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Inspired by the group decisionmaking process, ensembles or combinations of classifiers have been found favorable in a wide variety
of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a
hybrid ensemble. Why does such an ensemble work?The question remains. Following the concept of diversity, which is one of the
fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting
using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of
classifiers created by decision tree and naı̈ve Bayes classification algorithms, each of which is a top data mining algorithm and often
used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of
creating and using hybrid ensembles.

1. Introduction

Ensemble learning is inspired by the human group decision
making process and has gained much attention [1–7]. It is
to create an ensemble, which is a group of classifiers and
combines classifications made by these classifiers to make
an overall classification. The advantage of ensembles is not
that the best combination of classifiers outperforms the best
classifier but that a combination of classifiers is less probable
to misclassify unseen data samples than a single classifier.
Ensembles have shown their satisfactory classification perfor-
mance in a large scale comparative study [8].

Ensemble learning has been applied in various applica-
tion domains, such as image classification [9–14], fingerprint
classification [15], weather forecasting [16], text categoriza-
tion [17], image segmentation [18], visual tracking [19], pro-
tein fold pattern recognition [20], cancer classification [21],
pedestrian recognition [22] or detection [23], prediction of
software quality [24, 25], face recognition [26], email filtering
[27], prediction of students’ performance [28], medical image
analysis [29–32], churn prediction [33], sentiment analysis
[34–37], steganalysis [38], prediction of air quality [39], and
intrusion detection [40].

From one point of view, ensemble learning becomes
popular because every classification algorithm has its own

limitations. From another point of view, if every classifier in
an ensemble has expertise in classifying data samples that
belong to some portion of the given data set, the overall
classification combined from all (or some) classifiers in the
ensemble will potentially be more reliable.

Compared to classifiers working individually, classifiers
working together will have a better potential for gaining
better accuracy [41]. Diverse classifiers working together will
have a better potential for gaining better accuracy compared
to non-diverse classifiers working together, as suggested in
[42]. In creating an ensemble, every classifier that will be part
of the ensemble is expected to be adequately accurate, while
the correlation between classificationsmade by two classifiers
that will be part of the ensemble is expected to be small.

Some researchers use a mixture of different types of
classification algorithms to create hybrid ensembles. For
example, with reference to ensembles composed of decision
trees and artificial neural networks, Langdon et al. use such
an ensemble in drug discovery [43]; Lu et al. discuss sampling
methods along with these ensembles for active learning
[44]; in [45], the author analyzes the hybrid ensembles for
binary classification from the standpoint of bias-variance
decomposition proposed in [46]. Furthermore, Salgado et
al. use ensembles of artificial neural networks and support
vector machines [47, 48] to predict daily electricity load [49].
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Min and Cho use naı̈ve Bayes classifiers and support vector
machines for activity recognition [50]. Verikas et al. provide
a survey of hybrid ensembles designed for bankruptcy pre-
diction [51]. In addition, Verma and Hassan use integrations
of clustering and classification algorithms to create hybrid
ensembles [52].

Most researchers simply use hybrid ensembles without
further investigation. Therefore, we plan to have a better
understanding of hybrid ensembles. Our goal is not only to
show that the classification performance of hybrid ensembles
can be comparable or even superior to that of non-hybrid
ensembles, but also to provide an explanation of why hybrid
ensembles work from the standpoint of diversity. Diversity
among classifiers in an ensemble plays a significant role in
the success of the ensemble. One type of ensemble learning
algorithms uses sampling methods to generate different data
sets used for training diverse classifiers, such as Bagging
(Bootstrap Aggregating) [53], while another type is rather
ad hoc and uses different classification algorithms to train
diverse classifiers that will be used to create an ensemble.

We create hybrid ensembles by using an integration of
these two types of ensemble learning algorithms.The classifi-
cation algorithms that we use to create hybrid ensembles are
C4.5 [48, 54] decision tree and näıve Bayes [48]. We provide
an empirical comparison of these hybrid ensembles and
others created by using Bagging. This paper is particularly
essential because quite few papers empirically evaluate hybrid
ensembles and at the same time theoretically analyze them.

The rest of this paper is structured as follows: We
provide background information and present our analysis in
Section 2. Next, we report and discuss experiment results in
Section 3. Finally, we give conclusion in Section 4.

2. Materials and Methods

The goal of using several classifiers in an ensemble is
to achieve better classification performance by combining
classifications from these classifiers, each of which serves as
an optimal model or an expert in a portion of the data set.
These classifiers are expected to be uncorrelated and behave
independently of each other; or, at least, they need to show
different patterns of errors.

Diversity among classifiers in an ensemble is related to
the success of the ensemble, because it can compensate for
errors made by those classifiers individually [55]. In this
section, we analyze diversity and classification performance,
for example, accuracy, of ensembles created by using a single
algorithm (i.e., non-hybrid ensembles) and hybrid ensembles
created by using two different algorithms. The relationship
between diversity and accuracy is not “straightforward” [56].
On one hand, combining classifications from classifiers of
low diversity would not improve the overall accuracy because
these classifiers behave similarly for some portions of the data
set; on the other hand, using highly diverse classifiers to create
an ensemble would not guarantee absolutely high accuracy.
Hsu and Srivastava show that using different classification
algorithms in an ensemble would likely increase diversity
and decrease correlation between classifiers in the ensemble
[57], and they build the connection between diversity and

correlation, which can be indirectly connected to accuracy
[58]. Referring to the analysis technique used in [59], we build
amore direct connection between diversity and accuracy, and
further we analyze the influence of using different algorithms
to create an ensemble on accuracy; the analysis distinguishes
this paper from the earlier papers.

In what follows, 𝑥 is a 𝑑-dimensional vector to represent
a data sample, and 𝑦 is a binary class label or 𝑦 ∈ {−1, 1}.
𝐶 is a classifier and 𝐶 : 𝑥 ∈ R𝑑 󳨃→ 𝑦̂ ∈ {−1, 1}, where
𝑦̂ is a classification made by a classifier. 𝐴 is a classification
algorithm. 𝑇 is a set of data samples. 𝐶(𝑥 | 𝐴, 𝑇) means that
𝐶 is trained by applying 𝐴 on 𝑇 and is used to classify 𝑥, and
it returns a binary class label.

What is described in (1) is a general form of an ensemble
where classifications from classifiers are combined through
majority voting to make the overall classification. It can be
modified such that it uses weighted majority voting. In (1),
𝐶 is an ensemble of 𝑛 classifiers, 𝐶𝑖 is a classifier in the
ensemble, 𝑥 is a data sample that needs to be classified, and
V is the overall classification. For those ensemble learning
algorithms only using different data sets to train diverse
classifiers, 𝐴 𝑖 = 𝐴𝑗 and 𝑇𝑖 ̸= 𝑇𝑗 for all 𝑖 ̸= 𝑗, where
0 ≤ 𝑖, 𝑗 ≤ 𝑛, and Bagging is an example. For those using
different classification algorithms and different data sets to
train diverse classifiers, 𝐴 𝑖 = 𝐴𝑗 for some (or, in few cases,
all) 𝑖 ̸= 𝑗 and 𝑇𝑖 ̸= 𝑇𝑗 for all 𝑖 ̸= 𝑗, where 0 ≤ 𝑖, 𝑗 ≤ 𝑛, and this
is of our interest in this paper

𝐶 (𝑥) = argmax
V={−1,1}

𝑛

∑
𝑖=1

I (V = 𝑦̂𝑖)

= argmax
V={−1,1}

𝑛

∑
𝑖=1

I (V = 𝐶𝑖 (𝑥 | 𝐴 𝑖, 𝑇𝑖)) ,

where I is the indicator function.

(1)

Given a data set 𝐷 and a set of classification algorithms
𝐺, we create a hybrid ensemble of 𝑛 classifiers, each of which
is trained by applying an algorithm selected in an alternating
fashion from 𝐺 on a set of data samples drawn from 𝐷 with
bootstrap sampling. This process is shown in Algorithm 1.
Instead of selecting algorithms in an alternating fashion, we
can simply do random selection such that a classifier in
the hybrid ensemble could be trained by using one of the
algorithms in 𝐺 with an equal probability. Extending from
this, we can incorporate prior knowledge and assign unequal
probabilities to different algorithms.

The input of the bootstrap sampling method is a data set
𝐷, and the output is a set 𝐷𝑏 of data samples drawn with
replacement from 𝐷, |𝐷𝑏| = |𝐷|. We use bootstrap sampling
when we need different data sets to train diverse classifiers
in creating an ensemble. Diversity among the classifiers in
such an ensemble totally comes from differences among the
data sets used to train the classifiers, and therefore bootstrap
sampling is the single generator of diversity in such an
ensemble. We train diverse classifiers by additionally using
different classification algorithms, and by doing this we have
an additional generator of diversity.
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Input: A data set𝐷, a set of clssification algorithms 𝐺, the number of classifiers 𝑛
Output: An ensemble 𝐶
Steps:
(1) For 𝑖 = 1 to 𝑛
(2) Use bootstrap sampling to sample𝐷 and generate 𝑇𝑖, which is of the same size of D
(3) Select the (⌊𝑖modulo|𝐺|⌋ + 1)th element in 𝐺 as 𝐴 𝑖
(4) Train 𝐶𝑖 by applying 𝐴 𝑖 on 𝑇𝑖
(5) End For
(6) Return 𝐶 = ⋃𝑛𝑖=1 𝐶𝑖

Algorithm 1: Process to create a hybrid ensemble.

Afterward, we present our analysis of why hybrid ensem-
bles work based on the analysis technique used in [59]. We
start from the following definitions, where 𝑦̂(𝐴,𝑇) = 𝐶(𝑥 |
𝐴, 𝑇) and 𝑦̂ is the classification to a testing data sample 𝑥
given by a classifier 𝐶 trained by applying 𝐴 on 𝑇.

Definition 1. 𝐷 is a given data set and𝑊 is a set of data sets
generated with bootstrap sampling from 𝐷. The 𝑖th element
in𝑊 is of the same size of 𝐷; that is, |𝑊𝑖| = |𝐷|. 𝑇1 ∈ 𝑊 and
𝑇2 ∈ 𝑊 are used as training data sets, where 𝑇1 ̸= 𝑇2. With
respect to 𝑆 ∈ 𝑊 used as a testing data set, where 𝑆 ̸= 𝑇1 and
𝑆 ̸= 𝑇2, 𝑇-Diversity of a classification algorithm 𝐴 is defined
as an expectation of disagreement between classifiers trained
by applying 𝐴 on 𝑇1 and 𝑇2, as given in

𝑇-Diversity = 𝐸𝑆 [I (𝑦̂
(𝐴,𝑇1) ̸= 𝑦̂(𝐴,𝑇2))] ,

where 𝐸𝑆 is the expectation upon 𝑆.
(2)

Definition 1 describes how unstable a classification algo-
rithm could possibly be on a given data set. Definition 2
describes the degree of being unstable (or the instability) for
a classification algorithm.

Definition 2. Based on Definition 1, a classification algorithm
𝐴 is (𝛼, 𝛽)-unstable with respect to 𝑇-Diversity, if the follow-
ing holds:

𝑃𝑊 [𝐸𝑆 [I (𝑦̂
(𝐴,𝑇1) ̸= 𝑦̂(𝐴,𝑇2))] ≥ 𝛼] ≥ 𝛽,

where 𝑃𝑊 is the probability upon 𝑊.
(3)

Here, disagreement between classifiers is from using
different training data sets, and it is a type of diversity. In
(3), 𝛽 is the lower bound of the probability that we can
observe disagreement at least 𝛼; the larger the 𝛼, the larger
the diversity. When 𝛼 is treated as a constant, a larger value of
𝛽means a more unstable classification algorithm.

We use the process given below to estimate the instability
of an algorithm on a data set. The idea is to use two
sampled data sets to train two classifiers and then measure
the difference in classifications made by the two classifiers on
another sampled data set. Because these data sets are from
the same given data set, difference in classifications mainly
comes from the algorithm used to train the classifiers. If the
algorithm ismore unstable and sensitive to the changes in the

data sets used for training, the trained classifiers would make
more different classifications on a data set, part of which has
been seen by both classifiers.The larger the value returned by
the process, the more unstable the algorithm.

Definition 3. 𝐷 is a given data set and𝑊 is a set of data sets
generated with bootstrap sampling from 𝐷. The 𝑖th element
in 𝑊 is of the same size of 𝐷; that is, |𝑊𝑖| = |𝐷|. 𝑇 ∈
𝑊 is used as a training data set. With respect to 𝑆 ∈ 𝑊
used as a testing data set, where 𝑆 ̸= 𝑇, 𝐴-Diversity for
two classification algorithm 𝐴1 and 𝐴2 is defined as an
expectation of disagreement between classifiers trained by
applying 𝐴1 and 𝐴2 on 𝑇, as given in

𝐴-Diversity = 𝐸𝑆 [I (𝑦̂
(𝐴1 ,𝑇) ̸= 𝑦̂(𝐴2 ,𝑇))] ,

where 𝐸𝑆 is the expectation upon 𝑆.
(4)

Definition 3 describes how different two classification
algorithms could possibly be on a given data set. Definition 4
describes the degree of being different (or the differentiabil-
ity) for two classification algorithms.

Definition 4. Based on Definition 3, two classification algo-
rithms 𝐴1 and 𝐴2 are (𝛿, 𝛾)-differentiable with respect to 𝐴-
Diversity, if the following holds:

𝑃𝑊 [𝐸𝑆 [I (𝑦̂
(𝐴1 ,𝑇) ̸= 𝑦̂(𝐴2 ,𝑇))] ≥ 𝛿] ≥ 𝛾,

where 𝑃𝑊 is the probability upon 𝑊.
(5)

Here, disagreement between classifiers is from using
different classification algorithms, and it is a type of diversity,
too. In (5), 𝛾 is the lower bound of the probability that we can
observe disagreement at least 𝛿; the larger the 𝛿, the larger the
diversity. Similarly, when 𝛿 is treated as a constant, a larger
value of 𝛾 means that two classification algorithms are more
different.

We use the process given below to estimate the differen-
tiability of a pair of algorithms on a data set.The idea is to use
two algorithms and a sampled data set to train two classifiers
and then measure the difference in classifications made by
the two classifiers on another sampled data set. If the two
algorithms aremore differentiable, the classifiers trained with
them would make more different classifications on a data set,
part of which has been seen by both classifiers. The larger the
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value returned by the process, the more differentiable the two
algorithms.

We show a connection between diversity and accuracy
gain for using a hybrid ensemble through the proposition
given below.

Proposition 1. If two classification algorithms 𝐴1 and 𝐴2
are (𝛿, 𝛾)-differentiable and 𝐴1 is (𝛼1, 𝛽1)-unstable, then (6)
holds, where Δ𝐸[𝐴𝑐𝑐] is the difference between the expected
accuracy of a hybrid ensemblewith𝐴1 and𝐴2 and the expected
accuracy of a non-hybrid ensemble with only 𝐴1, and 𝐴𝑐𝑐𝑖 is
the accuracy of the classifier training by using 𝐴 𝑖

𝑃 [Δ𝐸 [Acc] ≥ 𝛼1 ⋅ 𝛿 ⋅ (Acc2 − Acc1)]

≥ 1 − (1 − 𝛽1) ⋅ (1 − 𝛾) .
(6)

Regarding (6), 𝐴1 is the classification algorithm used
to train most classifiers in both ensembles, and 𝐴2 is the
classification algorithm used to train a classifier in a hybrid
ensemble. When 𝛼1 and 𝛿 are treated as constants, the lower
bound of the probability that we can observe accuracy gain
depends on how unstable 𝐴1 is and how different 𝐴1 and 𝐴2
are. If 𝛽1 is larger, meaning that 𝐴1 is more unstable, and 𝛾
is larger, meaning that 𝐴1 and 𝐴2 are more different, then
the lower bound of the probability is larger; if 𝛽1 is smaller,
meaning that 𝐴1 is more stable, and 𝛾 is smaller, meaning
that𝐴1 and𝐴2 are more similar, then the lower bound of the
probability is smaller, while this does not necessarily mean
that the probability of observing accuracy gain is smaller. As
a result, if the algorithm used to train most classifiers in a
hybrid ensemble is unstable and it is different from the other
algorithm, then it is more probable that accuracy gain would
be observed. Furthermore, the lower bound of the accuracy
gain depends on how unstable 𝐴1 is, how different 𝐴1 and
𝐴2 are, and how accurate the classifiers trained with 𝐴1 and
𝐴2 are. If the classifier trained with 𝐴2 is more accurate,
𝐴𝑐𝑐2 − 𝐴𝑐𝑐1 is larger and the lower bound of accuracy gain
is larger. As a result, it is beneficial to replace a classifier (or
some classifiers) in a non-hybrid ensemble with a classifier
(or some classifiers) trained with a different yet accurate
classification algorithm.Nevertheless, itmay not be beneficial
to replace all, because doing so would lower diversity among
classifiers.

Proof. 𝑇1, 𝑇2, and 𝑇3 are three data sets generated with
bootstrap sampling from a given data set. Classifiers 𝐶1, 𝐶2,
and 𝐶3 are trained by applying a classification algorithm 𝐴1
on 𝑇1, 𝑇2, and 𝑇3, respectively. That is, 𝐶1(𝑥 | 𝐴1, 𝑇1) =
𝑦̂(𝐴1 ,𝑇1), 𝐶2(𝑥 | 𝐴1, 𝑇2) = 𝑦̂(𝐴1 ,𝑇2), and 𝐶3(𝑥 | 𝐴1, 𝑇3) =
𝑦̂(𝐴1 ,𝑇3). The ensemble composed of 𝐶1, 𝐶2, and 𝐶3 is a
non-hybrid ensemble, because it is with only a classification
algorithm. Classifier 𝐶󸀠2 is trained by applying another clas-
sification algorithm 𝐴2 on 𝑇2. That is, 𝐶󸀠2(𝑥 | 𝐴2, 𝑇2) =
𝑦̂(𝐴2 ,𝑇2). The ensemble composed of 𝐶1, 𝐶󸀠2, and 𝐶3 is a
hybrid ensemble, because it is with two different classification
algorithms.

Initially, we represent the expected accuracy of the non-
hybrid ensemble in (7), which is based on majority voting. In
what follows, 𝑦 is the class label of a data sample

𝐸 [I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)

+ I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) ̸= 𝑦)

+ I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇2) ̸= 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)

+ I (𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)] .

(7)

Similarly, we represent the expected accuracy of the
hybrid ensemble in

𝐸 [I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)

+ I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) ̸= 𝑦)

+ I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) ̸= 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)

+ I (𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)] .

(8)

The difference between the expected accuracy of the
hybrid ensemble and that of the non-hybrid ensemble or the
difference between (8) and (7) is denoted by Δ𝐸[Acc]. It is
given in

Δ𝐸 [Acc]

= 𝐸 [I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)

+ I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) ̸= 𝑦)

+ I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) ̸= 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)

+ I (𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)

− I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)

− I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) ̸= 𝑦)

− I (𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) ̸= 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)

− I (𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦 ∧ 𝑦̂(𝐴2 ,𝑇2) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦)] .

(9)

Next, (9) is rewritten as (10) by rearranging its compo-
nents

Δ𝐸 [Acc] = 𝐸 [I (𝑦̂(𝐴1 ,𝑇1) = 𝑦) ⋅ I (𝑦̂(𝐴1 ,𝑇3) = 𝑦)

× (I (𝑦̂(𝐴2 ,𝑇2) = 𝑦) − I (𝑦̂(𝐴1 ,𝑇2) = 𝑦))

+ I (𝑦̂(𝐴1 ,𝑇1) = 𝑦) ⋅ I (𝑦̂(𝐴1 ,𝑇3) ̸= 𝑦)
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Input: A data set𝐷, a clssification algorithm 𝐴, 𝛼 as in (3), the number of trials 𝑡
Output: A possible value of 𝛽 as in (3)
Steps:
(1) 𝑠 ← 0
(2) For 𝑖 = 1 to 𝑡
(3) Sample𝐷 and generate 𝑇1
(4) Train 𝐶1 by applying 𝐴 on 𝑇1
(5) Sample𝐷 and generate 𝑇2
(6) Train 𝐶2 by applying 𝐴 on 𝑇2
(7) Sample𝐷 and generate 𝑇3
(8) Use 𝑇3 to test 𝐶1 and 𝐶2
(9) If the disagreement rate ≥ 𝛼 then
(10) 𝑠 ← 𝑠 + 1
(11) End If
(12) End For
(13) Return 𝑠/𝑡

Algorithm 2: Process to estimate instability.

× (I (𝑦̂(𝐴2 ,𝑇2) = 𝑦) − I (𝑦̂(𝐴1 ,𝑇2) = 𝑦))

+ I (𝑦̂(𝐴1 ,𝑇1) = 𝑦) ⋅ I (𝑦̂(𝐴1 ,𝑇3) = 𝑦)

× (I (𝑦̂(𝐴2 ,𝑇2) ̸= 𝑦) − I (𝑦̂(𝐴1 ,𝑇2) ̸= 𝑦))

+ I (𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦) ⋅ I (𝑦̂(𝐴1 ,𝑇3) = 𝑦)

× (I (𝑦̂(𝐴2 ,𝑇2) = 𝑦) − I (𝑦̂(𝐴1 ,𝑇2) = 𝑦))] .
(10)

I(𝑦̂(𝐴2 ,𝑇2) ̸= 𝑦) − I(𝑦̂(𝐴1 ,𝑇2) ̸= 𝑦) is equal to (1 − I(𝑦̂(𝐴2 ,𝑇2) =
𝑦)) − (1 − I(𝑦̂(𝐴1 ,𝑇2) = 𝑦)), and further the component is
equal to −1 ⋅ (I(𝑦̂(𝐴2 ,𝑇2) = 𝑦 − I(𝑦̂(𝐴1 ,𝑇2) = 𝑦))). Furthermore,
I(𝑦̂(𝐴1 ,𝑇1) = 𝑦) ⋅ I(𝑦̂(𝐴1 ,𝑇3) ̸= 𝑦) is equal to I(𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧
𝑦̂(𝐴1 ,𝑇3) ̸= 𝑦), and the relationship 𝑦̂(𝐴1 ,𝑇1) = 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) ̸= 𝑦
implies 𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦̂(𝐴1 ,𝑇3). I(𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦) ⋅ I(𝑦̂(𝐴1 ,𝑇3) = 𝑦) is
equal to I(𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦), and the relationship
𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦 ∧ 𝑦̂(𝐴1 ,𝑇3) = 𝑦 implies 𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦̂(𝐴1 ,𝑇3), too.
Next, (11) is obtained:

Δ𝐸 [Acc] = 𝐸 [I (𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦̂(𝐴1 ,𝑇3))

× (I (𝑦̂(𝐴2 ,𝑇2) = 𝑦) − I (𝑦̂(𝐴1 ,𝑇2) = 𝑦))] .
(11)

In (11), the first component is related to 𝑇-Diversity and
the second component is related to accuracy. As the two
components are independent, (11) is rewritten as

Δ𝐸 [Acc] = 𝐸 [I (𝑦̂(𝐴1 ,𝑇1) ̸= 𝑦̂(𝐴1 ,𝑇3))]

× 𝐸 [I (𝑦̂(𝐴2 ,𝑇2) = 𝑦) − I (𝑦̂(𝐴1 ,𝑇2) = 𝑦)] .
(12)

Next, by referring to Definition 4, the second component
in (12) is associated with 𝑃[𝑦̂(𝐴1 ,𝑇2) ̸= 𝑦̂(𝐴2 ,𝑇2) ∧ 𝑦̂(𝐴2 ,𝑇2) = 𝑦]−
𝑃[𝑦̂(𝐴1 ,𝑇2) ̸= 𝑦̂(𝐴2 ,𝑇2) ∧ 𝑦̂(𝐴1 ,𝑇2) = 𝑦], which is equal to

𝑃 [𝑦̂(𝐴1 ,𝑇2) ̸= 𝑦̂(𝐴2 ,𝑇2)] ⋅ [Acc2 − Acc1] . (13)

Because 𝐴1 and 𝐴2 are (𝛿, 𝛾)-differentiable, (14) is larger
than or equal to 𝛿 ⋅ [Acc2 − Acc1] with a probability at least
𝛾. Combining this and 𝐴1 being (𝛼1, 𝛽1)-unstable, (14) is
obtained:

𝑃 [Δ𝐸 [Acc] < 𝛼1 ⋅ [𝛿 ⋅ (Acc2 − Acc1)]]

< (1 − 𝛽1) ⋅ (1 − 𝛾) .
(14)

Finally, (15) is obtained through (14) and the proof is
complete:

𝑃 [Δ𝐸 [Acc] ≥ 𝛼1 ⋅ [𝛿 ⋅ (Acc2 − Acc1)]]

≥ 1 − (1 − 𝛽1) ⋅ (1 − 𝛾) .
(15)

We treat 𝛼1 and 𝛿 as constants, as in the processes shown
in Algorithms 2 and 3. Given an ensemble of classifiers
trained by using 𝐴1. We replace some classifiers with those
trained by using 𝐴2, which generally provides a higher value
of accuracy (so that Acc2 is larger than Acc1), and the lower
bound of accuracy gain will be positive, meaning that we
would probably obtain a hybrid ensemble that could achieve
better classification performance. If is 𝐴1 more unstable, 𝛽1
will be larger. If𝐴2 is more different from𝐴1, 𝛾will be larger.
The larger 𝛽1 and the larger 𝛾, the larger the lower bound of
the probability that we would observe better accuracy.

3. Results and Discussion

3.1. Data Sets. In experiments, we use 20 data sets from UCI
Machine Learning Repository [60], supported by School of
Information and Computer Science, University of California,
Irvine, and from Department of Statistics, Carnegie Mellon
University. Using public data sets is to allow the reproduction
of the experiments.

The data sets used in experiments are from various
application domains. Their characteristics are summarized
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Input: A data set𝐷, two clssification algorithms 𝐴1 and 𝐴2, 𝛿 as in (5), the number of trials 𝑡
Output: A possible value of 𝛾 as in (5)
Steps:
(1) 𝑠 ← 0
(2) For 𝑖 = 1 to 𝑡
(3) Use bootstrap sampling to sample𝐷 and generate 𝑇1
(4) Train 𝐶1 by applying 𝐴1 on 𝑇1
(5) Train 𝐶2 by applying 𝐴2 on 𝑇1
(6) Sample𝐷 and generate 𝑇2
(7) Use 𝑇2 to test 𝐶1 and 𝐶2
(8) If the disagreement rate ≥ 𝛿 then
(9) 𝑠 ← 𝑠 + 1
(10) End If
(11) End For
(12) Return 𝑠/𝑡

Algorithm 3: Process to estimate differentiability.

in Table 1, where the first column is the serial number, the
second column is the name of a data set, the third column
is the number of data samples, the fourth column is the
number of data samples that belong to the minority class,
the fifth column is the number of nominal attributes, the
sixth column is the number of numeric attributes, and the
numbers in parentheses present the numbers of attributes
with missing values. The proportion of minority samples
affects the classification performance of a classifier or an
ensemble, and so does the proportion of attributes with
missing values. For a data set that is usually used in regression
analysis, we apply discretization on its target attribute and
divide continuous values of the attribute properly into two
intervals each of which corresponds to a class label; such a
data set is with the suffix “binary.”

3.2. Settings. We consider C4.5 decision tree and naı̈ve Bayes
classification algorithms. The former is denoted by DT, and
the latter is denoted by NB. We consider single classifiers
trained by using DT or NB, non-hybrid ensembles trained
with DT or NB, and hybrid ensembles trained with DT and
NB.

We implement the process given in Algorithm 1 by using
WEKA [61], and we compare the classification performances
given by ensembles created by it to that given by Bagging.
The ensembles created by using Bagging with DT or NB
are non-hybrid ensembles with only DT or NB. We set the
number of classifiers in an ensemble to 10 for all ensemble
learning algorithms. We use 20 × 10-fold cross-validation
for classification performance evaluation. That is, for each
combination of an ensemble learning algorithm and a data
set, we run 10-fold cross-validation 20 times randomly and
independently. In addition, we investigate instability and
differentiability.

3.3. Instability. We use the process described earlier to
estimate the instability of an algorithm on a data set. We
set 𝛼 to 0.05 (by statistical convention) and the number of
trials to 100. We report the results in Table 2. The content

Table 1: Characteristics of the data sets used in experiments.

Number Name Samples Attributes
All Min. Nom. Number

(1) biomed 209 75 1 (0) 7 (2)
(2) boston-binary 506 132 0 (0) 13 (0)
(3) breast-w 699 241 0 (0) 9 (1)
(4) colic 368 136 15 (14) 7 (7)
(5) credit-a 690 307 9 (5) 6 (2)
(6) credit-g 1000 300 13 (0) 7 (0)
(7) credit 490 217 9 (5) 6 (2)
(8) diabetes 768 268 0 (0) 8 (0)
(9) heart-c-binary 303 138 7 (1) 6 (1)
(10) heart-h-binary 294 106 7 (5) 6 (4)
(11) heart-statlog 270 120 0 (0) 13 (0)
(12) hepatitis 155 32 13 (10) 6 (5)
(13) hprice-binary 546 271 11 (0) 0 (0)
(14) ICU 200 40 16 (0) 3 (0)
(15) ionosphere 351 126 0 (0) 34 (0)
(16) kr-vs-kp 3196 1527 36 (0) 0 (0)
(17) schizo 340 163 2 (0) 11 (11)
(18) sick 3772 231 22 (1) 7 (7)
(19) sonar 208 97 0 (0) 60 (0)
(20) vote 435 168 16 (16) 0 (0)

in a cell indicates the value of 𝛽 or the probability that the
disagreement rate is larger than or equal to 𝛼 or 0.05. The
disagreements are given by two classifiers trained by applying
the algorithm corresponding to the column on two data sets
sampled from the data set corresponding to the row. The
probability is calculatedwith reference to 100 trials.The larger
the value of 𝛽, the more unstable the algorithm on the data
set. DT is more unstable than NB on 13 out of these 20 data
sets. This is consistent with the general thought that decision
tree algorithm is unstable (or it is a classification algorithm
with high variance) and therefore suitable for being used to
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Table 2: Results for instability.

Number DT NB
(1) 0.16 0.01
(2) 0.04 0.06
(3) 0 0
(4) 0.61 0.45
(5) 0.72 0.25
(6) 1 0.97
(7) 0.61 0.23
(8) 0.96 0.66
(9) 0.9 0.37
(10) 0.9 0.18
(11) 0.7 0.33
(12) 0.72 0.58
(13) 1 0.24
(14) 0.76 0.68
(15) 0.05 0.49
(16) 0 0.18
(17) 1 0.85
(18) 0 0.04
(19) 0.19 0.9
(20) 0 0

create ensembles. The difference of values of instability is
larger than or equal to 0.5 on 4 data sets: heart-c-binary, heart-
h-binary, hprice-binary, and sonar. The results clearly show
that instability results from not only the nature of a data set
but also the nature of a classification algorithm.

3.4. Differentiability. We use the process described earlier to
estimate the differentiability of two algorithms on a data set.
We set 𝛿 to 0.05 (by statistical convention) and the number
of trials to 100. We report the results in Table 3. The content
in a cell indicates the value of 𝛾 or the probability that the
disagreement rate is larger than or equal to 𝛿 or 0.05. The
disagreements are given by two classifiers trained by applying
DT and NB separately on a data set sampled from the data
set corresponding to the row. The probability is calculated
with reference to 100 trials. The larger the value of 𝛾, the
more different the two algorithms on the data set. According
to Table 3, DT and NB are different or behave differently
on 19 out of these 20 data sets; they are not sufficiently
different on the data set breast-w. Decision tree and näıve
Bayes algorithms are fundamentally different: For example,
the former makes no assumptions on the data set, while the
latter assumes statistical independence between attributes;
the former discretizes numeric attributes, while the latter can
apply density estimation on numeric attributes; the former
uses special treatment for missing values, while the latter
handles missing values naturally.

3.5. Performance. Wereport the values of accuracy inTable 4.
The results have shown support for the idea that we could
possibly obtain better classification performance by using
different classification algorithms to train classifiers in an

Table 3: Results for differentiability.

Number DT versus NB
(1) 0.93
(2) 1
(3) 0.05
(4) 1
(5) 1
(6) 1
(7) 1
(8) 1
(9) 1
(10) 1
(11) 1
(12) 0.98
(13) 1
(14) 0.97
(15) 1
(16) 1
(17) 1
(18) 1
(19) 1
(20) 0.95

ensemble. In the table, HE is for the hybrid ensemble,
and the content of a cell indicates the mean and standard
deviation calculated over 20 runs of 10-fold cross-validation
for applying the algorithm corresponding to the column on
the data set corresponding to the row. Generally speaking,
compared to a single classifier, an ensemble would show
stabilized classification performance, especially when the
underlying classification algorithm is an unstable one.We can
see this from the fact that the standard deviations given by
ensembles are lower than those given by single classifiers in
most cases. For example, on the first data set, biomed, the
standard deviation given byDT is 0.014, that given byBagging
DT is 0.009, and that given by the hybrid ensemble DT + NB
is 0.007.

In some cases, such as those where data distributions
are skewed, accuracy is not a good measure for classification
performance evaluation, while F1-measure is a more com-
prehensive measure. In Table 5, we report the values of F1-
measure, which is the harmonic mean of precision and recall,
for data samples that belong to the minority class. A higher
value of F1-measure means better classification performance.
F1-measure for minority is used to evaluate how well a
classification algorithmperforms on data samples that belong
to the minority class, which are usually the targets in most
real-world machine learning applications. A classifier or an
ensemble can achieve a low error rate simply by classifying all
samples to the majority class or simply by ignoring minority
samples on highly unbalanced data sets. In the table, similarly,
HE is for the hybrid ensemble, and the content of a cell
indicates the mean and standard deviation.

To assess the significance of differences in classification
performance achieved by two algorithms, we perform the
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Table 4: Performance in accuracy.

Number Single Bagging HE
DT NB DT NB DT + NB

(1) 0.891 ± 0.014 0.894 ± 0.005 0.908 ± 0.009 0.893 ± 0.005 0.909 ± 0.007
(2) 0.901 ± 0.008 0.709 ± 0.003 0.918 ± 0.007 0.717 ± 0.005 0.873 ± 0.006
(3) 0.948 ± 0.004 0.964 ± 0.001 0.958 ± 0.004 0.961 ± 0.001 0.967 ± 0.002
(4) 0.852 ± 0.004 0.784 ± 0.004 0.854 ± 0.005 0.786 ± 0.006 0.847 ± 0.006
(5) 0.857 ± 0.007 0.778 ± 0.003 0.862 ± 0.004 0.784 ± 0.003 0.828 ± 0.006
(6) 0.714 ± 0.007 0.751 ± 0.006 0.738 ± 0.009 0.759 ± 0.006 0.755 ± 0.008
(7) 0.865 ± 0.009 0.779 ± 0.005 0.882 ± 0.007 0.784 ± 0.005 0.836 ± 0.009
(8) 0.745 ± 0.007 0.755 ± 0.004 0.759 ± 0.008 0.756 ± 0.005 0.767 ± 0.004
(9) 0.775 ± 0.016 0.833 ± 0.005 0.787 ± 0.018 0.834 ± 0.004 0.835 ± 0.007
(10) 0.793 ± 0.016 0.843 ± 0.004 0.796 ± 0.014 0.845 ± 0.005 0.841 ± 0.006
(11) 0.784 ± 0.016 0.839 ± 0.007 0.801 ± 0.017 0.838 ± 0.006 0.847 ± 0.008
(12) 0.784 ± 0.016 0.839 ± 0.009 0.805 ± 0.019 0.842 ± 0.012 0.852 ± 0.008
(13) 0.766 ± 0.013 0.817 ± 0.003 0.783 ± 0.009 0.818 ± 0.003 0.818 ± 0.003
(14) 0.823 ± 0.013 0.808 ± 0.008 0.838 ± 0.012 0.806 ± 0.01 0.835 ± 0.011
(15) 0.891 ± 0.012 0.823 ± 0.005 0.925 ± 0.008 0.825 ± 0.007 0.882 ± 0.008
(16) 0.994 ± 0.001 0.878 ± 0.002 0.994 ± 0.001 0.878 ± 0.002 0.952 ± 0.002
(17) 0.562 ± 0.016 0.575 ± 0.004 0.595 ± 0.016 0.576 ± 0.006 0.60 ± 0.01
(18) 0.987 ± 0.001 0.928 ± 0.001 0.988 ± 0.001 0.927 ± 0.002 0.982 ± 0.001
(19) 0.737 ± 0.019 0.689 ± 0.009 0.787 ± 0.026 0.684 ± 0.019 0.728 ± 0.014
(20) 0.965 ± 0.003 0.90 ± 0.002 0.965 ± 0.004 0.90 ± 0.002 0.944 ± 0.003

Table 5: Performance in F1-measure.

Number Single Bagging HE
DT NB DT NB DT + NB

(1) 0.842 ± 0.019 0.833 ± 0.008 0.865 ± 0.012 0.833 ± 0.008 0.863 ± 0.011
(2) 0.805 ± 0.017 0.615 ± 0.002 0.842 ± 0.013 0.616 ± 0.005 0.778 ± 0.009
(3) 0.925 ± 0.006 0.944 ± 0.002 0.939 ± 0.006 0.944 ± 0.002 0.952 ± 0.002
(4) 0.782 ± 0.005 0.722 ± 0.006 0.786 ± 0.006 0.724 ± 0.006 0.772 ± 0.008
(5) 0.838 ± 0.007 0.705 ± 0.005 0.847 ± 0.004 0.709 ± 0.005 0.795 ± 0.008
(6) 0.458 ± 0.014 0.542 ± 0.01 0.497 ± 0.016 0.546 ± 0.012 0.516 ± 0.017
(7) 0.844 ± 0.01 0.707 ± 0.007 0.866 ± 0.009 0.716 ± 0.008 0.804 ± 0.012
(8) 0.617 ± 0.012 0.631 ± 0.006 0.636 ± 0.011 0.633 ± 0.008 0.635 ± 0.007
(9) 0.757 ± 0.017 0.813 ± 0.005 0.763 ± 0.021 0.814 ± 0.005 0.811 ± 0.008
(10) 0.692 ± 0.028 0.788 ± 0.004 0.706 ± 0.023 0.782 ± 0.006 0.776 ± 0.008
(11) 0.751 ± 0.017 0.815 ± 0.007 0.773 ± 0.018 0.814 ± 0.007 0.821 ± 0.01
(12) 0.408 ± 0.065 0.645 ± 0.02 0.439 ± 0.066 0.645 ± 0.02 0.652 ± 0.02
(13) 0.757 ± 0.014 0.809 ± 0.003 0.775 ± 0.011 0.811 ± 0.003 0.809 ± 0.003
(14) 0.423 ± 0.044 0.482 ± 0.016 0.455 ± 0.037 0.466 ± 0.015 0.476 ± 0.042
(15) 0.842 ± 0.017 0.778 ± 0.005 0.882 ± 0.013 0.783 ± 0.007 0.847 ± 0.01
(16) 0.994 ± 0.001 0.871 ± 0.002 0.994 ± 0.001 0.871 ± 0.002 0.945 ± 0.003
(17) 0.50 ± 0.027 0.505 ± 0.006 0.555 ± 0.022 0.509 ± 0.009 0.506 ± 0.016
(18) 0.894 ± 0.008 0.569 ± 0.006 0.901 ± 0.01 0.567 ± 0.005 0.842 ± 0.01
(19) 0.717 ± 0.02 0.702 ± 0.008 0.762 ± 0.03 0.701 ± 0.018 0.736 ± 0.015
(20) 0.955 ± 0.003 0.877 ± 0.002 0.955 ± 0.004 0.877 ± 0.003 0.928 ± 0.004

Wilcoxon test, a non-parametric test, whose use is recom-
mended by Demšar [62]. We report results for the test for
accuracy and F1-measure in Tables 6 and 7, respectively. In
the tables, B-DT means Bagging DT, B-NB means Bagging

NB, and similarlyHE is for the hybrid ensemble. In the tables,
the content in a cell indicates the number of data sets on
which the algorithm in the corresponding row significantly
wins (outperforms) and loses to (is outperformed by) the
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Table 6: Results for Wilcoxon test for accuracy (𝑊/𝐿: row versus
column).

NB B-DT B-NB HE DT + NB
DT 10/9 0/16 10/9 8/11
NB 7/12 0/1 0/17
B-DT 12/7 9/8
B-NB 1/17

algorithm in the corresponding column. For example, in
Table 6, the first cell shows that decision tree algorithm wins
in accuracy naı̈ve Bayes algorithm on 10 data sets and it
loses on 9 data sets, while the difference in accuracy is
not significant on 1 data set; in Table 7, the first cell shows
that decision tree algorithm wins in F1-measure naı̈ve Bayes
algorithm in 18 data sets and it does not lose on a data set,
while the difference in F1-measure is not significant on 2 data
sets.

We can see from Table 6 that, in terms of accuracy, the
number of data sets on which HE DT + NB outperforms
B-DT is slightly smaller than that on which HE DT +
NB is outperformed by B-DT; the number of data sets on
which HE DT + NB outperforms B-NB is much larger than
that on which HE DT + NB is outperformed by B-NB.
We can see from Table 7 that, in terms of F1-measure, the
results are similar but HE DT + NB outperforms less. The
results seem to be in opposition to creating and using hybrid
ensembles. On the contrary, the results show that hybrid
ensembles outperform single classifiers not deterministically
but probabilistically, which is also shown by our analysis.
Moreover, in this paper, we intend to explain why and when
hybrid ensembles are better than non-hybrid ensembles.

We propose using different classification algorithms to
train more diverse classifiers in order to create better ensem-
bles. The basic idea is to use a combination of classifiers to
naturally reduce variance and use a stronger algorithm to
explicitly increase classification performance. The ensemble
creation process that we propose is distinguishing, because
it uses fundamentally different classification algorithms to
create a hybrid ensemble. For example, it uses DT, which is
often with high variance (related to high instability), and NB,
which is often with low variance (related to low instability
or high stability). Using such a combination of classification
algorithms goes against the generally accepted sense that one
should only use classification algorithms with high variance
in an ensemble like Bagging. We evaluate the proposed
process by using a varied collection of public data sets and
two metrics. Experiment results reveal that the proposed
process could achieve better performance when compared to
Bagging.

3.6. Discussion. There are 8 data sets on which the hybrid
ensemble DT + NB outperforms both Bagging DT and Bag-
ging NB: biomed, breast-w, credit-g, diabetes, heart-c-binary,
heart-statlog, hepatitis, and schizo. According toTable 4, naı̈ve
Bayes algorithm performs better in accuracy than decision
tree algorithm does on these data sets.Therefore, we consider
that 𝐴1 is DT and 𝐴2 is NB, which is newly introduced into

Table 7: Results forWilcoxon test for F1-measure (𝑊/𝐿: row versus
column).

NB B-DT B-NB HE DT + NB
DT 18/0 0/18 9/9 7/11
NB 8/11 1/2 2/13
B-DT 11/7 10/7
B-NB 2/12

the ensemble and used as another generator of diversity. For
these data sets, we summarize lower bounds for accuracy gain
and the probability that the gain is obtained in Table 8. In the
table, the second column (Acc1) and the third column (Acc2)
are from the second column and the third column in Table 4,
respectively; the fourth column is from the second column
in Table 2; the fifth column is from the second column in
Table 3; the sixth and seventh columns are lower bounds for
accuracy gain and the probability that the gain is obtained,
respectively, and both are calculated by (6), or (15), given that
𝛼1 is 0.05 and 𝛿 is 0.05; the eighth and ninth columns are
from the fourth and sixth columns in Table 4, respectively;
the tenth column is the accuracy difference betweenHEDT+
NB and B-DT. According to Table 8, on all these data sets, the
accuracy difference, or the actual gain given by the hybrid
ensemble DT + NB against Bagging NB, is larger than the
lower bound; all the probabilities are high, except the one
for the data set number 3, breast-w, and this means that the
hybrid ensembleDT+NBwould highly probably outperform
Bagging DT (and this indeed the case). Nevertheless, the
lower bound is too loose (but it is still the only one presented
so far), and finding a tighter boundwould be part of the future
work.

4. Conclusion

Ensemble learning is to train classifiers and then combine
their classifications to make an overall classification. Many
researchers use ensembles of classifiers created by using a
single classification algorithm in various applications. These
are non-hybrid ensembles, and why they work is becoming
clearer. Some researchers propose the use of the mixture of
two different types of classification algorithms in the creation
of a hybrid ensemble. In this paper, we investigate why hybrid
ensembles work, which is somewhat unclear. We present our
theoretical analysis from the standpoint of diversity, which
plays a significant role in ensemble learning and is one of
the fundamental elements of the success of ensembles. This
is the most distinguishing characteristic of this paper. We
also report and discuss experiment results obtained from
hybrid ensembles of classifiers created by decision tree and
näıve Bayes classification algorithms, each of which is a
top data mining algorithm and often used to create non-
hybrid ensembles. These are two fundamentally different
classification algorithms, and therefore it is interesting to see
that hybrid ensembles createdwith them together can achieve
similar or even better classification performance compared
to non-hybrid ensembles created with them individually.
In short, we contribute to a complement to the theoretical
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Table 8: Lower bounds for accuracy gain and the probability.

Number Acc1 Acc2 𝛽1 𝛾 Acc. gain Prob. B-DT HE Acc. diff.
(1) 0.891 0.894 0.16 0.93 −7.5 × 10−6 0.9412 0.908 0.909 0.001
(3) 0.948 0.96 0 0.05 −0.00003 0.05 0.958 0.967 0.009
(6) 0.714 0.751 1 1 −9.25 × 10−5 1 0.738 0.755 0.017
(8) 0.745 0.755 0.96 1 −0.000025 1 0.759 0.767 0.008
(9) 0.775 0.833 0.9 1 −0.000145 1 0.787 0.835 0.048
(11) 0.784 0.839 0.7 1 −0.0001375 1 0.801 0.847 0.046
(12) 0.784 0.839 0.72 0.98 −0.0001375 0.9944 0.805 0.85 0.045
(17) 0.56 0.575 1 1 −3.75 × 10−5 1 0.595 0.6 0.005

foundation of creating and using hybrid ensembles. The
hybrid ensemble performs better not in a deterministic but
a probabilistic manner. In a hybrid ensemble where two
classification algorithms are used, if two are different and one
is unstable while the other is more accurate, then there is a
higher probability that we can have a higher value of accuracy
gain; the gain is measured against an ensemble where only
one of the two classification algorithms is used.
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