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Cluster of differentiation 47 (CD47) is a widely expressed self-protection

transmembrane protein that functions as a critical negative regulator to

induce macrophage-mediated phagocytosis. Overexpression of CD47

enables cancer cells to escape immune surveillance and destruction by

phagocytes both in solid tumours and leukaemia. The usefulness of anti-

CD47 antibody has been demonstrated in multiple immunotherapies asso-

ciated with macrophages. However, antigen sinks and toxicity induced by

inadvertent binding to normal cells restrict its clinical applications. Here, a

novel anti-human CD47 antibody, 4D10, was generated, and its variable

regions were grafted onto a human IgG4 scaffold. Compared with the anti-

CD47 antibody Hu5F9, the resulting chimeric antibody (c4D10) has consis-

tently demonstrated good tolerance in in vitro and in vivo toxicity studies.

Additionally, c4D10 showed effective therapeutic potential through induc-

ing the eradication of human cancer cells. Thus, c4D10 is a promising can-

didate therapeutic antibody with higher efficacy and reduced side effects

compared to earlier antibodies, and its use may reduce the dose-limiting

toxicity of CD47 antagonists for immunotherapy.

Cluster of differentiation 47 (CD47), also known as inte-

grin-associated protein, is a widely expressed cell mem-

brane receptor belonging to the immunoglobulin

superfamily. It is regarded as a self-protection transmem-

brane protein in normal cells that resists the elimination

of macrophage-mediated phagocytosis. Upon binding to

signal regulatory protein-alpha (SIRPa), CD47 triggers a

phosphorylation cascade of the immunoreceptor tyro-

sine-based inhibition motif on the cytoplasmic tail of

SIRPa, which acts as a ‘don’t eat me’ signal [1].

Nevertheless, in multiple haematologic and solid malig-

nancies, the expression of CD47 is abnormally upregu-

lated compared to that in corresponding normal cells

[2,3]. Moreover, numerous studies demonstrated that

high CD47 expression was correlated with poor disease

survival, indicating that CD47 could act as an adverse

prognostic factor in numerous cancers, including myeloid

leukaemia, prostate carcinoma, lung carcinoma, breast

carcinoma and hepatocellular cancer [4–7]. Indeed,

pathological studies have consistently indicated that the
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expression of CD47 is directly regulated by the MYC

proto-oncogene, suggesting that CD47 functions as a

pro-tumorigenic factor [8].

More recently, after the molecular mechanism of the

role of CD47 in the process of tumour cell escape from

immune recognition was elucidated, targeting CD47 has

become a novel approach for treatment and has changed

the method of cancer immunotherapy. Through directly

induced tumour cell death and activated phagocytosis of

macrophages [9], the blocking of CD47 effectively facili-

tated the eradication of tumour cells and the subsequent

cross-priming of tumour-specific cytotoxic T cells to acti-

vate the adaptive immune response [10]. Furthermore,

other immune cells, such as natural killer cells, granulo-

cytes and dendritic cells, may also respond to CD47/

SIRPa blocking therapies [11–14]. By recruiting addi-

tional immune cells to tumours and synergizing the

response of innate and adaptive immunity, CD47 block-

ade has displayed tremendous pharmacological advan-

tages for preventing tumour recurrence and treating

advanced-stage malignancies and complications [15].

Currently, 10 CD47 antibodies and four SIRPa
fusion proteins are being evaluated for clinical efficacy

in various type of cancer [16]. As a result of the ubiq-

uitous expression and unique properties of CD47,

more attention is now principally being focused on

haematotoxicity, including anaemia and thrombocy-

topenia, caused by the administration of anti-CD47

blocking antibodies in clinical oncology studies [17–
19]. To minimize adverse events and release antigen-in-

dependent therapeutic effects, most CD47 antagonists

have been grafted to the IgG4 subclass with low affini-

ties for FccRIIa and FccRIIIa, which mediate anti-

body-dependent cellular phagocytosis of phagocytes

and antibody-dependent cellular cytotoxicity of natural

killer cells, respectively [20]. However, abrogating the

effector functions of the competent Fc region may

result in an unpredictable decline in the therapeutic

response. Indeed, Celgene has terminated a phase 1

study of CC-90002, as an agent of monotherapy, as a

result of an insufficiently encouraging profile for fur-

ther dose escalation/expansion in relapsed/refractory

acute myeloid leukaemia (AML) and high-risk

myelodysplastic syndromes (www.clinicaltrials.gov

identifier: NCT02641002). Meanwhile, Hu5F9-G4

combined with rituximab, an anti-CD20 conventional

cancer cell-opsonizing antibody, achieved an exciting

goal in patients with relapsed/refractory diffuse large

B-cell lymphoma and indolent non-Hodgkin lym-

phoma [21]. Therefore, there is still an ongoing and

urgent need to exploit a safe and highly specific anti-

CD47 antibody as a single agent or optional combina-

tion treatment.

In the present study, we developed an IgG4 subclass

chimeric anti-CD47 antibody, termed c4D10, based on

hybridoma technology. It displayed biological activity

comparable to reference molecules (Hu5F9-G4 and

CC-90002) during in vitro studies. Meanwhile, c4D10

elicited significant, potent macrophage-mediated

phagocytosis of tumour cells in non-obese diabetic/sev-

ere combined immunodeficient (NOD/SCID) mice.

Moreover, it exhibited a satisfactory safety profile,

such that it did not cause T-cell death or haemaggluti-

nation in vitro and demonstrating limited haematologic

toxicity in vivo. In haematological analysis, except for

a mild red blood cell (RBC) and haemoglobin drop,

no notable effect on serum biochemistry and other

haematocytes was observed in the hCD47/hSIRPa
double knock-in model administered with this anti-

CD47 blocking antibody. Overall, c4D10 comprises a

promising candidate in the exploitation of novel anti-

CD47 therapeutic agents.

Materials and methods

Cells and proteins

The human CD47 or human SIRPa gene encoding the

extracellular domain was fused to a Fc tag and cloned into

pCPC vector (plasmid was prepared from pCEP4; Invitro-

gen, Carlsbad, CA, USA), followed by transiently transfect-

ing HEK293 cells (Invitrogen) for fusion protein

production. The anti-CD47 antibodies CC-90002 and

Hu5F9-G4 were generated internally based on publicly

available sequences. The recombinant proteins and antibod-

ies were purified from supernatant by protein A affinity

chromatography and Superdex 200 (GE Healthcare, Chi-

cago, IL, USA) size exclusive chromatography. The molec-

ular weight and purity of the target proteins were verified

by SDS/PAGE and mass spectrometry.

The nucleotide sequences encoding the full-length amino

acid sequence of human or cynomolgus CD47 were cloned

into the pLVX-IRES vector (Clontech, Mountain View, CA,

USA). Stable cell lines (CHOK1/hCD47 and CHOK1/

cynoCD47) were constructed by transiently transfecting

CHOK1 cells with the respective plasmids followed by subse-

quent selection with Ham’s F-12K (Kaighn’s) medium

(Gibco, Waltham, MA, USA) supplemented with 10% FBS

(Biological Industries, Beit Haemek, Israel), 6 lg�mL�1 pur-

omycin (Invitrogen) and 1% Pen-strep solution (Biological

Industries) at 37 °C in a 5% CO2 incubator.

Human peripheral blood mononuclear cells (PBMCs)

were separated from whole blood by centrifugation at

400 g for 30 min on a Ficoll-Paque (GE Healthcare) den-

sity gradient and human RBCs were isolated from whole

blood by centrifugation at 200 g for 10 min at room tem-

perature with the brake turned off. All studies on human
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materials were approved by the Institutional Ethics Com-

mittee (IEC) of ChemPartner (Shanghai, China) (IEC pro-

tocol NO: IEC001-R2015) and written informed consent

was obtained from all donors.

Generation of murine antibodies

For generation of murine antibodies, 6–8-week-old SJL

mice (SLAC Laboratory, Menlo Park, CA, USA) were

immunized with the purified hCD47/Fc fusion protein with

an interval of 2 weeks between the initial immunization

and the first booster immunization, and a 3-week interval

between subsequent booster immunizations for a total of

5 weeks. Blood was collected 1 week after each boost, and

the antibody titre and specificity of the immunogen in the

serum were measured by flow cytometry. When sufficient

antibody titre was reached in serum, immunized mice were

scarified and the spleen cells were fused with SP2/0 cells.

Hybridomas were selected and supernatants from the

resulting clones were screened by an ELISA and fluores-

cence-activated cell sorting (FACS).

Variable region cloning and sequencing

After the supernatant obtained from the subcloning culture

was tested, 5 9 107 hybridoma cells were collected and pre-

pared for initial RNA isolation using an RNeasy Plus Mini

Kit (Qiagen, Hilden, Germany). Total cDNA synthesis with a

specific sequence at the 50 end was performed with Prime-

Script RT Master Mix (Takara, Kyoto, Japan) utilizing the

extracted RNA as a template. Next, cDNA containing the

whole variable region from hybridoma cell lines was amplified

and cloned into a TA vector. The DNA sequences of the vari-

able regions of mAbs were analysed by DNA sequencing.

Preparation of human-mouse IgG4 chimeric

anti-CD47 monoclonal antibodies

Based on the DNA sequences of variable regions, chimeric

antibodies were cloned into a pCPC vector by connecting

the variable regions of the mouse hybridoma mAbs to the

constant region of human IgG4PE (S228P/L235E) kappa

containing a signal peptide by overlapping PCR, with con-

firmation by DNA sequence analysis. Finally, the heavy

and light chain IgG expressing vectors were transiently co-

transfected into FreeStyle 293-F cells (Invitrogen) for fur-

ther production of chimeric antibodies. The name of each

chimeric antibody is defined by the corresponding antibody

clone number with the initial character ‘c’.

Cell surface antigen-binding assay

For cell surface antigen-binding assay, CHOK1/hCD47 or

CHOK1/cynoCD47 cells were plated in 96-well plates at a

density of 3 9 105 cells per well; RBCs were seeded into

96-well plates at a density of 2 9 106 cells per well. Various

concentrations (from 200 nM) of anti-CD47 antibodies or

isotype control were added and incubated with the cells at

4 °C for 1 h. After removing the antibodies, cells were

stained with a 1 : 1000 dilution of Alexa Fluor 488 goat

anti-human IgG (Invitrogen), washed and then fixed in

0.4% paraformaldehyde (Boster Biological Technology,

Pleasanton, CA, USA). Flow cytometry was performed on

a FACS Canto II flow cytometer (BD Biosciences, Franklin

Lakes, NJ, USA). Data were analysed using FLOWJO (Trees-

tar Inc., Ashland, OR, USA).

Antibody affinity measurement

The binding kinetics of anti-CD47 candidate mAbs to

CD47 was evaluated by a label-free bio-layer interferometry

assay on an Octet Red 384 (ForteBio, Fremont, CA,

USA). All experiments were performed at 25 °C in PBS

with 0.005% Tween-20. Candidate mAbs were loaded onto

anti-hIgG Fc capture sensors at a concentration of

5 lg�mL�1 in Stage 1 and CD47-His (Sino Biology, Beijing,

China) was loaded onto the biosensor for 600 s to obtain

saturation in Stage 2. All sensors were regenerated using

10 mM glycine-HCl buffer (pH 1.7) (GE Healthcare). The

data collected were processed and analysed using OCTET

DATA ANALYSIS (ForteBio).

HCD47/hSIRPa interaction blocking assay

The blocking activity of CD47 lead candidate antibody was

evaluated by a competitive ELISA. Briefly, 96-well plates

were coated with 1 lg�mL�1 SIRPa-hFc in PBS at 100 lL
per well at 4 °C overnight, followed by blocking with 1%

BSA (Amresco, Solon, OH, USA). The indicated concen-

trations of candidate mAbs (up to 200 nM) were applied to

the ELISA plate containing 0.005 lg�mL�1 biotin-conju-

gated human CD47 and immobilized human SIRPa, and

incubated for 1 h at 37 °C. Bound protein (biotinylated

human CD47) was detected with a horseradish peroxodase-

conjugated secondary antibody specific to streptavidin

(Sigma, St Louis, MO, USA). The addition of 3,30,5,50-te-
tramethylbenzidine substrate produced optical densities

proportional to bound antibody and was measured using a

SpectraMax M5 Multi-mode Plate Reader (Molecular

Devices, San Jose, CA, USA). Four parameter fit curves

were generated with PRISM, version 6 (GraphPad Software

Inc., San Diego, CA, USA).

Phagocytosis assay

After isolation over a Ficoll-Paque Plus density gradient,

human PBMCs were plated in a tissue culture dish

(100 9 20 mm) (Corning Inc., Lowell, MA, USA) with
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basal culture medium RPMI-1640 (Gibco), at a concentra-

tion of 2 9 106 cells�mL�1 for 2 h in a humidified incuba-

tor with a 5% CO2 atmosphere at 37 °C. Adherent

monocytes were stimulated with macrophage colony-stimu-

lating factor (PeproTech, Rocky Hill, NJ, USA) for 7–
10 days to obtain macrophages. Macrophages were har-

vested and cocultured with carboxyfluorescein succinimidyl

ester (CFSE)-labelled (Sigma) Jurkat cells (ATCC, Manas-

sas, VA, USA) in the presence of serial dilutions of candi-

date mAbs (from 0.004 to 66.67 nM) in the ratio 1 : 4 for

4 h. Macrophages were then stained with anti-CD14 (eBio-

science, San Diego, CA, USA) and FACS was performed.

The CD14+CFSE+ population represented phagocytic cells.

AML xenograft model in NOD/SCID mice

Raji cells (CCL-86; purchased from ATCC) were main-

tained in vitro as a suspension culture at a density of

4 9 105 cells ml–1 in RPMI-1640 medium enriched with

10% FBS and 1% Pen-strep solution at 37 °C in the 5%

CO2 incubator. The tumour cells were routinely subcul-

tured twice weekly. When the tumour size reached 79.97

mm3 for the tumour efficacy study (day 14 post-inocula-

tion), 24 tumour-bearing mice were block randomized into

three groups with eight mice in each group. All mice were

treated with 10 mg�kg�1 anti-CD47 antibodies or control

intravenously on days 1, 3, 5, 8, 10, 12, 15, 17 and 19. Ani-

mal weight was recorded and the tumour size was mea-

sured in two dimensions using a calliper twice weekly. The

tumour volume (mm3) was expressed using: V = 0.5 9 a 9

b2, where a and b are the long and short diameters of the

tumour, respectively. On day 25 after the mice received

tumour cells, all mice were killed and tumours were har-

vested and weighed.

The present study was carried out in accordance with the

protocol approved by the Institutional Animal Care and

Use Committee of Shanghai Chempartner (IACUC proto-

col No. B11-20180620-0001-20210620) following the guid-

ance of the Association for Assessment and Accreditation

of Laboratory Animal Care. Animals (certificate number:

SCXK (Ze) 2019-0001 1911280060) that were observed to

be in a continuously deteriorating condition or with a

tumour size exceeding 20% body weight were euthanized.

Haemagglutination assay

For the haemagglutination assay, human RBCs were mixed

with PBS to generate a 5% (V/V) cell suspension and

seeded to a round-bottom 96-well plate. Serial dilutions of

candidate mAbs (from 0.01 to 333.33 nM) were added and

incubated with human erythrocytes for 2–6 h at room tem-

perature. Haemagglutination was determined by the pres-

ence of non-settled RBCs, appearing as a haze compared

to the punctuated red dots of non-haemagglutinated RBCs.

The haemagglutination score was determined by

quantifying the area of the RBC pellet in the presence of

the antibody, normalized to that in the absence of the anti-

body.

Apoptosis assay

Ninety-six-well plates were coated with 1 lg�mL�1 anti-

CD3 (ChemPartner) and serial dilutions of candidate mAbs

(from 0.67 to 66.67 nM) in PBS for 16 h at 4 °C, followed
by washing with PBS three times. Primary T cells were sep-

arated from human PBMCs by positive selection (EasySep

Human CD3+ T Cell Isolation Kit; Stemcell Technologies,

Vancouver, BC, USA) in accordance with the manufac-

turer’s instructions. Then, 3 9 105 CD3+ T cells in RPMI-

1640 (Gibco) containing 10% FBS were added per well to

the coated 96-well plates followed by incubation overnight.

The next day, cells were harvested and stained with

Annexin-V-Alexa 488 (Invitrogen) for apoptosis cell count-

ing.

Toxicity study in hCD47/hSIRPa double knock-in

mice

The in vivo toxicity of the anti-CD47 antibody was evalu-

ated in the hCD47/hSIRPa double knock-in model. All

hCD47/hSIRPa double knock-in mice, from Beijing Biocy-

togen Co., Ltd (Beijing, China) with certificate number

SYXK (Su) 2016-0004, were randomly assigned to one of

four groups (three mice per group) and injected intraperi-

toneally with 10 mg�kg�1 anti-CD47 antibody or control

on days 0, 2 and 4. Animal weight was measured, serum

were prepared for blood chemistry tests on days 6, and

whole blood was analysed for complete blood counts on

days 1, 3, 6 and 13.

The animal study was approved by the Biocytogen Ani-

mal Care Committee in accordance with the regulations of

the IACUC. At the time of routine monitoring, any

observed adverse clinical signs were described and docu-

mented in the study record. Animals with severe clinical

abnormal signs, with no improvement, or animals not

anticipated to recover before the next scheduled time point

or dose administration were euthanized.

Results

Generation of chimeric monoclonal antibodies

against human CD47

In the present study, a hCD47/Fc fusion protein was

utilized to immunize SJL mice and produce mono-

clonal mouse anti-human CD47 antibodies. After the

binding activities with CHOK1/hCD47 and hCD47/

hSIRPa blocking activity were estimated, one of the

high specific positive clones was obtained and
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designated as 4D10. Using standard molecular biology

cloning techniques, heavy and light variable regions of

4D10 were routinely cloned and sequenced for further

analysis. In the amino acid sequence alignment

BLAST results, the sequence of 4D10 displayed 64%

homology with that of Hu5F9-G4 produced by Forty

Seven (Menlo Park, CA, USA) and 54% homology

with CC-90002 of Celgene in the VL region, and the

homology of the VH region of 4D10 with Hu5F9-G4

and CC-90002 was 69% and 57%, respectively

(Table 1). As a potential therapeutic antibody, no

post-translational modification hotspot, such as Asn-

Gly (NG) motif, Asp-Gly (DG) motif, Asn-X-Ser/Thr

(NXS/T) motif and free cystine, was included in the

variable regions [22–24]. All of the results above sup-

port the hypothesis that 4D10 is a novel and struc-

turally stable antibody molecule. Finally, variable

regions of 4D10 were genetically fused to a human

IgG4 backbone that recruits fewer Fc-dependent effec-

tor mechanisms compared to different human IgG

subclasses. The human IgG4 CH1 domain was also

modified to incorporate the Ser228Pro substitution to

minimize the rate of half-molecule exchange (‘Fab-arm

exchange’) [25–27].

Characterization of antigen binding activity of

c4D10 by flow cytometry and bio-layer

interferometry

Because there are only three amino acids in the extra-

cellular domain of cynoCD47 that were different from

human CD47 and none were involved in the CD47/

SIRPa interaction interface, cynomolgus monkeys

were utilized widely for preclinical pharmacokinetic

and toxicology assessments related to CD47 antibody

[28–31]. Along with CHOK1/hCD47 cells, CHOK1/

cynoCD47 cells were employed to detect the binding

properties of the three CD47 antibodies. As shown in

Fig. 1A, CC-90002 bound to CHOK1/hCD47 cells

and CHOK1/cynoCD47 cells with an EC50 of 0.99 nM

and 0.54 nM, both being superior to Hu5F9-G4 (3.73

and 2.96 nM) and c4D10 (5.75 and 2.51 nM). Next, the

antigen binding activity of c4D10 to human RBCs was

measured to evaluate its possible off-target effects and

preliminary in vitro toxicity. The c4D10 dose-

dependently bound human RBCs with an EC50 of

1.49 nM, which was slightly stronger than c4D10

(2.0 nM) but two-fold weaker compare to Hu5F9-G4

(0.75 nM) (Fig. 1B). To accurately identify the binding

activity of c4D10, the Octet Red 384 System, which

offers a powerful means of monitoring the molecular

interactions of a biomolecular complex in real-time,

was applied to analysed the affinities of three antibod-

ies with hCD47 [32,33]. The c4D10 antibody bound to

recombinant human CD47 antigen with a KD of

1.06 nM, which was improved by approximately five-

fold compared to that of CC-90002 and by 16-fold

compared to that of Hu5F9-G4 (Table 2).

CD47 lead candidate induces potent

macrophage-mediated phagocytosis of AML

As a critical property of an efficacious antibody, the

blocking activity of c4D10 was measured using a com-

petitive ELISA. Surprisingly, the IC50 of c4D10 that

disrupted the CD47-SIRPa interaction was 0.20 nM,

which was superior to that of Hu5F9-G4 (1.1 nM) and

CC-90002 (0.71 nM) (Fig. 1E). To further conform the

therapeutic potential, we assessed functional phagocy-

tosis mediated by human macrophages in the presence

of our candidate and reference antibodies. As shown

in Fig. 1D, the three antibodies all strongly promoted

the engulfment of Jurkat cells, a T-cell leukaemia line

with high endogenous expression of CD47, in a dose-

dependent manner. The EC50 and maximal value of

the phagocytic index induced by c4D10 (maxi-

mum = 79.17, EC50 = 0.37 nM) were to some extent

inferior to that of CC-90002 (maximum = 74.97,

EC50 = 0.12 nM) but better than that of Hu5F9-G4

(maximum = 67.65, EC50 = 0.61 nM) (Fig. 1C,D).

Based on the biochemical behaviour and functional

outcome, c4D10 is a potential effective therapeutic

antibody worthy of further in-depth investigation.

CD47 lead candidate eradicates primary human

AML in vivo

Because SIRPa from NOD/SCID mice bound human

CD47 with an exceptionally higher affinity compared

to that from other mouse strains, and even greater

than hCD47 [34], this strain is an ideal xenograft

model for assessing the tumour inhibitory effect of our

antibodies. In mice xenografted with the lymphoma

cancer cell line Raji, c4D10 and CC-90002 were simul-

taneously well tolerated with no obvious body weight

lost after correcting by deducting the final tumour

weight (Fig. 2A,C). At day 25 post-inoculation, the

mean � SD tumour volume of CC-90002- and c4D10-

Table 1. BLAST results of c4D10 with reference antibody

sequences.

Antibody region Hu5F9-G4 CC-90002

VL 64% 54%

VH 69% 57%
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treated mice was 10.62 � 4.32 and

67.44 � 21.70 mm3, respectively, whereas all mice in

the control group were euthanized as a result of large

tumour burden (> 2000 mm3) within 1 month

(Fig. 2B). It is particularly noteworthy that two and

three mice achieved almost complete remission

throughout treatment with c4D10 and CC-90002,

respectively (Fig. 2C). Although c4D10 was slightly

inferior to CC-90002 with respect to therapeutic

efficacy (consistent with previous phagocytic activity

data in vitro), the two antibodies all displayed robust

antitumour immune responses in vivo.

No adverse event related to c4D10 is observed

in vitro toxicity studies

Because of the high expression level of CD47 on ery-

throcytes, most CD47 antibodies have been reported

Fig. 1. Characterization of c4D10 in vitro. (A, B) Antibodies were used to stain CHOK1/cynoCD47 cells (A, left) or CHOK1/hCD47 cells (A,

right) or human RBCs (B) prior to detection with Alexa Fluor 488-conjugated anti-human secondary antibody by flow cytometry. The

experiment was performed three times with similar results being obtained. (C, D) Macrophages were cocultured with CFSE-labelled Jurkat

cells in the presence of hIgG4, c4D10, CC-90002 or Hu5F9-G4. Representative cytofluorometric plots reflecting maximum phagocyticity are

shown (C), the phagocytosis index was determined by the percentage of Alexa 488+ cells within the APC+ macrophage cell gate (D, left)

and IC50 values of indicated antibodies were calculated using PRISM, version 6 (D, right). Data shown represent n = 3 donors. (E) Competitive

inhibition of SIRPa binding to CD47. Serial dilutions of c4D10, CC-90002 and Hu5F9-G4 disrupt the interaction of CD47 and SIRPa. Results

are representative of three independent experiments. All error bars indicate the SEM.
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to cause haemagglutination of human erythrocytes. A

predominant side effect in the use of the antagonist

targeting CD47 results from a homotypic interaction,

where two CD47-expressing cells are prone to aggre-

gate or clump together when treated with a bivalent

CD47 binding entity [35]. To evaluate the safety of

c4D10 as a curative drug, a haemagglutination assay

was conducted on human RBCs. In Fig. 3A, c4D10

and CC-90002 did not induce haemagglutination at

any of the concentrations tested; in contrast, Hu5F9

induced haemagglutination of human RBCs with a

score of 1.2 or higher at concentrations ranging from

4.12 to 333.33 nM.

Activation-induced death of T cells plays an impor-

tant role in the regulation of immune responses. Previ-

ous work has demonstrated that engagement of

distinct epitopes on CD47 rapidly signals T-cell death

in a novel pathway [36]. In our test (Fig. 3B), severe

apoptosis was readily observed in the presence of the

reference antibodies, especially Hu5F9-G4 (maxi-

mum = 45.10); in contrast, this phenomenon did not

appear in the c4D10 group. From the two toxicity

studies conducted in vitro, we hypothesized that c4D10

is an anti-human CD47-neutralizing antibody provid-

ing better safety features.

Chimeric 4D10 shows good tolerance in hCD47/

hSIRPa double knock-in mice

To further detect immune-related toxicity, a cohort of

chimeric B-hSIRPa/hCD47 mice, comprising an

effective in vivo model for the development of CD47

and SIRPa antibodies that can be advanced to human

clinical trials, was grouped and injected intraperi-

toneally with the respective antibodies [37]. In the 13-

day observation period, clinical signs, including body

weight, complete blood components and serum bio-

chemistry, were monitored. Interestingly, counts of

white blood cells (including lymphocytes, monocytes

and neutrophils) and mean platelet volume showed a

drastic increase at day 6 in the group administered

Hu5F9-G4 or hIgG4, whereas no obvious effect was

observed in the group treated with c4D10. At the same

time, there was a significant and long-term reduction

of RBC counts, haemoglobin and haematocrit in the

Hu5F9-G4 administered mice with increased mean

corpuscular volume and mean corpuscular haemoglo-

bin, suggesting that haemolytic anaemia occurred [38],

which was only mild and transient in the c4D10 group

(Fig. 4A). In the biochemical analysis, Hu5F9-G4 also

caused a statistically significant decrease in serum crea-

tinine and urea concentrations, which are markers of

kidney dysfunction (Fig. 4B) [39]. Because a direct

aspect may reflect overall toxicity, animal weight was

recorded. Despite there being no difference between

the groups with respect to the day by which normal

weight was recovered, the group treated with Hu5F9-

G4 clearly displayed a greater weight loss (Fig. 4C).

Briefly, all of these observations indicated that

c4D10 was generally well tolerated at a dose of

10 mg�mL�1, and no obvious influence on the level of

complete blood counts and blood chemistry was

Table 2. Representative data of c4D10 and reference antibodies. NA, not applicable; –, not test. Data are shown as the mean � SEM.

c4D10 Hu5F9-G4 CC-90002 hIgG4 Vehicle

Affinity

KD (M) 1.06*10�09 1.78*10�08 5.60*10�09 NA NA

Phagocytosis

Maximum (index) 79.17 67.65 74.97 29.15 –

EC50 (nM) 0.38 0.61 0.12 NA NA

Haemagglutination

Max (score) 1.07 2.16 1.19 1.12 –

T-cell death (66.67 nM)

Apoptosis (%) 21.5 45.1 30.5 22.9 –

AML xenograft model in NOD/SCID mice

Tumour volume (mm3) 67.44 � 21.70** – 10.62 � 4.32** – 2543.40 � 247.03

Tumour weight (g) 0.082 � 0.025** – 0.019 � 0.0068** – 2.77 � 0.19

Toxicity study in B-hSIRPa/hCD47 mice (day 6)

White blood cells (109�L–1) 3.87 � 0.37 27.09 � 3.83* – 22.26 � 3.00* 4.55 � 0.32

RBCs (109�L–1) 5.53 � 0.19 3.04 � 0.33 – 4.11 � 0.39 6.70 � 0.44

Mean platelet volume (fl) 4.60 � 0.08 5.63 � 0.07** – 5.47 � 0.10** 4.37 � 0.03

CR (lmol�L�1) 44.37 � 8.41 22.36 � 8.16* – 23.46.11 � 6.41 48.92 � 8.76

UREA (mmol�L�1) 1.49 � 0.13 1.56 � 0.18* – 1.45 � 0.04 1.93 � 0.21

Animal weight (g) 18.1 � 0.34 17.47 � 0.14* – 19.23 � 0.38 19.33 � 0.18

*P < 0.05; **P < 0.001 versus vehicle. Statistics were performed using one-way analysis of variance (Tukey–Kramer).
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observed. Although transient anaemia caused by

Hu5F9-G4 was improved with a priming and mainte-

nance dose regimen [31], long-term toxicity still needs

further follow-up in more patients and in various

malignancies. Overall, c4D10 is a promising antibody

that simultaneously possesses desirable therapeutic effi-

cacy and minimal deleterious effects.

Discussion

As a self-protection protein, CD47 plays a pivotal role

in enabling cancer cells to evade immune elimination

[12]. To engage with SIRPa, CD47 transmits a nega-

tive signal to macrophages to inhibit phagocytosis and

subsequently antigen presentation [10]. Antibodies or

Fig. 2. Efficacy study of c4D10 in vivo. Raji tumour cells were implanted subcutaneously in the right flank of NOD/SCID mice. Mice with

established tumours (average of 79.97 mm3) were block randomized and treated with 10 mg�kg�1 vehicle, CC-90002 or c4D10 through an

intravenous route on days 1, 3, 5, 8, 10, 12, 15, 17 and 19. The weight of the mice was tested (A) and the tumour size was recorded (B)

twice weekly. On day 25 after mice received tumour cells, all mice were killed, and tumours were collected and weighed (C). All error bars

indicate the SEM (n = 8).

Fig. 3. Toxicity study of c4D10 in vitro. (A) Haemagglutination assays were conducted with human erythrocytes and titrated amounts of

c4D10, CD47-specific antibodies or hIgG4 (top). The extent of haemagglutination was assessed by the Comparable area of the RBC pellet

using Photoshop (Adobe Inc., San Jose, CA, USA) software (bottom). Data shown represent n = 3 donors. (B) CD3+ cells were cultured

with plate-bound anti-CD3 in the presence of immobilized anti-CD47 antibodies overnight prior to detection with Annexin-V-Alexa 488 by

flow cytometry. Data shown represent n = 3 donors.
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Fig. 4. Toxicity study of c4D10 in vivo. B-hSIRPa/hCD47 mice (n = 3) were treated with 10 mg�kg�1 anti-CD47 antibodies or control through

an intravenous route on days 0, 2 and 4, routine blood tests were performed (A), blood chemistry levels were tested on day 6 (B) and

mouse weights were recorded (C). ALT, alanine amino-transferase; AST, aspartate transaminase; CHOL, cholesterol; CR, creatinine; GLU,

glucose; TRIG, triglyceride; UREA, urea. All error bars indicate the SEM (n = 3). *P < 0.05. Statistics were performed using one-way

analysis of variance (Tukey–Kramer).
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other blocking agents, targeting the CD47-SIRPa axis

and blocking the cross-talk between macrophages and

cancer cells, will induce dramatic and durable antitu-

mour immunity by bridging innate and adaptive

immune responses [40]. However, as a critical regulator

of RBCs, CD47 is functionally involved in the mainte-

nance and clearance of RBCs, suggesting that haemo-

lytic anaemia may occur subsequent to the use of an

antagonist targeted towards CD47 [41]. To alleviate

this symptom and maximize potency, fusion molecule

engineered IgG1 Fc tail and SIRPa proteins were

developed, including TTI-621 and IMM01, which do

not bind to RBCs as a result of species-specific differ-

ences in the mobility of CD47 in erythrocyte mem-

branes [42]. Despite the moderate RBC and

haemoglobin toxicity compared to the CD47 antibody,

the administration of these fusion proteins displayed

an overall higher toxicity to other cells resulting from

the strong antibody-dependent cellular cytotoxicity

activity of IgG1. In TTI-621 trials, four of five patients

receiving 0.3 mg�kg�1 dosages developed G3 and G4

platelet counts, which was not reported in the Hu5F9-

G4 trial [17,18].

In the present study, we describe the development of

c4D10, a chimeric IgG4 subclass antibody that har-

bours weak binding activity with FccR and ultrahigh

affinity with CD47. In the preclinical pharmacokinetic

study, c4D10 effectively inhibited the CD47-SIRPa
interaction, which caused an acute depletion of cancer

cells, even with only a limited contribution of anti-

body-dependent cellular phagocytosis. Notably, in an

in vivo toxicity study with hCD47/hSIRPa double

knock-in mice, only transient and reversible anaemia

occurred after treatment with c4D10. Furthermore,

c4D10 showed relatively high cross-reactivity with

cynomolgus monkey CD47, allowing direct assessment

of the safety and toxicokinetic profiles in this non-hu-

man primate, which could potentially be used to

inform the design of clinical trials and the starting

dose. Taken together, c4D10 is an excellent antagonist

with respect to performing effective pharmacokinetics

in the elimination of tumour cells at the same time as

maintaining a favourable preclinical safety profile

(Table 2).

Considering that a pro-phagocytosis signal is also

needed to trigger phagocytosis and that our mAb is an

IgG4 subclass antibody [43], it is rational to fuse it

with other tumour-targeting antibodies or other

modalities. Previous findings have demonstrated that

conventional therapies, such as chemotherapy-medi-

ated upregulation of cell surface calreticulin and radio-

therapy-induced inflammation, increased the sensitivity

of the tumour to macrophages, all of which

contributed to the outcomes of anti-CD47 treatment

[44]. Hu5F9-G4 in combination with the chemothera-

peutic azacitidine, the anti-epidermal growth factor

receptor mAb cetuximab and the PD-L1 targeting

antibody avelumab achieved promising outcomes in

clinical trials (www.clinicaltrials.gov identifiers:

NCT04313881, NCT02953782 and NCT03558139).

Although combination strategies with other commer-

cial drugs require further testing, the evidence outlined

above firmly suggests that c4D10 is probably an ideal

component of a combination strategy and has a simi-

lar biological therapeutic potency and lower toxicity

compared to Hu5F9-G4.

Similar to the CD47-SIRPa axis, malignant cells are

capable of avoiding macrophage-dependent destruction

through the overexpression of anti-phagocytic surface

proteins, including programmed cell death ligand 1, b-
2 microglobulin subunit of the major histocompatibil-

ity class I complex and CD24 [45–47]. Interestingly,

CD24 acts as a complementary signal of CD47 and

appears to have inversely correlated expression in

human diffuse large B-cell lymphoma. Furthermore,

ovarian and triple-negative breast cancers that were

particularly susceptible to CD24 blocking did not

respond well to CD47-blocking therapy, and vice versa

in leukaemia. In the tumour microenvironment, PD-1

expression correlates with M2-polarized macrophages,

which play a key role in the growth or regression of

tumours. Thus, our research not only focuses on devel-

oping possible potential pharmacological applications

of c4D10, but also deepens the understanding of

homeostatic phagocytosis maintenance with respect to

facilitating research on phagocytosis checkpoint block-

ade. Lastly, the accumulated data in clinical trials pro-

vide a significant impetus for the discovery of safe and

highly specific phagocytosis checkpoint inhibitors, with

c4D10 exhibiting strong clinical value as a drug.
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