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	 Background:	 Computed tomography (CT)-guided percutaneous transthoracic needle biopsy (PTNB) is an effective means for 
diagnosing various thoracic diseases. Pneumothorax is the most common complication, and when it becomes 
life-threatening, urgent medical intervention is required. The purpose of this study was to develop and vali-
date a model that can be used to predict postoperative pneumothorax following CT-guided PTNB.

	 Material/Methods:	 We enrolled 245 patients who completed CT-guided PTNB to develop the model. A random forest (RF) model 
was built using 15 risk factors (15-RFs). The 7 most critical risk factors (7-RFs) were extracted by feature selec-
tion and used to build a new model. The independent external validation data contained 97 patients. Logistic 
regression (LR), support vector machine (SVM), and decision tree (DT) models were also developed using both 
15-RFs and 7-RFs, and their performance was compared with the RF models.

	 Results:	 The length of the aerated lung traversed was identified as the most important risk factor for developing pneu-
mothorax, followed by angle of pleural puncture, lesion depth, lesion size, age, procedure time, and sex. The 
RF model demonstrated better performance in the development and validation datasets when compared with 
the LR, SVM, and DT based on 15-RFs and 7-RFs. According to DeLong’s test for difference in ROC curves, the 
RF models based on the 15-RFs and 7-RFs achieved similar classification performance (P>0.05).

	 Conclusions:	 This study demonstrated the feasibility of using the 7-RFs RF model for predicting postoperative pneumotho-
rax before patients undergo CT-guided PTNB.
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Background

Computed tomography (CT)-guided percutaneous transthoracic 
needle biopsy (PTNB) is a common method used to establish 
the pathological diagnosis of pulmonary nodules or masses. 
CT-guided PTNB has high diagnostic accuracy and an accept-
able complication rate [1]. However, pneumothorax occurs 
more often than other complications [2-4], with an incidence 
rate ranging from 4.0% to 62.0% [5,6]. As a result of the pneu-
mothorax, patients often suffer from restlessness, shortness 
of breath, asphyxia, hypotension and cold sweat, shock, and 
even unconsciousness. Pneumothorax can also become a life-
threatening condition requiring urgent intervention. Therefore, 
a preliminary screening tool that can be used by intervention-
al physicians to predict the postoperative pneumothorax for 
patients undergoing CT-guided PTNB is essential to improve 
patient selection, preoperative preparation, procedural tech-
niques, and postoperative management [7,8], such as using 
oxygen delivery by facemask or nasal cannula, shortening the 
length of the aerated lung traversed by the needle, and ex-
tending the period of vital signs monitoring.

In recent years, there has been a surge of interest in utilizing 
artificial intelligence and machine learning algorithms in the 
field of medicine for early disease diagnosis and risk predic-
tion [9-12]. However, the majority of current machine learning 
models focus on the diagnosis and localization of pneumotho-
rax on either chest radiographs or CT after the PTNB [13,14]. 
Only a few predictive models are available for determining the 

risk of developing pneumothorax after PTNB. Zhao et al and 
Wang et al developed logistic regression (LR) models to pre-
dict the risk of developing a pneumothorax [7,15]. The types 
of the pneumothorax model were still unitary, and the accu-
racy and sensitivity of these models were poor [15].

Previous studies demonstrated that random forest (RF) could adapt 
to complex clinical conditions and accurately predict or diagnose 
diverse cases [16,17]. LR is a generalized linear model, while RF 
is a nonlinear model. Furthermore, RF is less prone to overfitting 
and more robust when compared with LR [18]. To the best of our 
knowledge, RF risk prediction models for pneumothorax after CT-
guided PTNB based on patient and lesion characteristics, as well 
as procedure-related risk factors, have not yet been explored.

Therefore, this study aimed to develop and validate an effective 
RF-based pneumothorax prediction model for patients under-
going CT-guided PTNB using the risk factors previously reported 
in the literature and based on our clinical experience [15-17].

Material and Methods

Ethics

This retrospective study was approved by our institutional re-
view board (Approval number: PJ2020-003-02). Written in-
formed consent was obtained from all patients enrolled for 
the CT-guided PTNB.

Patients who underwent CT-giuded PTNB between
May 2016 and May 2017 at A institution

(n=1056)

Patients who underwent CT-giuded PTNB between
May 2017 and January 2021 at B institution

(n=124)

108 patients
with pneumothorax

Development data
(n=245)

137 patients
without pneumothorax

Train date
(n=196)

80% 20%

Test date
(n=49)

The exclusion criteria:
1) lesion is smaller than 5 mm (n=38)
2) lesion belongs to mediastinal, pleural and chest wall (n=34)
3) pleural e�usion on the same side (n=77)
4) non-solidarity pulmonary nodule or mass (n=604)
5) incomplete data (n=58)

The exclusion criteria:
1) lesion is smaller than 5 mm (n=3)
2) lesion belongs to mediastinal, pleural and chest wall (n=3)
3) pleural e�usion on the same side (n=5)
4) di�use lesions of the lungs (n=4)
5) incomplete data (n=12)

Validation data
(n=97)

54 patients
with pneumothorax

43 patients
without pneumothorax

Figure 1. Flow diagram for the development and validation data.
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Data Collection

The data were collected from 2 different institutes in China. 
The data from institution A were used to develop the algo-
rithm, while the data from institution B were used to validate 
the algorithm (Figure 1).

From May 2016 to May 2017, 1056 consecutive patients who 
underwent CT-guided PTNB at institute A were enrolled, and 
the rate of pneumothorax was 11.3%. We excluded patients 
presenting with pleural effusion, patients with non-solitary 
pulmonary nodule or mass, lesions with a maximum diame-
ter smaller than 5 mm, and lesions located in either the medi-
astinum, pleura, or chest wall, as well as patients with incom-
plete data also (Figure 1). A total of 245 patients (174 males 
and 71 females) with a mean age of 61.6 years (range: 28-
85, standard deviation (SD)±9.9) were finally included in the 

study and used to develop the algorithm. Forty-four percent 
(n=108) of these patients had a pneumothorax, while the rest 
(n=137) had no pneumothorax. The patient and lesion charac-
teristics of the development data are summarized in Table 1.

A total of 124 consecutive patients who underwent CT-guided 
PTNB between March 2017 and January 2021 at institute B were 
enrolled, and the rate of pneumothorax was 54.0%. Seventy-
eight percent (n=97) of these patients met the exclusion cri-
terion (Figure 1). The patient group consisted of 62 males and 
35 females, and the mean age was 62.8 years (range: 20-86 
years, SD±12.0). The patient and lesion characteristics of the 
external validation data are summarized in Table 2.

Risk factors
N=245

P value
Pneumothorax (n=108) Non-pneumothorax (n=137)

Patients’ characteristics

	 Age (years), Mean±SD 	 63.4±9.4 	 60.2±10.1 0.005

	 Gender (number), Male/Female 87 (80.6%)/21 (19.4%) 87 (63.5%)/50 (36.5%) 0.003

Lesion characteristics

	 Lesion size (mm), Mean±SD 	 28.5±14.6 	 27.1±12.1 0.798

	 Lesion depth (mm), Mean±SD 	 12.3±10.0 	 10.4±11.3 0.034

	� Lesion location (number), upper lobe 
(left lung)/lower lobe (left lung)/upper 
lobe (right lung)/middle lobe (right 
lung)/lower lobe (right lung)

19 (17.6%)/21 (19.4%)/ 
34 (31.5%)/8 (7.4%)/26 (24.1%)

29 (21.2%)/24 (17.5%)/ 
40 (29.2%)/10 (7.3%)/34 (24.8%)

0.959

	 Cavity inside the lesion (number), yes 	 12	 (11.1%) 	 27	 (19.7%) 0.068

	 Emphysema/bullae (number), yes 	 29	 (26.9%) 	 32	 (23.4%) 0.530

	 Pneumonitis (number), yes 	 66	 (61.1%) 	 71	 (51.8%) 0.146

Procedure characteristics

	� Length of the aerated lung traversed 
(mm), Mean±SD

	 20.2±12.7 	 17.6±14.4 0.081

	 Angle of pleural puncture (°), Mean±SD	 61.1±18.6 	 59.3±18.4 0.405

	 Procedure time (min.), Mean±SD 	 10.2±4.8 	 9.2±4.0 0.590

	� Biopsy position (number), supine/prone 41 (38.0%)/67 (62.0%) 66 (48.2%)/71 (51.8%) 0.110

	� Crossing of pleural indentation 
(number), yes

	 26	 (24.1%) 	 41	 (29.9%) 0.308

	� Crossing the interlobar fissure 
(number), yes

	 5	 (4.6%) 	 4	 (2.9%) 0.513

	 Number of biopsy (number), 1/2/3 100 (92.6%)/7 (6.5%)/1 (0.9%) 132 (96.4%)/5 (3.6%)/0 (0%) 0.298

Table 1. Characteristics of development data.
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Biopsy Technique

Six interventional radiologists with 3-5 years of experience per-
formed all CT-guided PTNBs procedures according to a standard 
protocol [19]. All CT scans in institute A were acquired using a 
16-detector MX, Phillips Medical Systems, Best, Netherlands CT 
scanner using 120 mAs, 120 kV, and a 2.0-3.0 mm slice thick-
ness. Biopsies were performed using the coaxial method with a 
19-gauge coaxial guide needle (C2016B, Bard) and a 20-gauge 
automated core biopsy needle (MN2016, Bard). In institute B, 
all CT scans were acquired with a scanner (LightSpeed VCT; 
GE Healthcare, Waukesha, Wis) using 140 mAs, 120KV, and a 
slice thickness of 1.0-2.0 mm. Biopsies were also performed 
using the coaxial method with a 17-gauge coaxial guide nee-
dle (C1816A, Bard Peripheral Vascular, Inc.) and an 18-gauge 
automated core biopsy needle (MC1816, Bard Peripheral 
Vascular, Inc.).

Measured Variables

Based on information in the literature, 15 patient-, lesion-, and 
procedure-related risk factors were identified and data on them 
were collected for analysis [13,16,17]. Patient-related risk fac-
tors included age and sex. Lesion-related risk factors included 
lesion size (the maximum short-axis diameter), lesion location, 
lesion depth (the shortest distance from the costal pleura to 
the edge of the lesion), presence of a cavity inside the lesion, 
emphysema or bullae adjacent to the biopsy track, and pneu-
monitis around the lesion. When the lesion is in direct con-
tact with the pleura, the lesion depth is 0.0 mm. Biopsy pro-
cedure-related risk factors included length of the aerated lung 
traversed by the needle (the distance from the pleural punc-
ture point to the edge of lesion along the needle path) [20], 
angle of pleural puncture, procedure time (total needle inser-
tion and removal time), biopsy position, the crossing of the 

Risk factors
N=97

P value
Pneumothorax (n=54) Non-pneumothorax (n=43)

Patients’ characteristics

	 Age (years), Mean±SD 	 63.3±11.1 	 62.1±13.1 0.654

	 Gender(number), Male/Female 31 (57.4%)/23 (42.6%) 31 (72.1%)/12 (27.9%) 0.135

Lesion characteristics

	 Lesion size (mm), Mean±SD 	 24.4±14.3 	 34.2±20.9 0.026

	 Lesion depth (mm), Mean±SD 	 6.7±10.5 	 2.6±4.6 0.037

	� Lesion location (number), upper lobe 
(left lung)/lower lobe (left lung)/upper 
lobe (right lung)/middle lobe (right 
lung)/lower lobe (right lung)

8 (14.8%)/9 (16.7%)/ 
9 (16.7%)/8 (14.8%)/20 (37.0%)

10 (23.3%)/11 (25.6%)/ 
12 (27.9%)/3 (7.0%)/7 (16.3%)

0.083

	 Cavity inside the lesion (number), yes 	 12	 (22.2%) 	 2	 (4.7%) 0.014

	 Emphysema/bullae (number), yes 	 7	 (13.0%) 	 9	 (20.9%) 0.294

	 Pneumonitis (number), yes 	 36	 (66.7%) 	 28	 (65.1%) 0.873

Procedure characteristics

	� Length of the aerated lung traversed 
(mm), Mean±SD

	 14.2±16.3 	 9.9±12.4 0.186

	 Angle of pleural puncture (°), Mean±SD	 62.0±16.3 	 62.1±17.8 1.000

	 Procedure time (min.), Mean±SD 	 8.3±4.9 	 8.0±4.0 0.997

	 Biopsy position (number), supine/prone 20 (37.0%)/34 (63.0%) 16 (37.2%)/27 (62.8%) 0.986

	� Crossing of pleural indentation 
(number), yes

	 11	 (20.4%) 	 7	 (16.3%) 0.607

	� Crossing the interlobar fissure 
(number), yes

	 8	 (14.8%) 	 2	 (4.7%) 0.177

	 Number of biopsy (number), 1/2/3 44 (81.5%)/9 (16.7%)/1 (1.9%) 40 (93.0%)/3 (7.0%)/0 (0%) 0.217

Table 2. Characteristics of validation data.
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pleural indentation or interlobar fissure, and the number of bi-
opsies acquired. The measurement methods used to calculate 
the risk factors for developing pneumothorax are illustrated in 
Figure 2. Pneumothorax was classified as either mild, moderate, 
or severe according to the largest distance between parietal 
pleura and visceral pleura on axial CT images [21] (Figure 2C).

Model Development and Feature Selection

A total of 245 patients were randomly divided using a ratio of 
8: 2 into the training and testing datasets. The 15-RFs were 

first used to develop 4 pneumothorax risk models: LR, support 
vector machine (SVM), decision tree (DT), and RF. The output 
of the models was then labeled as either positive (1) or neg-
ative (0) for pneumothorax. Then, the more relevant risk fac-
tors were selected using RF feature selection. RF is an ensem-
ble of classification trees. Each individual RF tree was set as 
internal nodes and leaves. The selected feature was used to 
make a decision on how to divide the data set into 2 separate 
sets with similar responses. The internal nodes features were 
selected using a criterion based on the Gini impurity classifi-
cation. The importance of the feature, also known as the Gini 
importance, was computed as the (normalized) total reduction 
of the criterion brought by that feature [22]. To determine the 
optimum risk factor subset, the relationship between the AUCs 
of the RF model and the number of risk factors were evaluated. 

A C

B Figure 2. �Measurement methods. (A) Axial chest CT image in a 
61-year-old male patient demonstrates a solid nodule 
in the right upper lobe. The lesion size is measured 
along the maximum short-axis diameter (white dotted 
line). The lesion depth is measured from the costal 
pleura to the nearest edge of the lesion (yellow double 
arrows). The length of the aerated lung traversed by 
the needle is measured from the pleural puncture 
point to the edge of lesion along the needle path 
(red double arrows). The angle of pleural puncture is 
the smallest angle between a line along the needle 
route and a tangential line to the pleura (white arc). 
(B) Axial chest CT image in a 78-year-old male patient 
demonstrates a cavitary lesion in the right upper 
lobe. The biopsy needle passed through the pleural 
indentation (white arrow). (C) Axial chest CT image 
demonstrates the pneumothorax measurement. The 
longest distance between parietal pleura and visceral 
pleura (white line).
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Finally, we redeveloped these models using the most relevant 
risk factors. All models on the development dataset were then 
applied to the external validation dataset obtained from in-
stitute B. All models were built using the Python environment 
(version 3.8, Beaverton, Ore) by using the sklearn, numpy, pan-
das, and scipy packages.

Statistical Analysis

Statistical analyses were performed using SPSS version 26 
(IBM Analytics Products, USA). Continuous variables were sum-
marized as mean and standard deviation (mean±SD), while 

categorical variables were summarized using frequencies and 
percentages. Correlation analysis was performed by Pearson 
correlation analysis. The Mann-Whitney U test and chi-square 
test were used in between-group comparisons. The models’ 
performance was assessed by calculating the area under the 
curve (AUC) of a receiver operating characteristic curve (ROC). 
The DeLong test was used to statistically compare the ROC 
curves of all models [23]. The sensitivity, specificity, accuracy, 
positive predictive value (PPV), and negative predictive value 
(NPV) for all developed models were also calculated. For all 
statistical tests, a P value of 0.05 or less was considered to be 
statistically significant.

Length of the aerated lung traversed

Angle of pleural pouncture

Lesion depth

Lesion size

Age

Procedure time

Gender

Biopsy position

Cavity inside the lesion

Pneumonitis

Number of biopsy

Lesion location

Emphysema/bullae

Crossing of pleural indentation

Crossing the interlobar �ssue

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

Train
Valid

1 2 3 4 5 6 7
Number of feature

8 9 10 11 12 13 14 15

AU
C

Feature importance

Importance
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

A

B

Figure 3. �Feature selection. (A) Ranking of important risk factors for the prediction of pneumothorax. (B) Predictive performance 
(AUCs) of the RF models at each number of risk factors in the development data and the external validation date.
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Results

Clinical Characteristics

To develop and validate the 4 models (LR, SVM, DT, and RF) 
for the prediction of pneumothorax, we used the development 
data of 245 patients and external validation data of 97 pa-
tients. Within the development dataset, pneumothorax was 
mild in 86 (79.6%), moderate in 18 (16.7%), and severe in 4 
(3.7%) patients, while in the external dataset, pneumothorax 
was mild in 48 (88.9%), moderate in 3 (5.6%), and severe in 3 
(5.6%) patients. There was no postoperative delayed pneumo-
thorax. Very often, patients with mild pneumothorax are not 
provided any treatment and are instead put under observa-
tion. The placement of a chest tube (n=28) is only considered 
if the pneumothorax becomes symptomatic or more severe. 
The detailed characteristics of the development and external 
validation data are summarized in Tables 1 and 2.

Feature Selection

The risk factors are shown in order of the importance of pneu-
mothorax in Figure 3A. The predictive performance (AUCs) of RF 
models for each number of risk factors are shown in Figure 3B. 
The AUCs of RFs reached an approximate plateau when the 
top-6 risk factors were introduced. In addition, univariate anal-
ysis showed a significant difference in sex between 2 groups 
(P=0.003). Considering the clinical circumstance, so the top-7 
ranked risk factors were identified as the optimum risk factor 
subset. The length of the aerated lung traversed was identi-
fied as the most important risk factor for developing pneumo-
thorax, followed by angle of pleural puncture, lesion depth, le-
sion size, age, procedure time, and sex.

Performance of Prediction Models

The sensitivity, specificity, accuracy, PPV, and NPV were cal-
culated for all models using both development and validation 
datasets, which are summarized in Tables 3 and 4. The pre-
diction performance of the models was assessed using the 

Models
Development set Verification set

LR SVM DT RF LR SVM DT RF

Sensitivity 0.701 0.781 0.759 0.825 0.581 0.791 0.884 0.930

Specificity 0.500 0.574 0.676 0.806 0.667 0.611 0.556 0.759

Accuracy 0.612 0.690 0.722 0.816 0.629 0.691 0.701 0.835

PPV 0.640 0.699 0.748 0.843 0.581 0.618 0.613 0.755

NPV 0.568 0.674 0.689 0.784 0.667 0.786 0.857 0.932

Table 3. Prediction performance of models based on 15 risk factors.

PPV – positive predictive value; NPV – negative predictive value; LR – logistic regression; SVM – support vector machine; DT – decision 
tree; RF – random forest.

Models
Development set Verification set

LR SVM DT RF LR SVM DT RF

Sensitivity 0.657 0.657 0.788 0.847 0.767 0.791 0.907 0.953

Specificity 0.537 0.648 0.639 0.824 0.315 0.315 0.519 0.685

Accuracy 0.604 0.653 0.722 0.837 0.515 0.526 0.691 0.804

PPV 0.643 0.703 0.735 0.859 0.471 0.479 0.600 0.707

NPV 0.552 0.598 0.704 0.809 0.630 0.654 0.875 0.949

Table 4. Prediction performance of models on 7 risk factors.

PPV – positive predictive value; NPV – negative predictive value; LR – logistic regression; SVM – support vector machine; DT – decision 
tree; RF – random forest.
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Models (AUC)
Development set Delong test 

P value

Verification set Delong test 
P value15 risk factors 7 risk factors 15 risk factors 7 risk factors

LR 0.667 0.636 0.272 0.672 0.599 0.148

SVM 0.789 0.698 0.011 0.813 0.658 0.012

DT 0.792 0.789 0.815 0.825 0.814 0.632

RF 0.910* 0.921* 0.480 0.921* 0.914* 0.849

Table 5. Prediction performance of models on 15 vs 7 risk factors.

* RF vs LR/SVM/DT (DeLong test, P<0.05). LR – logistic regression; SVM – support vector machine; DT – decision tree; RF – random 
forest; AUC – area under the curve.
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Figure 4. �Receiver operating characteristic curves (ROCs) and the areas under the curves (AUCs) of models in (A) the development data 
based on 15 risk factors versus 7 critical risk factors, (B) the validation data based on 15 risk factors versus 7 critical risk 
factors.
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AUC, as illustrated in Figure 4. According to DeLong’s test for 
difference in ROC curves, the LR, DT, and RF models based on 
either 15-RFs or 7-RFs achieved similar classification perfor-
mance (P>0.05). In contrast, the SVM model had significant-
ly lower levels based on 7-RFs (P<0.05). All models yielded an 
AUC above 0.599, with the RF model achieving the highest ac-
curacy, with an AUC of 0.921. In the external validation data-
set, based on 7-RFs, the RF model achieved an AUC of 0.914 
(P<0.05), which was significantly higher than all other mod-
els, as shown in Table 5.

Discussion

In this study, we developed the first pneumothorax predic-
tion model using the RF algorithm based on the patient, le-
sion, and procedure-related risk factors. Furthermore, to min-
imize the risk of overfitting the RF models, we evaluated the 
model’s diagnostic performance using a separate external val-
idation dataset. We also compared the performance of the RF 
model with other commonly used prediction models, includ-
ing LR, SVM, and DT.

The 7-RFs RF model proposed in our study achieved the best 
performance, with an AUC of 0.914 on the validation dataset, 
indicating that the RF model fit well with the relationship be-
tween risk factors and pneumothorax. Therefore, this model 
may be used clinically to reduce the risk of developing pneu-
mothorax by changing controllable factors such as the angle 
of pleural puncture and also by improving the postoperative 
management of high-risk patients.

To date, among the various machine learning methods, only 
multivariate LR analysis has been used to develop a predic-
tive model for pneumothorax after a CT-guided needle biopsy. 
Zhao et al established a predictive LR model based on 6 risk 
factors, which resulted in an AUC, sensitivity, specificity, and 
accuracy of 0.735, 0.568, 0.796, and 0.725, respectively [15]. 
However, this model was not externally validated. In another 
study, Wang et al used a multivariable LR to develop a predic-
tive model based on 5 risk factors filtered by using the lasso 
regression method. The model had good predictive ability in 
both the development dataset (AUC=0.801) and in the exter-
nal validation dataset (AUC=0.738) [7]. In comparison, our LR 
model achieved a lower AUC, slightly higher sensitivity, and 
marginally lower specificity and accuracy. This variation may 
be due to the use of different risk prediction factors. In the 
present study, the RF model demonstrated higher sensitivity, 
specificity, accuracy, PPV, NPV, and AUC when compared with 
the LR, SVM, and DT models in both development and valida-
tion datasets for both 15-RFs and 7-RFs (Tables 3-5). Moreover, 
for all models except for SVM, there was no statistically sig-
nificant difference in the ROC curves between the 15-RFs and 

7-RFs models in both the development and external validation 
datasets (Table 5). These findings may suggest that a predic-
tive model based on only 7-RFs is sufficient and may be imple-
mented clinically, hence facilitating clinical decision-making.

Our findings identified the length of the aerated lung traversed 
as the most important risk factor for the development of pneu-
mothorax, followed by angle of pleural puncture, lesion depth, 
lesion size, age, procedure time, and sex (Figure 3A). An inter-
esting finding of this study was that among the 7 critical risk 
factors identified in our study, 3 of them – length of the aer-
ated lung traversed, angle of pleural puncture, and procedure 
time – are related to the puncture procedure. This implies that 
the risk of developing pneumothorax may be reduced by op-
timizing the surgical procedure.

Previous studies found that the length of the lung parenchy-
ma traversed by the biopsy tract was the most important fac-
tor for pneumothorax [24,25], as also identified in our study. In 
our study, the measurement method of lesion depth was differ-
ent from that in the past, and lesion depth was positively corre-
lated with the length of the aerated lung traversed in both de-
velopment and validation datasets (r=0.658, P<0.001; r=0.673, 
P<0.001). This means that the deeper lesions may require a lon-
ger biopsy needle path. A longer needle path may require fre-
quent adjustments of the biopsy needle position, which may re-
sult in tearing of the pleura and eventually increase the risk of 
developing pneumothorax [26,27]. A smaller needle pleural an-
gle [28] and a longer puncture time were also found to be corre-
lated with the risk of developing pneumothorax [29]. Consistent 
with previously published studies [30-34], patients with smaller 
lung lesions and older patients had an increased risk for devel-
oping pneumothorax in our study. A study by Kim et al found 
that patients above the age of 60 years had a significantly high-
er risk of developing a pneumothorax [34]. Males were found to 
be more at risk of developing pneumothorax in our study, in con-
cordance with the studies by Lee et al and Hiraki et al [33,35].

Our study has a number of limitations that have to be ac-
knowledged. First, some factors, such as the radiologists’ ex-
perience, needle size, and other complications, such as hem-
orrhage or hemothorax, were not included in the models. The 
model proposed in this study can only be used to predict the 
occurrence of postoperative pneumothorax, not the severity. 
However, the prediction of pneumothorax following PTNB is 
more important for patients exhibiting oxygen desaturation, 
as they require immediate catheter insertion. Therefore, fur-
ther stratified analysis involving more participants with mod-
erate or severe pneumothorax is required. The small sample 
size in our study may have resulted in selection bias or oper-
ator biases, potentially limiting the generalizability of the re-
search findings. To further validate our results, additional stud-
ies including data from multiple institutions are warranted. 
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Future studies should also compare the performance of our 
RF model with other machine learning models. Future mod-
els should also establish prediction thresholds. Finally, a pro-
spective study on the association of the predictions with the 
resultant outcome is needed to clinically validate the predic-
tion accuracy of this model.

Conclusions

The RF models resulted in high precision accuracy in the pre-
diction for pneumothorax and performed better than the LR, 
SVM, and DT models. There was no statistically significant dif-
ference between the 15-RFs and 7-RFs RF models, suggesting 
that the 7-RFs model is sufficient to clinically determine the 
risk for developing pneumothorax. The 7-RFs RF model may be 
used to facilitate preemptive decisions in patients deemed at 

higher risk of developing pneumothorax, which may include 
procedure optimization and better postoperative management.
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