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Abstract: Although only recently introduced in the ILD community, the concept of progressive
fibrosing interstitial lung disease (PF-ILD) has rapidly acquired an important place in the management
of non-idiopathic pulmonary fibrosis fibrosing ILD (nonIPF fILD) patients. It confirms a clinical gut
feeling that an important subgroup of nonIPF fILD portends a dismal prognosis despite therapeutically
addressing the alleged triggering event. Due to several recently published landmark papers showing
a treatment benefit with currently available antifibrotic drugs in PF-ILD patients, endorsing a PF-ILD
phenotype has vital therapeutic consequences. Importantly, defining progressiveness is based on
former progression, which has proven to be a rather moderate predictor of future progression.
As fibrosis extent >20% and the presence of honeycombing have superior predictive properties
regarding future progression, we advocate immediate initiation of antifibrotic treatment in the
presence of these risk factors. In this perspective, we describe the historical context wherein PF-ILD
has emerged, determine the currently employed PF-ILD criteria and their inherent limitations and
propose new directions to mature its definition. Finally, while ascertaining progression in a nonIPF
fILD patient clearly demonstrates the need for (additional) therapy, in the future, therapeutic decisions
should be taken after assessing which pathway is ultimately driving the progression. Although not
readily available, pathophysiological insight and diagnostic means are emergent to go full steam
ahead in this novel direction.
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1. Introduction

The conceptualization of the existence of a common progressive fibrosing (PF) phenotype,
irrespective of the underlying diagnostic entity, has dramatically changed the landscape of interstitial
lung disease (ILD) [1]. In this concept, patients with a fibrosing ILD who have shown to experience
disease progression evidenced by pulmonary function decline are lumped into one group, irrespective
of the underlying diagnostic entity. The impact of this concept and its associated transformation
of PF-ILD treatment will probably approximate the same order of magnitude as the paradigm shift
induced by the PANTHER-IPF trial [2] in idiopathic pulmonary fibrosis (IPF). As this trial showed
manifest deleterious effects of immunosuppression in IPF, the standard of care dramatically changed,
and immunosuppression was totally abandoned. This perspective evaluates the current definition
of this phenotype and discusses proper evolution towards the next stage in assessing progression in
fibrosing ILD patients.
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2. Historical Context

The origins of the paradigm shift in pulmonary fibrosis are situated in the early years of
this millennium, in which it became clear that IPF was not initiated by an exaggerated immune
response that could serve as a treatable target, but should be regarded as a process of self-sustaining
fibrosis [3], without an identifiable cause or trigger. This model rapidly became the generally accepted
narrative of IPF pathophysiology after the publication of the PANTHER-IPF trial [2], revealing that
immunosuppressive treatment resulted in increased mortality without attenuating pulmonary function
decline. As both Nintedanib and Pirfenidone proved to be an effective means of reducing IPF
progression [4–6], it became clear that fibrosis was manageable by targeting the fibrotic mechanisms
itself, rather than focusing on possible (early) triggering events.

Based on these seminal findings, a dichotomy in fibrotic ILD found entrance: IPF was regarded
as an intrinsically fibrotic disease, whereas, in nonIPF fibrotic ILDs (fILD), one should focus on the
initial trigger (i.e., an underlying connective tissue disease (CTD) in CTD-associated ILD (CTD-ILD),
an inciting agent in fibrotic hypersensitivity pneumonitis (fHP) and a presumed immunological
reaction in idiopathic nonspecific interstitial pneumonia (NSIP)) and treat accordingly, which—in daily
clinical practice—was translated almost invariably to the initiation of immunosuppressive therapies.
Given the lower mortality levels and known triggers, these nonIPF fILD entities were regarded as more
benign, largely treatable and oftentimes reversible.

Throughout the following years, a growing body of evidence strengthened an emerging
clinical gut feeling that some subgroups within the spectrum of nonIPF fILD showed a progressive
fibrosis that did not seem to resolve or stabilize by therapeutically addressing the alleged initial
trigger [7–11]. More cohort studies were published showing the rather disappointing treatment results
of immunosuppression in different groups of nonIPF ILD [12–14]. As some of these patients had
remarkable similarities with regard to computed tomography (CT) pattern or histopathological findings,
lively discussion arose in many multidisciplinary meetings about whether these patients should be
diagnosed with a highly fibrotic nonIPF fILD (in which no other treatment than immunosuppression
was available) or with a more atypical IPF (which would result in the possibility of starting antifibrotic
treatment). As more studies reported shared pathophysiological mechanisms between IPF and nonIPF
fILD, predisposing to inferior outcomes [1,15–17], the idea grew that antifibrotic drugs might equally
mitigate disease progression in nonIPF fILD. Moreover, the concept of disease behavior was well
established by that time [18] and was a welcomed confirmation within the ILD community that
immunosuppression-irresponsive progressively fibrosing nonIPF patients did exist and uncovered the
high medical need for new treatment options. Although hints and broad concepts were suggested, the
classification of such disease behavior was rather dependent on clinical acumen. At present, robust
data are still lacking regarding the proportion of nonIPF fILD patients who eventually experience
significant and clinically relevant progressive fibrosis. A survey study involving 243 pulmonologists,
203 rheumatologists and 40 internists showed that the community estimates this proportion at 18–32%,
although clinical cohort studies hint that it is around 50% [9,10].

Unfortunately, the relatively low prevalence of separate nonIPF fILD entities complicated the
options for testing the efficacy of the antifibrotics in clinical trials. Given the plethora of therapeutic
targets of both antifibrotics, the idea grew that while the exact contribution of specific molecular
mechanisms in the progression of fibrosis might differ from one nonIPF fILD to another, these drugs
could attenuate the progression of all nonIPF fILD patients [19]. This hypothesis has been tested in
multiple trials, reporting beneficial outcomes in 2019. Both Pirfenidone and Nintedanib were shown to
reduce forced vital capacity (FVC) decline in PF-ILD cohorts [20,21] as well as progressive unclassifiable
ILD (UILD) patients [22].

Importantly, the benefits of clinically defining progressive fibrosis reach far wider than evaluating
potential antifibrotic responsiveness. We envisage a role in referral for lung transplantation and/or
the initiation of advanced care planning and initiation of palliative care. Moreover, as 50% of IPF
patients die from cardiovascular comorbidities, cardiovascular prevention measures could be useful if
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the comorbidome of PF-ILD would prove to be similar to that of IPF. Furthermore, from a research
perspective, defining patients with progressive fibrosis could be very useful as a patient group of
specific interest.

3. Defining Progressiveness: From Clinical Trial Endpoint to Clinical Practice

3.1. Progressive Fibrosis: Clinical Trial Endpoint

In order to selectively include nonIPF fILD patients with progressive fibrosis, the clinical trials
assessing the efficacy of antifibrotic treatment in nonIPF PF-ILD selected patients with proven former
disease progression throughout the months before study inclusion.

Progression was defined slightly differently in each study. The RELIEF study [20], initiated by the
German Lung Research Consortium, assessed the efficacy of Pirfenidone in PF-ILD. Progression was
defined as an annualized FVC decline of at least 5% per year, within an interval of 0.5–2 years. Another
study, assessing the efficacy of Pirfenidone in progressive fibrosing unclassifiable ILD [22], defined
progression as a 5% absolute decline in FVC (% predicted) or a significant symptomatic worsening
not due to cardiac, pulmonary (except worsening of underlying unclassifiable ILD), vascular or other
causes within 6 months. In the INBUILD trial [21], which evaluated the efficacy of Nintedanib in
PF-ILD, progression was defined as one of the following within 24 months: FVC% decline >10% or two
elements of the following: FVC% decline between 5% and 10%, symptom worsening or an increased
extent of high-resolution CT (HRCT)-derived fibrosis. Recently, Brown et al. reported that patients
included in the placebo group of the INBUILD had similar clinical behavior during the trial in terms of
FVC decline and mortality compared to the placebo groups of the INPULSIS trial, which evaluated
Nintedanib in IPF [23], confirming that PF-ILD is a dismal phenotype to be regarded as equally grave
compared to IPF.

Although these criteria certainly are not without merit, we believe that defining progression based
on these criteria might have certain limitations.

Firstly, by definition, the patient and clinician should wait until deterioration has been formally
determined before the progressive fibrotic phenotype can be endorsed. Hence, precious time is lost,
and the disease has objectively worsened in the meantime. Until we have treatment options that
can significantly reverse fibrosis, this is a significant problem. In IPF, it takes approximately 2 years
from symptom onset to diagnosis, and a survey study recently reported similar estimated delays in
nonIPF fILD [24]. One might believe that—given the presumed favorable disease behavior of nonIPF
fILDs compared to IPF—this lag time will mostly compromise part of the pulmonary function reserve
rather than mitigating essential functional pulmonary tissue and thus can be acceptable. Such a
rationale would ignore two important issues. First, a recently published post-hoc analysis elegantly
showed similar outcomes in the placebo groups of the INPULSIS and INBUILD trials, thus providing
evidence that PF-ILD patients confer similar dismal outcomes compared to IPF patients. Secondly, one
should keep in mind that—as nonIPF fILD patients are diagnosed at a far younger age compared to
IPF—a similar post-diagnosis survival would imply a far higher loss in life-years in nonIPF patients
compared to IPF patients. Loss of pulmonary function should be minimized, and thus, predicting the
risk of progression upfront at diagnosis will prove to be essential.

Secondly, we believe the criteria might be far too strict for encompassing all progressive fibrosing
nonIPF ILD patients in an acceptable time interval. Although IPF is invariably regarded as a relentlessly
progressive disease, the placebo groups of the phase III trials evaluating the efficacy of the antifibrotics
showed that only a minority of cases over the study period had such magnitude of a decline in
pulmonary function, symptomatology or HRCT-derived fibrosis severity used for diagnosing the
PF phenotype in the nonIPF PF-ILD trials. In the CAPACITY trial evaluating Pirfenidone versus
placebo [4], only 32% of cases in the placebo group had an FVC decline >10% over the 72-week study
period, and less than half had a 6-min walk decrement >50 m (which was defined as the cut-off for
clinical relevance). In the ASCEND trial [5], these data were confirmed; moreover, the composite
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secondary endpoint of a significant increase in dyspnea scoring or death was reported in only 36%
of placebo cases. In the INPULSIS trial assessing efficacy and safety of Nintedanib vs. placebo [6],
these data were roughly replicated, and an FVC decline <5% was observed in the placebo groups in
almost 40%. Moreover, the mean St. George’s Respiratory Questionnaire (SGRQ) symptoms domain
decrement during the trial in the placebo group was 3.67 ± 0.94, which is lower than the minimal
clinically important difference (MCID), indicating that at least an important minority of patients
probably did not experience a meaningful increase in symptoms. This would mean that—if the IPF
patients included in these trials had been screened for progressive fibrosis in an approach similar to
that used in the INBUILD trial—roughly one-third would require a >1-year interval before progression
could be objectivated and treatment could be initiated.

Thirdly, FVC might not be a good predictor in all fibrotic ILD patients. Many nonIPF fILD cases
may present with a combination of emphysema and fibrosis (CPFE). In systemic sclerosis-associated ILD
(Ssc-ILD), 7.8% of cases have been shown to present with CPFE [25], while almost 30% of rheumatoid
arthritis-associated ILD (RA-ILD) cases have concomitant emphysema [26]. Only one-third of CPFE
patients are estimated to have IPF [27]. In IPF patients presenting with a CPFE pattern, it has been
shown that FVC decline is not a good marker of disease progression and only weakly associates with
outcome [28,29]. Waiting for FVC decline in nonIPF fILD patients presenting with a CPFE pattern will
result in woeful time loss in this subgroup of patients with a known dismal prognosis [30].

Finally, and most importantly, former progression proved to be a rather moderate predictor of
future progression. Although all patients included in the INBUILD trial were progressive at inclusion
(as this was needed for inclusion), only 40% and 60% of the placebo cases had a >10% and 5–10%
FVC decline, respectively, throughout the first 52 weeks of the trial [23]. Hence, former progression
predisposes a risk of only ±50% for future progression.

3.2. Progressive Fibrosis: Clinical Practice

Based on the limitations mentioned above, unraveling clinical parameters that can predict
long-term disease progression will prove to be crucial. In the last 10 years, multiple cohort studies have
been published in various nonIPF ILD entities, which can aid in this respect. In short, most studies
reveal both baseline pulmonary function, HRCT parameters and multilevel composite scoring systems
to be predictors of disease progression.

FVC has been associated with survival in UILD [9,10], fHP [8,31] and CTD-ILD [11,32]. Lower
diffusing capacity of the lung for carbon monoxide (DLCO) conferred worse survival in UILD [9,10],
fHP [8,31], CTD-ILD [11,32,33] and idiopathic NSIP [7]. Moreover, FVC and DLCO were associated
with disease progression in UILD [9].

Key messages:

• The PF-ILD has been conceptualized as an important subgroup of nonIPF fILD patients portend
dismal outcomes similar to IPF, despite therapeutically addressing the alleged triggering event.

• Clinical studies have shown antifibrotics to be effective in nonIPF fILD patients with former
disease progression. However, former progression has proven to be a rather moderate predictor of
future progression; moreover, loss of time and pulmonary function is inherent before the PF-ILD
phenotype can be endorsed.

• Clinical variables (e.g., radiological disease extent and honeycombing presence) might perform
better as predictor of progression and can be assessed at time of diagnosis.

• In the future, predicting progression will ultimately inform the need for (additional) treatment,
while assessing the progression-driving disease mechanisms will guide treatment choices.

The extent of fibrosis, traction bronchiectasis and honeycombing have been shown to be associated
with survival in UILD [9], fHP [8,31], CTD-ILD [33], RA-ILD [32] and Ssc-ILD [11]. Honeycombing
presence conferred worse survival after correction for sex, age, FVC, DLCO, ILD subtype and
immunosuppressive therapy in a broad group of fibrosing ILD patients [34]. The association between
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honeycombing and fibrosis extent with mortality was confirmed in two CPFE cohorts [27,35]. The extent
of fibrosis was associated with disease progression in UILD [9], and the presence of honeycombing
conferred a mean FVC decline of >5% [8].

In 2003, Wells and colleagues constructed the composite physiological index (CPI), an estimator
of fibrosis extent on CT based on FVC, DLCO and forced expiratory volume in 1 s (FEV1), which
proved to be associated with mortality [36]. CPI proved to be associated with survival in UILD [9],
fHP [31], CTD-ILD [33] and RA-ILD [32]. Moreover, CPI was associated with disease progression in a
UILD cohort [9]. Ley and colleagues developed a mortality prediction score in IPF using age, gender,
FVC and DLCO, which was named the gender-age-physiology (GAP) system [37,38]. The system
was expanded for other ILD entities by slightly modifying the scoring system into the ILD-GAP
scoring [39]. ILD-GAP was associated with survival in CTD-ILD [33] and UILD [10], although GAP
also encompasses variables such as age, which are linked with survival but not necessarily with disease
progression. Interestingly, when IPF was part of the differential diagnosis (which is cumulative of a
wide range of clinical clues), the odds ratio for disease progression was 5.5 in the Ryerson paper [10].
Interestingly, multivariate modeling showed that both DLCO% and fibrosis extent were independently
associated with disease progression, which indicates that pulmonary function and CT variables might
be complementary in predicting disease progression in nonIPF fILD.

Even more important than these reported hazards and odds ratios, absolute survival and disease
progression rates are often reported and almost invariably show similarities with IPF.

Remarkably, based on the data provided in the Ryerson paper addressing outcome predictors
in UILD [9], one can easily calculate that roughly 75% of UILD cases presenting with honeycombing
will experience disease progression in the first year after evaluation, which is far more than the 1-year
risk of disease progression in IPF, based on the data of the placebo groups in the phase III antifibrotics
trials, outlined above. In other words, these data suggest that a UILD case with honeycombing would
have a higher risk of disease progression than a random IPF case in the first year after diagnosis. Even
more importantly, as mentioned before, from all patients included in the placebo arms of the INBUILD
trial (thus with evidence of progression in the previous months), only 40–60% experienced further
progression throughout the 52 weeks of the trial. Hence, former disease progression conferred a lower
risk for future progression compared to the presence of honeycombing.

This holds true for many other nonIPF fILD subgroups. Salisbury showed that HP with
honeycombing conferred a similar outcome (with regard to both survival and FVC decline) to that of
IPF with honeycombing and had a worse survival and FVC decline compared to IPF cases without
honeycombing. Jacob showed that RA-ILD cases with honeycombing, irrespective of the distribution,
showed similar outcomes (i.e., 48% 3-year survival rate) compared to an IPF cohort (42% 3-year survival
rate). It is by no means justifiable that in such a patient subgroup, accounting for 25–50% of nonIPF
fILD cases [8,9,11,32,34], disease progression should be awaited before initiation of antifibrotics.

The very same case can be made for fibrosis extent. Ryerson showed a 3-year survival of
nearly 50% in UILD cases with fibrosis extent >20% of the lung parenchyma (i.e., reticulation plus
honeycombing) [9]. Jacob et al. showed that survival in RA-ILD with fibrosis extent >25% (or fibrosis
extent in between 15% and 25% in conjunction with an FVC% <70%) was similar compared to IPF
(i.e., median survival of around 3 years) [32].

In conclusion, whereas both pulmonary function variables and CT variables and multilevel
composite scoring systems are all associated with mortality, the presence of honeycombing and a
CT-derived fibrosis extent >20% are clearly associated with disease progression and IPF-compatible
outcomes. Hence, we believe that enough evidence exists to justify the immediate initiation of
antifibrotic treatment.
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4. What Makes the Progressive Phenotype Progressive? The Quest for the Underlying
Molecular Mechanisms

Whereas predicting clinical behavior will clarify whether additional therapeutic action is needed,
unraveling the underlying molecular mechanisms that drive disease progression will inform which
therapy might be useful.

Given the broad range of mechanisms that are therapeutically targeted with the currently available
antifibrotic drugs and given the absence of other drugs that work crucially differently, the question of
which drug should be initiated in a specific patient is—at present—without much meaning. However,
as insight into the pathogenesis of both IPF and nonIPF fILD is rapidly accrued, rather soon than late,
clinicians will need to make a well-informed choice about which mechanism he or she believes is driving
the disease progression preponderantly, and thus which treatment option—yet to be discovered—to
initiate primarily.

While fibrogenesis is often abusively confined to extra-cellular matrix deposition, abundances
of other mechanisms have been revealed to be pathogenetically substantial and are presumably not
responsive to the currently available antifibrotic drugs. In IPF, epithelial senescence is a widely accepted
early phenomenon [40,41], including mitochondrial dysfunction [42], leading to a failing regenerative
response to repetitive micro-injuries, oftentimes induced by environmental exposures. Moreover, the
emergence of an aberrant airway basal cell population has been widely acknowledged [43,44], as well
as reduced angiogenesis [45]. The early involvement of small airways has recently been discovered [46],
and the important role of airway malformation and development of honeycombing [47] has been
widely adopted, as well as the enigmatic influence of MUC5B polymorphisms and the resulting
dysfunctional mucociliary clearance [48–50]. Recently, it has been suggested that microbiome changes
might prove to be an important factor [51,52], irrespective of baseline disease severity [53]. Finally, the
profibrotic role of macrophages with an M2 phenotype is established [54,55].

While these pathways do not reach the full attention of the ILD clinician, as no targeting treatment is
available, trials are underway to investigate the potential impact on the progression of fibrosis: thyroid
hormone has been suggested for mitigating mitochondrial dysfunction [56], Dasatinib-Quercitin,
which inhibits the senescence-associated secretory phenotype of senescent cells, is currently being
tested in IPF [57,58], potential therapies mitigating MUC5B-driven impaired mucociliary clearance
are suggested [50], and even type II alveolar epithelial cell transplantations are being tested [59].
Moreover, a trial testing antimicrobial agents is being set up [60], and targeting gastro-esophageal
reflux disease has recently shown some beneficial results [61]. Finally, mitigating the differentiation
from monocytes into M2 macrophages by recombinant human pentraxin-2 shows a very promising
therapeutic option [62].

As the clinical behavior of PF-ILD patients has proven to have so many aspects of IPF in
common, it would be very surprising if these novel IPF-driving mechanisms did not have a role in
nonIPF fILD disease progression. The first results in this regard have been published within the
past few years [15,16,41,63]. More than guiding treatment based on underlying diagnostic entity, the
future’s choices in fILD management probably will be made based on underlying prevailing activated
mechanisms, irrespective of the ILD entity.

We believe that—in the future—disease progression will be ascertained by assessing aberrant
activation of pathophysiological mechanisms. Biomarkers will be needed for this purpose, and
the technology for development is about to be mature [43,64–66] in terms of (epi-)genetic testing
(e.g., MUC5B genotype and telomere length) and molecular classifiers.

5. Conclusions

Throughout the last decennium, the paradigm shift in the IPF pathophysiological narrative and
the development of effective antifibrotic drugs has proven to be an important impetus for studying
disease progression in nonIPF fILD, resulting in seminal phase III trials showing that antifibrotics
are as effective in PF-ILD as they are in IPF. Former progression was used as inclusion criteria for
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these trials, but important limitations hamper their clinical use in practice: their ability to predict
future progression was rather moderate, and the fact that disease progression should be awaited
before treatment can be initiated might be unjustifiable in some patient subgroups: the presence of
disease extent >20% or honeycombing was shown to predict future progression at least as well as
former progression. Hence, treatment should be initiated as soon as possible, and disease progressions
should not be awaited. Finally, as a more diverse collection of pathophysiological mechanisms are
demonstrated to drive fibrosis, the future might bear more personalized medicine, in which disease
progression will be predicted by biomarkers that ascertain aberrant activation of specific pathways
and steer therapeutic choices alike.
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