53 target genes [6–8]. TP53

mutated/null cells usually fail to induce downstream

apoptotic genes and are resistant to chemotherapy

treatments [9].

Interestingly, reports have suggested that TP53

mutated/null cells are more vulnerable to some other

drug insults [10,11]. For example, the antiglioma drug
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temozolomide is more effective in TP53 mutated can-

cer cells than TP53 wildtype cells. And temporary inhi-

bition of TP53 by the chemical inhibitor PFTa could

increase the sensitivity of temozolomide in TP53 wild-

type cancer cells [12]. Arsenic trioxide (ATO) has been

used therapeutically for a thousand years and is very

effective in the treatment of acute promyelocytic leuke-

mia (APL) [13–15]. Cells with defective functions of

TP53 are more sensitive to ATO-induced apoptosis

and growth inhibition in multiple myeloma cells [16].

Moreover, ATO could restore the structure of the

mutant TP53 and inhibit the growth of cancer cells

with structural TP53 mutations [17]. However, whether

inhibition of TP53 could increase the sensitivity of

ATO in TP53 wildtype tumor cells is unclear.

Here we tested the synergy of the ATO and TP53

inhibitor PFTa in breast, colon, and lung cancer cells

with wildtype TP53. We found that the combination

of ATO and PFTa could synergistically inhibit tumor

growth in TP53 wildtype tumor cells. The TP53 inhibi-

tor PFTa enhanced ATO’s ability to regulate its down-

stream target genes. Our results suggested a potential

therapeutic application of ATO and TP53 inhibitor

PFTa in breast, colon, and lung cancer treatment.

Materials and methods

Cell lines and cell culture

The human colon carcinoma cell line HCT116, human

colon adenocarcinoma cell line HT29, and human lung

adenocarcinoma cell line H1299 were cultured in RPMI

1640 supplemented with 10% FBS. The breast cancer cell

line SKBR3 was cultured in DMDM-F12 medium supple-

mented with 10% FBS. The breast cancer cell line MDA-

MB-231 was cultured in L15 medium supplemented with

10% FBS. The human non-small lung cancer cell line

A549, colon cancer cell line SW480, SW620, and breast

cancer cell line SUM159, BT549 were grown in DMEM

supplemented with 10% FBS. All the cell lines were pur-

chased from the Cell Bank/Stem Cell Bank affiliated with

the Shanghai Institute of Biochemistry and Cell Biology.

All the cells were cultured at 37 °C in a humidified atmo-

sphere with 5% CO2.

Reagents and antibodies

ATO and PFTa of a high analytical grade were purchased

from Sigma–Aldrich (St. Louis, MO, USA). Antihuman

b-actin antibody was purchased from Santa Cruz Biotech-

nology (Santa Cruz, CA, USA). Antihuman PARP and

antihuman BCL2, together with all secondary antibodies,

were purchased from BD Transduction Laboratories (San

Jose, CA, USA).

Cell viability, cell cycle, and apoptosis analysis

For the cell viability assay, first cells were seeded in 24-well

plates overnight, and then cells were treated with the indicated

agent and indicated time course. 100 lL MTT solutions were

added to each well for an additional 3 h at 37 °C. The MTT

was soluted with 1 ml dimethyl sulfoxide for 1 h and the absor-

bance was determined and recorded with a Spectra microplate

reader DU800 (Beckman Coulter, Brea, CA, USA).

For cell cycle analysis, the trypsinized adherent cells were

collected and fixed with 75% ethanol (v/v), stained with pro-

pidium iodide, and analyzed using an Aria TM flow cytometer

(BD Biosciences Pharmingen, San Diego, CA, USA).

Cytoflow analysis was carried out to determine cell

apoptosis. Briefly, cells were seeded in 6-well plates and

exposed to various treatments. The floating and trypsinized

adherent cells were then collected and prepared for detec-

tion according to the manufacturer’s instructions. Cell

apoptosis was detected using FITC-Annexin V Apoptosis

Detection Kit (BD Biosciences Pharmingen, San Diego,

CA, USA).

Subcutaneous model of tumorigenesis

The animal experiments were approved by the Committee

on Laboratory Animal Research of Shanghai Jiaotong

University, China, and conducted according to the guideli-

nes of the Laboratory Animal Center of Shanghai Jiaotong

University School of Medicine. The 6–8-weeks old female

nude mice were purchased from Shanghai Slac Animal

Center (Shanghai, China). 10,000 HCT116 cells were

injected subcutaneously into the left inguinal area of the

mice. After experiments, the mice were sacrificed and the

tumors were excised from the body for analysis.

Western blot analysis

RIPA buffer in the presence of a protease inhibitor cocktail

and a phosphorylation inhibitor cocktail were used to extract

total protein. Appropriate mount protein was loaded into 10–
15% SDS–polyacrylamide gel and transferred onto the nitro-

cellulose membrane (Millipore, Billerica, MA, USA). Primary

antibodies were incubated overnight and secondary antibodies

were incubated for 1 h at the appropriate dilutions. The signal

was observed and developed with Kodak film by exposure to

Enhanced Chemiluminescence plus Western Blotting Detec-

tion Reagents (Amersham Biosciences, Piscataway, NJ,

USA). Western blot was performed with antibodies against

PARP, BCL2, and b-actin used as a control.

Microarray hybridization and data mining

Total RNA was amplified and labeled with biotin accord-

ing to the standard Affymetrix protocol. The fragmented,

biotinylated cDNA was hybridized with the Affymetrix
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Human Genome-U133 Plus 2.0 array (Affymetrix, Santa

Clara, CA, USA). The unprocessed CEL files were Robust

Multi-array Averaging (RMA) normalized in R software

(http://www.r-project.org) using the “affy” library. Raw

expression data were annotated with GPL570. The normal-

ized expression data were averaged if multiple probes corre-

sponded to the same gene using the “plyr” library.

Differentially expressed genes were selected for the treat-

ment versus no treatment.

Real-time PCR

Total RNA was isolated and synthesized to cDNA using

Moloney murine leukemia virus reverse transcription kit

(Promega, Madison, WI, USA). The expression levels of

CCNG2 and SESN2 were detected using 7900HT Fast

Real-Time PCR (Applied Biosystems, Foster City, CA,

USA). GAPDH was used as normalization.

Biological process and Kyoto Encyclopedia of

Genes and Genomes (KEGG) signaling pathway

analysis

Function enrichment analysis of the KEGG pathway of the

ATO plus PFTa-related genes was carried out using the

Database for Annotation, Visualization and Integrated Dis-

covery (DAVID) website (v. 6.8; https://david.ncifcrf.gov)

[18,19]. The Benjamini–Hochberg-derived step-up proce-

dure of the false discovery rate was applied to account for

multiple hypothesis testing, thus to assess the significance

of the biological theme enrichments. The significance

threshold was set to P < 0.05.

Single sample Gene Set Enrichment Analysis

(ssGSEA)

The relative activity of the TP53 signaling pathway and cell

cycle signaling pathway were determined using ssGSEA in the

“GSVA” package [20] in R software (v. 4.0, Vienna, Austria).

Heatmap presentation

Heatmaps were created by the “pheatmap” package using

R software. The “pheatmap” package was downloaded

from bioconductor. The clustering scale was determined by

the “average” method.

Venn diagram

The Venn diagrams were generated using VENNY 2.1

online for comparing lists.

Statistical analysis

The boxplots were generated from GRAPHPAD Prism 5.0

(San Diego, CA, USA). Statistical analysis was performed

using Student’s t test and a two-way ANOVA test. P <
0.05 was chosen to be a statistically significant difference.

*P < 0.05, **P < 0.01, and ***P < 0.001 are shown.

Results

Tumor cells harboring mutated/null TP53 are

more sensitive to ATO treatment

Cell lines from breast, colon, and lung cancer patients

with wildtype TP53 or different TP53 alterations were

used to determine the roles of TP53 in ATO-induced

anticancer activity. A summary of TP53 status and tis-

sue of origin of those cells is shown (Fig. 1A). MCF7,

HCT116, and A549 express wildtype TP53, whereas

SKBR3, SUM159, MDA-MB-231, BT549, HT29,

SW480, and SW620 express different mutated TP53.

Lung cancer H1299 cells were TP53 null cells.

After 48 h of 2.5 lM or 5 lM ATO treatment, the

cell viability was tested through the MTT assay.

SKBR3, SUM159, BT549, HT29, SW480, SW620, and

H1299 cells with mutated/null TP53 showed great cell

growth inhibition; nearly half the percentage of cell

viability was inhibited (Fig. 1B). Only MDA-MB-231

cells expressed mutant TP53 and seemed not very sen-

sitive to ATO treatment (Fig. 1B). In contrast,

HCT116, A549, and MCF7 cell lines harboring the

wildtype of TP53 nearly had no growth inhibition after

ATO treatment (Fig. 1B). Those results implied that

tumor cells harboring mutated/null TP53 were more

sensitive to ATO treatment.

Inhibition of TP53 by PFTa sensitizes ATO-

induced cancer cell growth arrest and apoptosis

in TP53 wildtype tumor cells

Since TP53 mutated/null cells were more vulnerable to

ATO insult, we wondered if temporary inhibition of

TP53 could increase the sensitivity of ATO in TP53

wildtype tumor cells. The TP53 chemical inhibitor PFTa
was the first developed TP53 inhibitor that was used to

protect from the lethal side effects associated with anti-

cancer treatments by blocking TP53-dependent tran-

scriptional activation and apoptosis [21]. TP53 wildtype

MCF7, HCT116, and A549 cells were treated with ATO

5 lM and/or PFTa 20 lM; cell viability was tested after

48 h. PFTa alone appeared to exert a minor effect on

cell growth inhibition, but greatly increased the sensitiv-

ity of ATO on HCT116, MCF7, and A549 cells com-

pared with the single ATO treatment (Fig. 2A).

Importantly, the synergistic effects of cell growth inhibi-

tion were not found in TP53 mutated/null SKBR3,

HT29, and H1299 cells (Fig. 2A).
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We investigated whether the combination of ATO

and PFTa could increase the cell apoptosis in TP53

wildtype tumor cells. The apoptotic rate induced by

ATO and PFTa combination treatment was much

higher in MCF7 and HCT116 cells than ATO-alone

treatment (Fig. 2B). There was a 6.433 � 1.309 and

3.280 � 0.6421 percentage of apoptotic cells in MCF7

and HCT116 after ATO single treatment, but increased

to 15.37 � 2.028 and 22.08 � 1.682 in MCF7 and

HCT116, respectively, after ATO and PFTa combina-

tion treatment. Western blot analysis also indicated that

PFTa could enhance ATO-induced apoptosis. Apop-

totic biomarkers of suppression of PARP and Bcl-2

expression were observed in HCT116 and MCF7 cells

after combination ATO and PFTa treatment, while no

such significant expression changes were tested in the

single ATO or PFTa treatment (Fig. 2C). Also, we

detected the cleaved PARP in HCT116 after combina-

tion ATO and PFTa treatment (Fig. 2C).

The combination of ATO and PFTa on cell cycle

progress in TP53 wildtype cells was also studied.

HCT116 and A549 cell lines were treated with ATO

5 lM and/or PFTa 20 lM; the DNA content was

detected through PI staining. Although a single ATO

agent could induce cell arrest in A549 cells, the combi-

nation of ATO and PFTa greatly reduced the propor-

tion of S phase cells, from 24.36 � 0.23 to

10.55 � 0.93 in HCT116 and from 18.68 � 2.075 to

0.75 � 0.25 in A549 cells (Fig. 2D). Those results fur-

ther confirmed that inhibition of TP53 by PFTa sensi-

tized the ATO therapeutic response by induced cancer

cell growth arrest and cell apoptosis.

ATO and PFTa synergistically inhibit tumor

growth in vivo

We also tested whether the combination of ATO and

PFTa had the same synergy on tumor growth inhibi-

tion in vivo. Colon cancer HCT116 cells were subcuta-

neously inoculated into the immune-deficient mice.

When the xenografts became palpable, animals were

treated with 5 mg�kg�1 ATO or 2.5 mg�kg�1 PFTa or

a combination of the two agents for 5 days in 1 week.

The tumor size was measured every 5 days. PFTa
alone showed no antitumor effect. However, the com-

bination of ATO and PFTa showed significant inhibi-

tion of tumor growth than ATO alone (Fig. 3A). The

illustrations of excised tumors of each group are

shown (Fig. 3B). The average tumor weight in ATO

plus PFTa-treated mice decreased as compared with

ATO-alone treatment (Fig. 3C). Moreover, at this con-

centration of ATO and PFTa treatment, no significant

additional weight loss was observed (Fig. 3D).

PFTa enhances ATO-induced dynamic

transcriptional changes

Next, at the global transcriptional level, we tried to

determine the detailed combinational mechanisms of

ATO and PFTa in synergistically inducing cell cycle

arrest and cell apoptosis. RNA expression profiles

from TP53 wildtype MCF7, HCT116, and A549 cells

treated with single ATO or the combination of ATO

and PFTa at 6 h, 12 h, 24 h, and 36 h were analyzed.

Only 122 differentially expressed genes in HCT116 and

Fig. 1. ATO preferentially inhibits TP53 mutated/null cells. (A) Tissue of origin and TP53 status of the cell lines used in our experiments.

(B) Cells were treated with 2.5 lM or 5 lM ATO, and the cell viability was tested after 48 h using the MTT assay. Results are

means � SEM from three independent experiments.
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200 differentially expressed genes in A549 were identi-

fied after ATO treatment (Fig. 4A). The number of

ATO-regulated genes in MCF7 cells was 2050, which

was far more than ATO-regulated genes in HCT116

and A549 cells (Fig. 4A). Furthermore, 4138 genes

were modulated by ATO and PFTa treatment in

MCF7 cells, 660 genes in HCT116 cells, and 974 genes

in A549 cells (Fig. 4A). Overlapping those ATO and

Fig. 2. Inhibition of TP53 by PFTa sensitizes ATO-induced cancer cell growth arrest and apoptosis in TP53 wildtype tumor cells. (A) TP53

wildtype cells MCF7, HCT116, and A549 cells were treated with 5 lM ATO, 20 lM PFTa, or a combination of ATO and PFTa for 48 h. The

cell viability was tested. SKBR3, HT29, and H1299 cells were used as negative controls. The error bars indicate means � SEM from three

independent experiments. P values were determined using Student’s t test. (B) Induction of apoptosis in MCF7 and HCT116 cells under

ATO, PFTa, or a combination of ATO and PFTa treatment was evaluated through Annexin V-FITC and propidium iodide (PI) staining. Data

summary and analysis of the apoptotic index represented three independent experiments. The error bars indicate means � SEM from three

independent experiments. P values were determined using Student’s t test. (C) Induction of apoptosis under ATO, PFTa, or a combination

of ATO and PFTa treatment was further evaluated through western blot. PARP and BLC2 expression in MCF7 and HCT116 with the

indicated treatments were tested. (D) DNA content in HCT116 and A549 cells after ATO, PFTa, or a combination of ATO and PFTa

treatment was determined by PI staining. Percentage of cells in S phase is shown. The error bars indicate means � SEM from three

independent experiments. P values were determined using Student’s t test.
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PFTa coregulated genes to ATO single-regulated genes

suggested that most of the genes regulated by the

ATO single agent were overlapped in ATO plus

PFTa-regulated genes and a great number of genes

were only regulated by ATO and PFTa cotreatment

(Fig. 4A).

We focused on the common regulated genes

between ATO single-agent treatment and ATO plus

PFTa treatment. PFTa greatly enhanced the ability of

ATO to regulate its target genes in MCF7, HCT116,

and A549 cells (Fig. 4B). In other words, for genes

that were up/down-regulated after ATO-alone treat-

ment, the combination of PFTa further up/down-

regulated these genes. The expression levels of two

TP53 target genes, CCNG2 and SESN2, were further

tested using real-time PCR. ATO is an ROS genera-

tor and SESN2 is known to mediate an antioxidant

system to decrease ROS [22]. CCNG2 is a TP53 target

gene regulating cell cycle progress [23,24]. We showed

that the additional PFTa enhanced ATO’s ability to

upregulate its downstream target genes CCNG2 and

SESN2 in MCF7, HCT116, and A549 cells (Fig. 4C).

ATO plus PFTa-regulated genes are associated

with TP53 and cell cycle signaling pathways

To reveal the functional relevance of the common reg-

ulated genes between ATO single-agent treatment and

ATO plus PFTa treatment, we performed KEGG sig-

naling pathway enrichment analysis using DAVID.

The KEGG TP53 signaling pathway was highly

enriched in MCF7 cells, HCT116 cells, and A549 cells

(Fig. 5A). Besides the TP53 signaling pathway, some

other cellular pathways, like cell cycle, MAPK signal-

ing pathway, and the TGFb signaling pathway were

also associated with ATO functions (Fig. 5A). Reports

have shown that the MAPK pathway inhibitor

SB203580 [25–27] sensitized tumor cells to ATO-

induced growth inhibition. Those results showed that

ATO was a multitarget drug, and affected multiple sig-

naling pathways.

Moreover, the TP53 signaling pathway activity was

determined by single-sample gene set enrichment anal-

ysis (ssGSEA). We found that the relative activity of

the TP53 signaling pathway was increased after ATO

Fig. 3. ATO and PFTa synergistically

inhibit tumor growth in vivo. (A) Tumor

growth curve of HCT116 cells with

subcutaneous tumors treated with ATO,

PFTa, or their combination. The mice (six

per group) bearing tumor received

intraperitoneal injection 5 mg�kg�1�day�1

of ATO alone, 2.5 mg�kg�1�day�1 of PFTa

alone, or a combination of ATO and PFTa.

Data represent the means � SEM tumor

size of each group. P values were

determined using a two-way ANOVA test.

(B) Illustration show the tumor excised

from each treatment group. (C) The tumor

weight of each treatment group is shown.

The error bars indicate means � SEM. P

values were determined using Student’s

t test. (D) The mice body weight of each

treatment group is shown. The error bars

indicate means � SEM. P values were

determined using Student’s t test.

Fig. 4. PFTa enhances ATO-induced dynamic transcriptional changes. (A) Venn diagrams demonstrate the relationship between genes

regulated by ATO or combined ATO and PFTa treatment in TP53 wildtype MCF7, HCT116, and A549 cells after ATO treatment at the

indicated time. (B) The common regulated genes are further shown through heatmaps. (C) The relative expression levels of CCNG2 and

SESN2 were tested after ATO or combined ATO and PFTa treatment in TP53 wildtype MCF7, HCT116, and A549 cells at the indicated

time. The error bars indicated means � SEM from three independent experiments.
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Fig. 5. ATO plus PFTa-regulated genes are associated with TP53 and cell cycle signaling pathways. (A) Functional DAVID enrichment

analysis of the pathways associated with ATO plus PFTa-regulated genes in TP53 wildtype MCF7, HCT116, and A549 cells. The most

enriched pathways are shown and the P values demonstrated. (B) The relative activity of the TP53 signaling pathway was tested after ATO

or combined ATO and PFTa treatment in TP53 wildtype MCF7, HCT116, and A549 cells at the indicated time. (C) The relative activity of the

cell cycle signaling pathway was tested after ATO or combined ATO and PFTa treatment in TP53 wildtype MCF7, HCT116, and A549 cells

at the indicated time.
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treatment in HCT116 and A549 tumor cells (Fig. 5B).

Moreover, the activation of the TP53 signaling path-

way was inhibited by additional PFTa treatment

(Fig. 5B). On the contrary, in MCF7 cells the TP53

signaling pathway activity was decreased by ATO or

ATO plus PFTa treatment (Fig. 5B).

Previous results showed that the inhibition of TP53

by PFTa sensitized ATO therapeutic response by

induced cancer cell growth arrest, and then the relative

activity of the cell cycle was tested in MCF7, HCT116,

and A549 cells. The single ATO agent did not decrease

the relative activity of the cell cycle in HCT116 and

A549 (Fig. 5C). However, the relative activity of the

cell cycle signaling pathway was significantly decreased

by ATO combined PFTa treatment in HCT116 and

A549 tumor cells (Fig. 5C). On the contrary, ATO

alone could inhibit the relative activity of the cell cycle

in MCF7 cells (Fig. 5C).

Discussion

ATO is very effective in the treatment of APL [13–15].
With combinations with all-trans retinoid acid, more

than 90% APL patients are cured [28,29]. The effects

of ATO and all-trans retinoid acid in APL patients are

mainly related to the oncogene PML-RARa [22,30–
33]. However, the combinations of ATO and all-trans

retinoid acid in solid tumors have not achieved satis-

factory clinical outcomes. In solid tumors, ATO regu-

lated the m-TOR signaling pathway [34], MAPK

signaling pathway [25–27] and Hedgehog signaling

pathway [35,36]. The m-TOR signaling pathway inhi-

bitor rapamycin [34], MAPK signaling pathway inhibi-

tor SB203580 [25–27] and Hedgehog signaling

pathway inhibitor itraconazole [37] all increased the

sensitivity of ATO in solid tumors. Yet more detailed

functions of ATO in solid tumor cells should be

studied.

The functions of ATO in solid tumor cells are also

associated with the TP53 signaling pathway. Indeed,

cells with defect functions of TP53 are more sensitive

to ATO-induced apoptosis and growth inhibition in

multiple myeloma, breast cancer, lung cancer, or colon

cancer cells. The TP53 inhibitor PFTa is used to pro-

tect mice from the lethal side effects associated with

anticancer treatment by blocking TP53-dependent

transcriptional activation. Although several studies

have reported that PFTa has p53-independent effects

in cells [38–40], our results showed that PFTa
increased the sensitivity of ATO in TP53 wildtype

tumor cells in vitro and in vivo. The additional PFTa
treatment could enhance ATO’s ability to regulate its

downstream target genes. Our results suggested a

potential therapeutic implication of ATO and TP53

inhibitor PFTa in breast, colon, and lung cancer treat-

ment.

However, the use of the small-molecule inhibition of

TP53 in some anticancer therapies have attracted little

attention [41]. A great concern about the clinical use

of TP53 inhibitors is whether TP53 small-molecule

inhibitors could promote undesirable systemic side

effects, including the development of independent can-

cers in other organs [42]. An observation in this study

was that ATO combined TP53 inhibitor treatment was

without obvious adverse effects in mice. However, the

long-term adverse effects of ATO and PFTa in clinical

usage should be estimated. And the long-term conse-

quences of this therapeutic approach will need to be

investigated in detail.

Conclusion

The TP53 inhibitor PFTa increases the sensitivity of ATO

in TP53 wildtype breast, colon, and lung tumor cells.
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