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COMMENT

Transcription, chromatin condensation,

and gene migration

James G. McNally

National Cancer Institute, National Institutes of Health, Bethesda, MD 20892

The binding of fluorescently tagged proteins to tandem
DNA arrays has been instrumental in understanding nu-
clear organization and function. Through the use of more
natural tandem DNA arrays, Hu et al. (Hu, Y., I. Kireev,
M. Plutz, N. Ashourian, and A.S. Belmont. 2009. J. Cell
Biol. 185:87-100) gain new insights into chromatin orga-
nization and dynamics, and into the association of splicing
factors with active genes.

Tandem DNA arrays, which are composed of repeated DNA
segments, have been successfully used to visualize genes in liv-
ing cells. This is accomplished by expressing a fluorescently
tagged DNA-binding protein in a cell containing a tandem array
that incorporates the protein’s binding site within each repeated
segment (Rafalska-Metcalf and Janicki, 2007). This yields a
locally high concentration of fluorescence, enabling the locus to
be detected in the light microscope. Although cells contain
some endogenous gene arrays that have been exploited by a few
groups (Dundr et al., 2002; Karpova et al., 2008), most studies
have used synthetic arrays because these can be optimally engi-
neered. Synthetic arrays are typically constructed from hun-
dreds of short repeated segments of plasmid DNA, yielding
inserts up to many megabases in length. These arrays not only
oversimplify the complexity of the mammalian genome, they
are also subject to heterochromatin formation, a more repres-
sive state of chromatin in which genes can be transcriptionally
silenced. In this issue, Hu et al. (see p. 87 of this issue) con-
struct arrays (Fig. 1 A) comprised of long stretches of almost
exclusively mammalian DNA (~150 kb) incorporated at a low
copy number (~10 copies) into chromosomes, thereby over-
coming many of the limitations of previous synthetic arrays.
Each repeat in the new arrays contains a small region of lac op-
erator sites that will bind to a GFP-tagged lac repressor, which
permits visualization of these sequences. Analysis of these new
arrays provides strong evidence that transcription may occur in
relatively condensed DNA and further suggests that active genes
may seek out factors required for mRNA splicing.

A major focus of the current study was to use more natural
arrays to investigate chromatin decondensation upon transcrip-
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tion induction. It is widely believed that chromatin is exten-
sively compacted within nuclei, but that transcriptionally active
regions decondense to the level of DNA wrapped around nucleo-
somes, namely a 10-nm fiber. To investigate chromatin or-
ganization in a transcriptionally active region, the authors
constructed their arrays from bacterial artificial chromosomes
(BACs) that contained known inducible mammalian genes.
Consistent with several previous studies (Tumbar et al., 1999;
Miiller et al., 2001, 2004; Janicki et al., 2004), induction of tran-
scription in these arrays caused them to decondense into a series
of colinear spots (Fig. 1 B). By measuring the distance between
these spots, the authors discovered that the degree of deconden-
sation is not large: on average, the array decondenses to a level
that is ~96-fold more compacted than a 10-nm fiber.

A distinguishing feature of the current study is that several
important controls have been performed to rule out other expla-
nations for the limited decondensation observed. The authors
find that their induced genes are expressed at close to endoge-
nous levels. Further, they show that the induced genes are tran-
scribed in most of the repeats, and that limited decondensation
is observed regardless of whether the lac marker is positioned
within or outside of the induced genes. Using electron micros-
copy, the authors are unable to detect any further decondensa-
tion of DNA not visible in the light microscope. Thus, this work
provides the strongest evidence to date that transcription can
occur at high levels of chromatin compaction.

It is of course difficult to prove with complete certainty that
further decondensation of chromatin does not occur at the array.
Conceivably, highly decondensed chromatin might be fragile and
destroyed by the preparation for electron microscopy, or the appar-
ently thicker fibers detected by light microscopy might actually re-
flect a serpentine path of thinner, underlying fibers. In this regard,
it will be very interesting to examine this array with other forms of
high-resolution microscopy, such as electron spectroscopic imag-
ing. This technique reproducibly detects 10-nm fibers. It also de-
tects the next level of DNA folding, the 30-nm fiber. Interestingly,
this approach has not found evidence for any further compaction of
chromatin beyond the 30-nm fiber (Dehghani et al., 2005), an ap-
parent contradiction to the new arrays which appear to be at least
16-fold more compacted than a 30-nm fiber.
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Figure 1. Visualizing chromatin organization and dynamics during tran-
scription. (A) The arrays are composed of a single human or mouse BAC
with lac operator sites incorporated for visualization. (Red dots indicate
continuation of the repeat for 10 copies). (B) Decondensation occurs upon
transcriptional induction of one or more of the genes in the BAC, yielding
a linear trajectory of spots. Even affer decondensation, compaction levels
are still far above those of a 30-nm fiber. (C) Three different types of as-
sociation with speckles were observed. (D) Independent, random motion of
individual GFP spots was detected (for visibility, the arrows depicting this
motion are larger than the actual movements).

In the course of their studies, the authors discovered that
one of their arrays (which contained the Hsp70 gene) was con-
sistently associated with a speckle, a nuclear body enriched
for mRNA splicing factors (Hu et al., 2009). Active genes are
found at the edge of speckles, but it has not been clear how the
association between speckles and active genes occurs. Previ-
ous studies had suggested that splicing factors could be re-
cruited from the speckles to an active gene (Dirks et al., 1997,
Misteli et al., 1997). To directly investigate how this associa-
tion occurred in their system, the authors performed double-
label live cell imaging to visualize both speckles and the
activated gene array (Hu et al., 2009). They observed several
types of association (Fig. 1 C): de novo speckle formation at
the array, relatively uniform enlargement of preexisting speck-
les to contact the array, and migration of the array to the
speckle. This last case is especially important for two reasons.
It provides another example of longer range migration of gene
loci within the nucleus (Chuang et al., 2006; Dundr et al., 2007),
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and it bolsters the view that speckles are not simply storage
depots but rather functional sites that can recruit selected
genes (Shopland et al., 2003; Brown et al., 2008).

Time-lapse analysis of the arrays also revealed another in-
teresting property. The individual GFP spots comprising each
array “jiggled” independently of each other (Fig. 1 D). This jig-
gling motion is consistent with previous studies indicating that
chromatin undergoes constrained diffusion (Marshall et al.,
1997). What is new in the current study is that adjacent regions
of the same transcriptionally active chromosomal segment
moved independently of each other. This argues against attach-
ment of the transcriptional machinery to a stable nuclear scaf-
fold (Jackson et al., 1984), at least one that extends over a large
area of the nucleus. The current observations, however, could be
explained by either a more dynamic or a more flexible scaffold.

Certainly, these observations will be followed by further
insights as the full potential of this new array system is ex-
ploited. We can also look forward to seeing other more natural
engineered arrays in the future, and ultimately, relatively non-
invasive tagging of a single, endogenous gene.
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