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Objective: To develop and validate radiomics models based on multiphasic CT in
predicting Kirsten rat sarcoma virus (KRAS) gene mutation status in patients with
colorectal cancer (CRC).

Materials and Methods: A total of 231 patients with pathologically confirmed CRC were
retrospectively enrolled and randomly divided into training(n=184) and test groups(n=47)
in a ratio of 4:1. A total of 1316 quantitative radiomics features were extracted from non-
contrast phase (NCP), arterial-phase (AP) and venous-phase (VP) CT for each patient.
Four steps were applied for feature selection including Spearman correlation analysis,
variance threshold, least absolute contraction and selection operator, and multivariate
stepwise regression analysis. Clinical and pathological characteristics were also
assessed. Subsequently, three classification methods, logistic regression (LR), support
vector machine (SVM) and random tree (RT) algorithm, were applied to develop seven
groups of prediction models (NCP, AP, VP, AP+VP, AP+VP+NCP, AP&VP, AP&VP&NCP)
for KRAS mutation prediction. The performance of these models was evaluated by
receiver operating characteristics curve (ROC) analysis.

Results: Among the three groups of single-phase models, the AP model, developed by
LR algorithm, showed the best prediction performance with an AUC value of 0.811 (95%
CI:0.685–0.938) in the test cohort. Compared with the single-phase models, the dual-
phase (AP+VP) model with the LR algorithm showed better prediction performance
(AUC=0.826, 95% CI:0.700-0.952). The performance of multiphasic (AP+VP+NCP)
model with the LR algorithm (AUC=0.811, 95%CI: 0.679-0.944) is comparable to the
model with the SVM algorithm (AUC=0.811, 95%CI: 0.695-0.918) in the test cohort, but
the sensitivity, specificity, and accuracy of the multiphasic (AP+VP+NCP) model with the
LR algorithm were 0.810, 0.808, 0.809 respectively, which were highest among these
seven groups of prediction models in the test cohort.

Conclusion: The CT radiomics models have the potential to predict KRAS mutation in
patients with CRC; different phases may affect the predictive efficacy of radiomics model,
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of which arterial-phase CT is more informative. The combination of multiphasic CT images
can further improve the performance of radiomics model.
Keywords: colorectal cancer, computed tomography, radiomics, Kirsten rat sarcoma virus, mutation
INTRODUCTION

Colorectal cancer (CRC) is the second most common cancer and
the fourth-leading cause of cancer death in China (1). Kirsten Rat
Sarcoma virus (KRAS) is the most common mutated oncogene in
colorectal cancer, about 30%-45% of patients with CRC have
mutations in the KRAS, which is one of the high-risk factors
that drive distant metastasis of tumor cells (2). Those patients with
CRC who have KRAS mutations have no benefit of the antibody-
targeted therapies to the epidermal growth factor receptor (EGFR)
(3). Hence, KRAS mutational test has been recommended by the
National Comprehensive Cancer Network (NCCN) guidelines for
patients with suspected or proven metastatic CRCs for guiding
targeted therapy (4).

At present, the gold standard for determinate KRAS mutation
status is the pathological examination of tumor tissue in clinical
practice (4). However, some patients cannot tolerate biopsy due
to its invasiveness, and the insufficient quality of biopsy
specimens may hinder efficient and robust mutation testing. In
addition, tumor tissues have the characteristics of spatial and
temporal heterogeneity (5), which makes biopsy samples may
not accurately reflect the tumor genotype expression, especially
after multiple treatments (6, 7). Therefore, it would be
meaningful for developing a relatively simple and non-invasive
method for identifying KRAS mutational status in patients
with CRC.

Some non-invasive methods had been used to predict KRAS
mutation status in previous studies, and the most used imaging
technique was fluorine-18 fludeoxyglucose (18F-FDG) positron
emission tomography (PET)-CT (8–11). However, the sample
size of these studies was generally small and the research results
had been conflicting between different studies (10, 12).

In recent years, radiomics is an emerging technique that has
been widely studied in the early diagnosis, efficacy evaluation,
and prognosis prediction of tumors (13–16). Previous studies
indicated that radiomics has shown great prediction
performance and clinical potential for predicting the genetic
mutations status of glioma (17, 18), lung cancer (19, 20), and
breast cancer (21). In addition, radiomics has been studied in
CRC for predicting KRAS mutation (22–27), but most of these
studies have only used portal venous phase CT images for
radiomics analysis. It is not yet clear whether the non-contrast
phase (NCP), arterial phase (AP), venous phase (VP) CT images
can be used to predict KRAS mutation in patients with CRC, and
the value of the combination of multiphasic radiomics features
has yet to be investigated.

Therefore, the aim of our study was to investigate the
performance of CT radiomics analysis based on multiphasic
CT imaging for predicting KRAS mutation in patients with CRC.
2

MATERIAL AND METHODS

Patients
The study conformed to the provisions of the Declaration of
Helsinki (as revised in 2013). Ethical approval is not required for
this study as it is based on information collected as part of
routine clinical practice. Informed consent was waived because
of the retrospective design. We retrospectively analyzed data
from patients who were surgically confirmed to have CRC from
January 2014 to December 2018. A total of 231 patients met the
inclusion criteria for this study. The inclusion criteria and
exclusion criteria were shown in Supplementary Material S1.
All patients were randomly divided into training and test groups
in a ratio of 4:1. There were 184 cases in the training group (80
cases of KRAS mutant type, 104 cases of wild type) and 47 cases
in the test group (21 cases of KRAS mutant type, 26 cases of
wild type).

Baseline clinical characteristics, including age, gender,
maximum tumor diameter, levels of carcinoembryonic antigen
(CEA), carbohydrate antigen-199 (CA199), and carbohydrate
antigen-724(CA724)were collected from the medical records.
The pathological characteristics of tumor surgical specimens,
including tumor TNM stage, tumor location, and tumor
differentiation grade (well , moderately, and poorly
differentiated) were assessed as well.

Identification of KRAS Mutation Status
All surgically resected specimens were processed conventionally
by a trained pathologist. DNA was extracted from the formalin-
fixed paraffin-embedded (FFPE) tumor tissues by the DNA FFPE
Tissue Kit (Xiamen Aide Biological Co., Ltd.). Mutations of
KRAS (exons 2, 3, and 4) were analyzed by polymerase chain
reaction (PCR) and the amplification refractory mutation system
(ARMS) method.

Image Acquisition and Segmentation
All patients underwent contrast-enhanced abdominal and pelvic
CT by using 64-detector or 128-detector row spiral CT systems
in our hospital. The CT image acquisition settings are described
in Supplementary Material S2. All NCP, AP, and VP CT images
were retrieved from a picture archiving and communication
system (PACS) for image segmentation and analysis except for
the portal venous phase CT images.

For the lesion segmentation, the region of interest (ROI) was
segmented by using software ITK-SNAP (v.3.8.0; http://www.
itksnap.org). Firstly, we manually delineated along the contour of
tumors on the largest slices on the VP CT images, excluding the
air and feces in the intestinal tract. And the ROIs on the NCP and
AP CT images were delineated with reference to that on the VP
June 2022 | Volume 12 | Article 84879
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CT images (Figure 1). The ROI of lesions was manually
determined by two radiologists with 3 and 8 years of
experience, with unanimous agreement. Radiologists were
blind to grouping and genetic test results.

Image Preprocessing and Radiomics
Feature Extraction
The original images of all cases and the ROI of lesions were
preprocessed by using the AK software (Artificial Intelligence
Kit, version 3.3.0, GE healthcare) before radiomics feature
extraction. The CT image slice and the ROI was resampled to
a uniform pixel dimension size of 1×1×1 mm3 by using Linear
Interpolation and Nearest Neighbour Interpolation (Figure 1).

All radiomics features were extracted using AK software, the
detailed information of these features was available in the
documentation for PyRadiomics (https://pyradiomics.
readthedocs.io/en/latest/features.html), which followed the IBSI
radiomics guidelines. Seven categories of feature parameters,
Frontiers in Oncology | www.frontiersin.org 3
including first-order features, shape features, gray level co-
occurrence matrix (GLCM), gray level size zone matrix
(GLSZM), gray level run length matr ix (GLRLM),
neighbourhood gray-tone difference matrix (NGTDM), and
gray level dependence matrix (GLDM) were selected for
feature extraction (Figure 2). In addition, Wavelet transform,
Laplacian of Gaussian (LoG) and Local binary pattern (LBP)
were applied to the original image respectively and yielded a
corresponding derived image. Ultimately, a total of 1316
quantitative 2D radiomics features was exacted based on the
original image and its corresponding derived image.

Radiomics Feature Selection and
Radiomics Model Building
All cases in the training cohort were used to train the predictive
model, while cases in the test cohorts were used to independently
evaluate the model’s performance. All radiomics features were
imported into the IPMs software (Institute of Precision Medicine
A B DC

FIGURE 2 | Radiomics analysis workflow of our study.
FIGURE 1 | Different CT-phase images used for radiomics analysis. (A–C) Images before the preprocessing of non-contrast phase, arterial-phase, and venous-
phase. (D–F) Images after the preprocessing and delineated along the contour of tumor on the largest slices of tumor.
June 2022 | Volume 12 | Article 848798
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Statistics, version 2.4.2, GE healthcare). Before analyses, the missing
values were replaced by the median, and the data were standardized
by the Z-score method. For the radiomics feature selection, four
steps were performed to select the optimal feature subsets for
predicting KRAS mutations. First, we used the Spearman
correlation analysis. If the correlation coefficient between feature
and gene mutation status is small than 0.1, the feature will be
eliminated. Second, the Variance threshold method was used to
remove features with a variance value lower than 1. Third, the least
absolute shrinkage and selection operator (LASSO) algorithm was
performed for eliminating the redundancy, this approach can
estimate the regression coefficients for every feature and
successively shrink them to avoid inflation of the estimated
coefficients, resulting in superior predictive performance (28).
Fourth, we used multivariate stepwise regression analysis to select
the features which were considered to be associated with KRAS
mutations. The p-in and p-out of multivariate stepwise analysis
were 0.05 and 0.10, respectively. Finally, logistic regression (LR),
support vector machine (SVM), and random tree (RT) algorithm
were used to build seven groups of prediction models, including the
NCP, AP, VP, AP+VP, AP+VP+NCP, AP&VP and AP&VP&NCP
models. 5-fold cross-validation was used to select the model with the
best performance in the training process. For the SVM and RF, the
hyper-parameters of thesemodels were automatic selected by search
method, the detailed information of gamma, C, max depth, min
samples split, and n estimators were shown in Table S1.

Validation of the Radiomics Model
The receiver operating characteristic (ROC) curve was employed
to evaluate the performance of radiomics models for the
prediction of KRAS mutation. The area under the curve
(including the 95% confidence interval), sensitivity, specificity,
and accuracy were also recorded. The calibration curve and the
Hosmer-Lemeshow test were used to evaluate the goodness-of-fit
of the radiomics model. Decision curve analysis (DCA) was used
to evaluate models’ net benefits in different threshold
probabilities in the training and test cohort. P<0.05 was
considered statistically significant.

Statistical Analysis
The clinical and pathological characteristics were analyzed by SPSS
Statistics 25.0 software, and a two-sided p value of less than 0.05 was
statistically considered significant. We used independent samples t-
test or Mann-Whitney U test to compare the differences in
continuous variables between the patients in different groups,
including age and maximum tumor diameter. The differences in
categorical variables, including sex, tumor stage, tumor location,
tumor differentiation grade, levels of CEA, CA199 and CA724, were
assessed using chi-squared or Fisher’s exact tests.
RESULT

Clinical and Pathological Characteristics
There were no significant differences in the clinical and
pathological characteristics between the training and the test
Frontiers in Oncology | www.frontiersin.org 4
cohort (p = 0.210-0.879, Table S2). The clinical and pathological
characteristics in the training and test cohorts are listed in
Table 1. There were significant differences in TNM stage and
M stage between the mutated group and the wild-type group in
the training cohort (P < 0.05), but they were not confirmed in the
test cohort. There were no significant differences between the
mutated group and the wild-type group in both cohorts in terms
of age, gender, maximum tumor diameter, tumor location,
tumor differentiation grade, T stage, N stage and CEA, CA199,
CA724 levels.

Feature Selection and Radiomics
Model Building
A total of 1316 radiomics features were extracted from the ROIs
of the NCP, AP, and VP CT images for each patient, respectively.
After four steps of feature selection, 5, 6 and 7 optimal radiomics
features were selected from each phase CT images, respectively
(Table 2; Figure 3). Three groups of single-phase radiomics
models were built based on corresponding optimal radiomics
features, including the NCP, AP, and VP models. The AP+VP
model was built based on 13 (6 + 7) features obtained from the
combination of the AP and VP. The AP+VP+NCP model based
on 18 (5 + 6+7) features was obtained from the combination
of three phases. In addition, we combined the 2632 radiomics
features of the AP and VP at first and then four steps of feature
selection were implemented, 7 radiomics features were selected
to build the AP&VP model. In the same way, 12 radiomics
features were selected to build the AP&VP&NCP model.

Finally, seven groups of radiomics models for predicting
KRAS mutation were constructed by LR, SVM, and RF
classifiers using the above-selected features.

Predictive Performance of
Radiomics Model
The results of the seven groups of radiomics model in the
training and test cohort were shown in Figure 4 and Tables 3,
4. Among the three groups of single-phase models, the AP model
developed by LR classifiers had the best prediction performance,
which had the AUCs of the test cohort was 0.811 (95% CI, 0.685-
0.938). Compared to the AP model, the prediction efficiency of
the VP model developed by SVM classifiers and NCP model by
LR classifiers was relatively lower with an AUC of 0.692(95% CI,
0.556-0.815) and 0.639(95% CI, 0.479-0.800) in the test cohort,
respectively. The combined model, including AP+VP model
and AP+VP+NCP model, showed an improved performance
in comparison with the single-phase model. The AP+VP
model developed by LR classifiers showed better prediction
performance with an AUC of 0.826(95% CI, 0.700-0.952)
in the test cohort. Compared to the AP+VP model, although
the AP+VP+NCP model showed no significant improvements in
the test cohort with an AUC of 0.811(95% CI, 0.679-0.944)
obtained by LR and 0.811(95%CI, 0.695-0.918) by SVM, but the
AP+VP+NCP model developed by LR showed better prediction
efficiency on the sensitivity, specificity, accuracy, which was
0.810, 0.808 and 0.809, respectively. The AP&VP model
developed by LR and AP&VP&NCP model by SVM showed a
June 2022 | Volume 12 | Article 848798
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moderate predictive performance, which had the AUCs of the
test cohort was 0.773 (95% CI, 0.650-0.883) and 0.777(95% CI,
0.655-0.889), respectively.

The Hosmer-Lemeshow test yielded a non-significant p-value
ranging from 0.076 to 0.815 in the LR models. suggesting no
departure from the perfect fit. The calibration curve of the
multiphasic (AP+VP+NCP) model for KRAS mutation
prediction probability shows good accordance between
prediction and observation in the training and test cohort
(Figure 5). The DCA for the seven groups of radiomics
models in the test cohort was presented in Figure 6. The DCA
showed that the AP model, dual-phase model, and multiphasic
model showed relatively more area, suggesting the good
performance of the radiomics models in terms of
clinical application.
Frontiers in Oncology | www.frontiersin.org 5
DISCUSSION

In this study, we built seven groups of radiomics models based on
different phase CT images for predicting KRASmutation in patients
with CRC. We found that single-phase models have the potential to
predict KRAS mutation, with the AP model developed by LR
showing the better predictive performance. The model developed
by LR showed similar results as SVM except for the NCP model.
The predictive performance of the AP+VP and AP+VP+NCP
model was further improved compared to that of the single-phase
model, and the AP+VP model showed the best predictive
performance, but the AP+VP+NCP model showed better
predictive performance comprehensively, showing that combing
the different phase CT radiomics features could elevate the model’s
prediction ability.
TABLE 1 | Patient and tumor characteristics in the training and test cohort.

Characteristics Training cohort P Test cohort P

Wild-type group (n = 104) Mutated group (n = 80) Wild-type group (n = 26) Mutated group (n = 21)

Age 61.94 ± 12.27 64.76 ± 12.96 0.133 62.12 ± 13.27 65.52 ± 12.71 0.377
Gender, n (%)
Male 57 (54.81%) 42 (52.50%) 0.756 16 (61.54%) 10 (47.62%) 0.340
Female 47 (45.19%) 38 (47.50%) 10 (38.46%) 11 (52.38%)

Tumor location, n (%)
Ascending colon 30 (28.85%) 28 (35%) 0.260 2 (7.69%) 6 (28.57%) 0.268
Transverse colon 6 (5.77%) 6 (7.5%) 5 (19.23%) 4 (19.05%)
Descending colon 10 (9.62%) 4 (5%) 2 (7.69%) 2 (9.52%)
Sigmoid colon 38 (36.54%) 20 (50%) 13 (50%) 5 (23.81%)
Rectum 20 (19.23%) 22 (27.5%) 4 (15.38%) 4 (19.05%)

Diameter, cm (Mean ± SD) 5.06 ± 1.85 4.78 ± 1.79 0.296 4.83 ± 1.52 5.44 ± 2.70 0.359
Histologic grade, n (%)
Poor 12 (11.54%) 11 (13.75%) 0.621 3 (11.54%) 3 (14.29%) 0.645
Moderate 91 (87.50%) 69 (86.25%) 22 (84.62%) 18 (85.71%)
Well 1 (0.96%) 0 (0.0%) 1 (3.85%) 0 (0.0%)

TNM stage, n (%)
I 11 (10.58%) 10 (12.50%) 0.039* 3 (11.54%) 4 (19.05%) 0.684
II 51 (49.04%) 24 (30%) 11 (42.31%) 6 (28.57%)
III 33 (31.73%) 31 (38.75%) 9 (34.62%) 7 (33.33%)
IV 9 (8.65%) 15 (18.75%) 3 (11.54%) 4 (19.05%)

T stage, n (%)
T1 2 (1.92%) 1 (1.25%) 0.909 2 (7.69%) 1 (4.76%) 0.116
T2 14 (13.46%) 13 (16.25%) 2 (7.69%) 3 (14.29%)
T3 60 (57.69%) 43 (53.75%) 17 (65.38%) 7 (33.33%)
T4 28 (26.92%) 23 (28.75%) 5 (19.23%) 10 (47.62%)

N stage, n (%)
N0 62 (59.62%) 39 (48.75%) 0.317 14 (53.85%) 11 (52.38%) 0.891
N1 26 (25%) 27 (33.75%) 6 (23.08%) 6 (28.57%)
N2 16 (15.38%) 14 (17.50%) 6 (23.08%) 4 (19.05%)

M stage, n (%)
M0 95 (91.35%) 65 (81.25%) 0.044* 23 (88.46%) 17 (80.95%) 0.472
M1 9 (8.65%) 15 (18.75%) 3 (11.54%) 4 (19.05%)

CEA, n (%)
≤ 5 (normal)
>5 (abnormal)

57 (54.81%)
47 (45.19%)

35 (43.75%)
45 (56.25%)

0.137 16 (61.54%)
10 (38.46%)

11 (52.38%)
10 (47.62%)

0.528

CA199, n (%)
≤ 39 (normal)
>39 (abnormal)

92 (88.46%)
12 (11.54%)

63 (78.75%)
17 (21.25%)

0.073 20 (76.92%)
6 (23.08%)

16 (76.19%)
5 (23.81%)

0.953

CA724, n (%)
≤ 6.9 (normal)
>6.9 (abnormal)

91 (87.50%)
13 (12.50%)

69 (86.25%)
11 (13.75%)

0.803 23 (88.46%)
3 (11.54%)

19 (90.48%)
2 (9.52%)

0.824
June 2022 | Volume 12 | Article 8
CEA, carcinoembryonic antigen; CA199, carbohydrate antigen-199; CA724, carbohydrate antigen-724. n, number; SD, standard deviation; *P < 0.05.
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There were some previous radiomics studies on the KRAS
mutation prediction in CRC. Meng et al. (29) found that
radiomic signatures based on multiparametric MRI had the
potential to predict KRAS mutation in rectal cancer with an AUC
of 0.651 (95% CI, 0.539-0.763). Cui et al. (26)reported that T2WI-
based radiomics signature had a moderate performance to predict
KRAS mutation in rectal cancer with an AUC of 0.714 (95% CI,
0.602–0.827). The above studies showed an encouraging result for
predicting KRAS status by using radiomics, but compare with our
study, our best model was the dual-phase (AP+VP) model
developed by LR with relatively higher predictive performance,
which had an AUCs of 0.826 in the test cohort. Furthermore, as the
CT examination is convenient for the patients in clinical practice
and also recommended by NCCN guidelines on themanagement of
patients with CRC (4), CT images had been usually used as their
research object of radiomics in colorectal cancer. Wu et al. (25)
Frontiers in Oncology | www.frontiersin.org 6
reported that the hand-crafted radiomics signature was associated
with the KRAS mutation in CRC with the C-index, sensitivity, and
specificity were 0.727, 0.412 and 0.868 in the validation cohort,
respectively. Yang et al. (24)found that the proposed CT-based
radiomics signature was related to KRAS/NRAS/BRAF mutations
with the AUC, sensitivity, and specificity were 0.829, 0.686 and
0.857 in the validation cohort, respectively. Although these studies
had higher AUC than that obtained in our study, the sensitivity of
these models was relatively low, which may be related to the use of
single-phase CT in these studies. While in our study, the single-
phase models also showed relatively lower sensitivity, but the
multiphasic (AP+VP+NCP) model in our study showed
satisfactory predictive performance with the AUC, sensitivity, and
specificity were all above 0.8 in the test cohort.

Additionally, many studies in this field have only focused on the
portal venous phase CT images (22–25), without investigating the
TABLE 2 | Radiomics features for each phase.

CT phase Category Names

Non-contrast GLSZM [1]original_glszm_SmallAreaEmphasis
GLDM [2]wavelet-HHL_gldm_LargeDependenceEmphasis
GLCM [3]wavelet-HLH_glcm_Imc1
GLRLM [4]wavelet-LLL_glrlm_GrayLevelNonUniformityNormalized
GLSZM [5]log-sigma-3-0-mm-3D_glszm_GrayLevelNonUniformityNormalized

arterial GLRLM [1]wavelet-HHL_glrlm_ShortRunEmphasis
GLSZM [2]lbp-3D-k_glszm_SmallAreaEmphasis
GLSZM [3]wavelet-HLH_glszm_SmallAreaEmphasis
GLDM [4]original_gldm_DependenceVariance
GLSZM [5]wavelet-LLL_glszm_SmallAreaEmphasis
GLDM [6]wavelet-HLH_gldm_SmallDependenceHighGrayLevelEmphasis

venous GLSZM [1]wavelet-LHL_glszm_SizeZoneNonUniformityNormalize
First Order [2]lbp-3D-m1_firstorder_Maximum
First Order [3]lbp-3D-m2_firstorder_10Percentile
GLRLM [4]log-sigma-2-0-mm-3D_glrlm_LongRunEmphasis
GLDM [5]wavelet-LLL_gldm_LowGrayLevelEmphasis
GLRLM [6]wavelet-LHH_glrlm_GrayLevelVariance
GLDM [7]log-sigma-2-0-mm-3D_gldm_LargeDependenceLowGrayLevelEmphasis
GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; GLRLM, gray level run length matrix; GLDM, gray level dependence matrix.
FIGURE 3 | The coefficients of radiomics features in our AP+VP+NCP model developed by LR classifiers.
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predictive value of radiomics features from other phase CT images
for the KRASmutation in patients with CRC. Some previous studies
showed that both unenhanced and contrast-enhanced CT
radiomics features have a certain value for reflecting the
Frontiers in Oncology | www.frontiersin.org 7
heterogeneity of tumors (30–32). Badic et al. (30) reported that
some radiomics features with moderate correlations between
unenhanced and enhanced CT images had complementary
prognostic value and were found to be associated with survival in
A B

D E F

C

FIGURE 4 | The receiver operating characteristic curves of radiomic models based on different CT-phase images in the training (A–C) and test (D–F) cohort,
respectively. N-model: NCP model; A-model: AP model; V-model: VP model; A+V-model: AP+VP model; A+V+N-model: AP+VP+NCP model; A&V-model: AP&VP
model; A&V&N-model: AP&VP&NCP-model.
TABLE 3 | Performance of the single-phase model in the test cohort.

parameter NCP AP VP

LR AUC (95%CI) 0.639 (0.479-0.800) 0.811 (0.685-0.938) 0.678 (0.521-0.834)
Accuracy 0.617 0.766 0.660
Sensitivity 0.476 0.762 0.571
Specificity 0.731 0.769 0.731

SVM AUC (95%CI) 0.537 (0.393-0.681) 0.799 (0.684-0.900) 0.692 (0.556-0.815)
Accuracy 0.532 0.766 0.638
Sensitivity 0.333 0.714 0.381
Specificity 0.692 0.808 0.846

RF AUC (95%CI) 0.509 (0.367-0.659) 0.708 (0.574, 0.834) 0.626 (0.494-0.758)
Accuracy 0.511 0.617 0.532
Sensitivity 0.333 0.429 0.381
Specificity 0.654 0.769 0.654
June 2022 | Volume
TABLE 4 | Performance of the combine phase model in the test cohort.

parameter AP+VP AP+VP+NCP AP&VP AP&VP&NCP

LR AUC (95%CI) 0.826 (0.700-0.952) 0.811 (0.679-0.944) 0.773 (0.650-0.883) 0.767 (0.641, 0.885)
Accuracy 0.745 0.809 0.723 0.723
Sensitivity 0.714 0.810 0.762 0.667
Specificity 0.769 0.808 0.692 0.769

SVM AUC (95%CI) 0.821 (0.702-0.927) 0.811(0.695-0.918) 0.767 (0.646-0.880) 0.777 (0.655-0.889)
Accuracy 0.787 0.766 0.766 0.723
Sensitivity 0.810 0.714 0.714 0.619
Specificity 0.769 0.808 0.808 0.808

RF AUC (95%CI) 0.691 (0.557-0.819) 0.753 (0.630-0.867) 0.734 (0.609-0.854) 0.707 (0.582-0.833)
Accuracy 0.681 0.681 0.702 0.681
Sensitivity 0.524 0.571 0.571 0.524
Specificity 0.808 0.769 0.808 0.808
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patients with CRC. To the best of our knowledge, this is the first
study that predicted KRAS mutation in patients with CRC using
different phases CT images. Our results showed that the single-
phase model have moderate predictive performance, while the AP
+VP and AP+VP+NCP model have further improved predictive
performance in comparison with the single-phase model, and the
AP+VP+NCP model has more comprehensively predictive
performance, suggesting that different phase CT images could
provide complementary information for predicting KRAS
mutation. We also found that the predictive efficacy of the AP
model was better than that of the other single-phase model. It may
be that the AP CT image mainly reflects the blood perfusion of the
tumor t issue, which may better reflect the tumor
microenvironment. Moreover, the predictive performance of the
AP+VP and AP+VP+NCP model was slightly higher than those of
the AP&VP and AP&VP&NCP model. This may be because the
method of feature selection at first and then combined would
guarantee that the optimal features of each CT phase can play a
role in the combined model.

Choosing a proper classifier can improve the stability and
predictive performance of the model. The LR classifier is a linear
regression method that had been usually used in many machines
learning studies for its good interpretability and suitability to solve
dichotomous problem (13, 19, 25). For SVM, it is a robust and
effective classifier based on structural risk minimization that had
been proved to be a powerful classifier in the previous studies (24,
26). Our previous study had used these two algorithms to build
Frontiers in Oncology | www.frontiersin.org 8
model for distinguishing the solid solitary pulmonary lesion based
on T2WI images and showed relatively better performance (33). In
this study, we could find that the model developed by LR showed
similar results as SVM except for the NCP model, and both of these
classifiers hadmoderate predictive performance, it may be that these
two classifiers are suitable for solving the problem with a small
sample. In addition, although the RF classifier had been showed
good performance in other studies (29), which has more hyper-
parameters and is a relatively complicated model, the RF classifier
showed overfitting in the training and test cohort in our study, it
may be that our sample size is relatively small.

For the radiomics features selection, 5, 6, and 7 features were
selected from the NCP, AP, and VP, respectively, to form radiomics
models, which were mainly derived from GLDM, GLRLM, and
GLSZM. The three sets of higher-order radiomics features could
quantify the image uniformity and heterogeneity, which were found
to be correlated with KRAS mutation in CRC. Among the 18
radiomics features in the AP+VP+NCP model, the log-sigma-
glrlm-LongRunEmphasis contributed the most to the detection of
KRAS status. TheGLRLMrefer to quantify gray level runs, which are
defined as the length in number of consecutive pixels that have the
same gray level value. LongRunEmphasis is a measure of the
distribution of long run lengths, with a greater value indicative of
longer run lengths and more coarse structural textures within the
ROIs, suggesting that the textures of the imageswithKRASmutation
were more coarse than those without KRAS mutation. Notably, we
foundthat thewavelet featuresaccounted for the largestproportionof
A B C

FIGURE 6 | The decision curves of radiomics models developed by three classifiers (A, LR; B, SVM; C, RF) based on different CT-phase images in the test cohort.
N-model: NCP model; A-model: AP model; V-model: VP model; A+V-model: AP+VP model; A+V+N-model: AP+VP+NCP model; A&V-model: AP&VP model;
A&V&N-model: AP&VP&NCP-model.
A B

FIGURE 5 | Calibration curve of the AP+VP+NCP model developed by LR classifiers in the training (A) and test (B) cohort, respectively.
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the optimal feature set (11/18), indicating that wavelet features have
relatively good predictive performance, which is in line with the
previous studies (29, 34, 35).Wavelet transform is a commonmethod
for multi-scale texture analysis in image processing, which can
quantify the heterogeneity within tumors at different scales and
extract more texture information (36). In addition, Small
AreaEmphasis selected from GLSZM accounted for the largest
proportion (3/6) in the radiomics feature set of the AP model, and
also appeared in the NCP model (1/5), suggesting that this feature
may have good stability in predicting KRAS mutation, which is a
measure of the distribution of small size zones, with a greater value
indicative of more fine textures within the ROIs.

There were some limitations in this study. First, the present
study is a single-center retrospective study, therefore an
independent dataset is needed for external validation. Second, the
slice thickness of NCP CT images in this study was not completely
consistent, however, we have minimized the effect by resampling in
the preprocessing process. Finally, 2D segmentation of the tumor
was adopted in this study, however, previous studies had shown that
the texture analysis results of 2D segmentation and 3Dwhole-tumor
segmentation are similar (37).

In conclusion, our study showed that different phase CT
radiomics features could provide different values in predicting
KRAS mutations, the combined model, including the dual-phase
(AP+VP) model and multiphasic (AP+VP+NCP) model,
showed more satisfactory predictive performance compared
with the single-phase models, which may suggest that different
phase CT images should be considered in radiomics research,
rather than single-phase CT image.
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