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Abstract

Training models with massive inputs is a significant challenge in the development of Deep 

Learning pipelines to process very large digital image datasets as required by Whole Slide 

Imaging (WSI) in computational pathology and analysis of brain fMRI images in computational 

neuroscience. Graphics Processing Units (GPUs) represent the primary workhorse in training and 

inference of Deep Learning models. In order to use GPUs to run inference or training on a neural 

network pipeline, state-of-the-art machine learning frameworks like PyTorch and TensorFlow 

currently require that the collective memory on the GPUs must be larger than the size of the 

activations at any stage in the pipeline. Therefore, existing Deep Learning pipelines for these 

use cases have been forced to develop sub-optimal “patch-based” modeling approaches, where 

images are processed in small segments of an image. In this paper, we present a solution to 

this problem by employing tiling in conjunction with check-pointing, thereby enabling arbitrarily 

large images to be directly processed, irrespective of the size of global memory on a GPU 

and the number of available GPUs. Experimental results using PyTorch demonstrate enhanced 

functionality/performance over existing frameworks.
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1. Introduction

Deep learning has transformed many applications of image processing. However, a few 

domains with massive image data, such as digital pathology and brain fMRI analysis, 

face significant challenges in developing deep learning models due to memory limitations. 

Virtually all deep learning today uses the computational power of GPUs, which offers 

significant performance improvement as compared to CPUs. But GPUs have much less 

memory (usually 32 GiB or less). Training of these Deep Learning pipelines requires 

that the activations computed at each layer in the forward pass are used to compute the 

gradients in the backward pass, where the layers are processed in reverse order. Therefore, 

popular machine learning frameworks like PyTorch [16] and Tensor-Flow [1] normally 

store the forward activations at all layers until the backward pass commences, and thus 

the total set of activations must fit within GPU global memory. While saving/reloading 

activations from host memory is possible, the low bandwidth between host and GPU has a 

drastic impact on performance and hence this option is not used in PyTorch or TensorFlow. 

This memory-constrained usage limitation has forced researchers in these domains to use 

sub-optimal models, either by coarsening the input data (e.g., brain fMRI analysis [3]) 

or by use of suboptimal “patch” based modeling using smaller slices of data from full 

images (e.g., digital pathology [14]). In this paper, we develop a static compile-time analysis 

and transformation approach to overcome this problem, along with a demonstration via a 

prototype implementation using the popular PyTorch machine learning framework.

Our approach to enable the training of deep learning pipelines on memory-constrained 

GPUs is to combine check-pointing and recomputation with tiled execution. When the 

operators of a sequence of consecutive layers in a DNN pipeline are amenable to compatible 
tiling and fused execution of tiles across the layers, the memory requirements can be 

dramatically reduced. However, not all sequences of consecutive DNN layers can be 

compatibly tiled and fused. Therefore, we develop an approach to identify consecutive 

operators in a DNN pipeline that are mutually compatible for fused-tiled execution, which 

we term an FT segment in the DNN pipeline. We develop compile-time analyses for the 

identification of feasible FT segments, and the determination of effective tile sizes for 

efficient fused-tiled execution of the layers within an FT segment.

We use the name SFT for our approach: Segmented Fused-Tiled execution. The main 

contributions of the paper are:

• An abstraction to characterize DNN operators and sequences of DNN operators 

with regards to compatibly tiled and fused (FT) execution (Sections 3 and 4.1);

• A compile-time algorithm for partitioning the layers of a DNN pipeline into a 

sequence of FT segments for tiled execution with checkpoint/recompute (Section 

4.2);
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• A compile-time algorithm for identifying tensor slice sizes for efficient fused-

tiled execution of FT segments (Section 4.3);

• A PyTorch-based implementation of the new SFT approach to train deep learning 

pipelines on a memory-constrained GPU (Section 5);

• An experimental evaluation demonstrating efficient execution of DNN training 

pipelines with massive input images (up to 20K × 20K pixels) on a single GPU 

with only 11 GiB memory (Section 6).

2. Background

2.1. Forward and Backward Propagation

Figure 1 shows an example of a DNN training pipeline. During the forward pass, the 

forward operators (Fn, n = 1, 2, …) are evaluated in layer order. The input activation tensors 

for each neural network layer (In, n = 0, 1, 2, …) must be saved until they are used to 

compute the gradient by the appropriate backward operator, as shown by the diagonal edges 

between the forward and backward operators. After the output layer (F6 in this example), 

a loss function is evaluated and the gradient of the loss (G6) is computed to start the 

backward pass. In the backward pass, the operators (Bn, n = 1, 2, …) are evaluated in reverse 

order. Since all inputs In must be saved until the start of the back propagation, the memory 

requirement grows linearly with the number of neural network layers.

2.2. Memory Reduction via Checkpoint/Recompute

The total memory required for DNN training can be reduced by saving only a subset of 

activations during the forward pass and recomputing the unsaved activations when they are 

needed during the backward pass [7]. The nodes that save input activations in the forward 

pass are called checkpoint nodes, while the remaining “non-checkpoint” nodes release the 

memory for their activations after their use in the forward pass. Figure 2 shows a checkpoint 

strategy for the DNN pipeline from Figure 1. There are two checkpoint segments; vertical 

bars in the figure represent the checkpoint locations. The first segment contains F1 and F2, 

and the second segment contains all layers from F3 to the end of the network. During the 

backward pass within a segment, the activations of the forward operators of all layers are 

recomputed for all non-checkpoint nodes in the segment, and are kept in memory until they 

are used during the back propagation for that segment.

Several efforts have developed schemes for checkpoint/recompute execution during training; 

an overview is presented by Rojas et al. [18]. However, none of these schemes can be used 

when the size of a single activation is too large to fit in GPU memory, i.e., the scenario we 

address in this paper.

2.3. Fused-tiled Execution

Tiling and fusion have been used in the design of accelerators for inference in DNNs [2, 

22]. Tiling and fusion allow a subset (tile) of the input activation data to be moved into the 

accelerator, and then the tile is processed through a series of individual layers to generate 

the output tile. For such a fused-tiled execution, additional “halos” must be available for 
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slices of input activations, as described below. Figure 3 shows a short network segment with 

a sequence of two 2D convolutional operators. Let the kernel size be R × S with a stride 

of 1. In a standard untiled 2D convolution, the input is padded/filled such that the output 

activation size matches the input activation size. The vertical fill size is fr = (R −1)/2 and 

the horizontal fill size is fs = (S − 1)/2, allowing the application of the kernel to boundary 

activations. The dashed box surrounding the entire activation represents the filled shape of 

the input, accounting for the padding.

In a tiled execution, each computational tile produces a 2D slice of the full activation. In 

order to produce a slice of size Th × Tw at the output of the second conv2d stage, a slightly 

larger input data slice of size (Th + 2fr ) × (Tw + 2fs) is needed. Thus, in order to compute 

the Tw × Th tile output of the fused convolution (the pink shaded area in Figure 3), the input 

to the second convolution must be (Tw + 2 fs) × (Th + 2 fr), which is represented by central 

pink tile with the blue fill halo. Similarly, to produce the (Tw +2 fs)×(Th +2 fr) output tile 

after the first convolution, the input to the fused convolutions must be (Tw + 4 fs) × (Th + 4 

fr) (the yellow, blue, and pink areas).

The above example has only shown the expanding halo of the data slices that must be 

computed by a sequence of stages during forward propagation. For fused-tiled execution of 

the combined forward/backward pipeline for DNN training, additional inter-dependencies 

on tile sizes must be considered, as elaborated later in the paper. Another challenge is the 

identification of opportunities for fused-tiled execution for arbitrary DNN pipelines.

3. Overview of Solution

In this section, we describe our solution to the problem of training deep learning pipelines 

when GPU memory is insufficient to hold large activations, as encountered in the analysis 

of WSI (Whole Slide Imaging) in digital pathology. We devise an approach (the first to 

our knowledge) for fused-tiled execution of the combined operator graph comprised of the 

forward operators provided by the user and the backward operators automatically generated 

by an ML framework like PyTorch.

Figure 4 presents a high-level overview of our approach.

1. The first step in our analysis is the partitioning of an arbitrary DNN graph into segments 

of consecutive layers that can be compatibly fused and tiled. While the forward function 

can represent an arbitrary DAG, a linear order of execution of the layers (operators) of 

the forward graph is assumed to be pre-determined by the user, as is common in ML 

frameworks like TensorFlow and PyTorch. We find maximal sets of consecutive DNN 

layers whose operators are mutually compatible with respect to tiling and fusion. The 

entire DNN graph is partitioned into such FT sets, with saved activations (checkpoints) 

between segments and fused-tiled execution within each FT segment. We describe how 

we formalize compatibility of operators in Section 4.1 and details of the algorithm for 

identifying maximal FT segments in Section 4.2.

2. Within each FT segment, all operators can be executed in a fused-tiled fashion, with an 

identical number of tiles for all operators in the segment. However, the tile sizes for these 
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operators have inter-dependencies that have to be analyzed to determine the minimal buffer 

sizes for correct fused-tiled execution of that FT segment. This analysis is described in 

Section 4.3.

3. Some details of our fused-tiled implementation in PyTorch are discussed in Section 5. 

Experimental results for three DNN pipelines (VGG-16, VGG-19 [19], and DarkNet[17]) 

are presented in Section 6, demonstrating the ability to process large images as needed for 

whole-slide image analysis in digital pathology [6] (results for 10K × 10K and 20K × 20K 

images are presented).

Figure 5 shows a small three layer segment of a neural network used to compare the 

dataflow for a baseline execution and the proposed segmented fused-tiled execution (our 

scheme). The steps involved in training using each of these implementations are given in 

Table 2. For the baseline execution, all activations In (n = 1, 2, 3) are saved in memory. 

As a result, the input activations just go forward through the network F1 . . . F4, the loss is 

computed, and then back propagation computes gradients Gn (n = 1, 2, 3). All activations 

must be stored concurrently.

The fused-tiled execution first breaks up the input activation into some number of tiles (e.g., 

16), denoted with a subscript Ii, i = 0, . . ., 15, and then runs each tile through the forward 

pass of an FT segment. In the example, the forward and backward operation for all layers 

(including the loss) are computed after all tiles have gone through forward layer F3 in the 

network segment depicted. The back propagation for layers 1 through 4 proceeds tile-by-tile 

as follows. Gradient G0
3 (i.e., tile 0, layer 3) is computed using the checkpointed activation 

I0
3 and the just computed gradient G4 (i.e., a tile is recomputed). In order to compute I0

3, 

tile 0 is processed from checkpoint 1 through checkpoint 2 (i.e., through F1, F2, and F3). 

Note, during this forward recompute pass, all tile 0 activations are saved (I0
1 and I0

2 in this 

example). The recomputed I0
1 and I0

2 are used to compute the gradients G0
1 and G0

2. After all 

gradients are computed for tile 0, all of the temporarily saved recomputed tile activations 

have been freed. Next, the remaining tiles are processed (i.e., 1, . . ., 15 in this example) 

sequentially.

In the fused-tiled execution each checkpoint activation needs to be saved, along with the 

activations for each layer of a single tile (which can be arbitrarily small). Fused-tiled 

segments allow full intermediate activations to never be fully saved (only tiles). Adding 

more layers to an FT segment reduces the number of full activations that must be saved, 

but only increases the memory for a segment by a tile. This provides a significant memory 

savings compared to checkpoint/recompute, especially in many popular networks where the 

large activations are between convolution and pooling layers. In these networks, these large 

activations never need to be fully saved and nearly arbitrarily large input images can be 

processed.
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4. Problem Formalization & Algorithm Details

4.1. Problem Formalization

An example of fused-tiled (FT) execution was seen in Fig. 3, where each of the 16 tiles of 

the second conv2d operator could be executed by fusion with a corresponding tile for the 

first operator. A chain of such conv2d operators can clearly also be executed in FT fashion. 

For a DAG of operators to be executable in a fused-tiled manner, each operator must be 

FT-compatible with respect to one or more pairs of compatible dimensions of input/output 

tensors, and the interconnected operators must be mutually FT-compatible. We formalize 

this below.

4.1.1. FT-compatible Operators.—An operator is defined as FT-compatible with 

respect to a pair of input/output tensor dimensions if a slice of the output tensor with extent 

Td along some dimension can be computed using only a slice of the input tensor with extent 

σdTd + δd along the input’s dimensions, for constants σ and δ. For example, consider the 2D 

convolution operator (for simplicity without stride/dilation parameters):

Out n, k, ℎ, w =
c, r, s

In n, c, ℎ + r, w + s ∗ Ker k, c, r, s (1)

Consider a slice of the output tensor Out [Tn, Tk, Th, Tw], with slices of size Tn, Tk, Th, 

Tw, respectively along the batch, channel, height, and width dimensions. In order to compute 

such a slice of the output tensor, only a subset of elements of the input tensor will be 

needed. As previously illustrated in Figure 3, the minimal slice of the input tensor will 

be of size In[Tn, C, Th + R− 1, Tw + S − 1], where C is the number of input channels 

and R and S are the stencil size along the height and width directions. Thus, the conv2D 
operator is FT-compatible with respect to the batch, height, and width dimensions of the 

input/output tensors, but not with respect to the channel dimension. The parameters relating 

the FT-compatible dimensions are: σn = 1, δn = 0; σh = 1, δh = R – 1; σw = 1, δw = S – 1

An operator with FT-compatible dimensions can be efficiently executed in a tiled manner, 

where slices of the output tensor can be produced using slices of the input tensor. Although 

the set of slices of the input tensors required to produce disjoint slices of the output tensors 

are not disjoint (as was illustrated in Fig. 5), the amount of redundant computations will 

be relatively low when the slice sizes are chosen to be large. We define FT-compatible 

segments as the group of connected operators in a DNN pipeline with mutually consistent 

FT-compatible dimensions.

4.1.2. FT-compatible Segments.—Two connected operators in a DNN pipeline are 

FT-compatible if they are both FT-compatible with respect to at least one common tensor 

dimension. An FT-compatible segment is a set of adjacent layers in a DNN pipeline for 

which all operators (we only reason with respect to the forward operators since the backward 

operators have the same FT-compatibility properties as the corresponding forward operators) 

are all mutually FT-compatible with respect to at least one common tensor dimension. The 

FT-compatible dimensions of an FT-compatible segment are the common set of dimensions 
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that are FT-compatible for all the operators in the set of DNN layers constituting the 

segment. A maximal FT-compatible segment is one that cannot be extended on either side 

without violating FT-compatibility.

Figure 6 shows a sequence of four operators (grey colored oval shapes) and the input/output 

tensors (yellow colored rectangles). Each operator’s computation can be represented as a 

single perfectly nested loop or a sequence of perfectly nested loops that can be tiled with 

hyper-rectangular tiles. Further, i) any dimension of any tensor operand (input or output to 

the operator) can only have a single tileable loop index in its access expression, and ii) any 

loop index is used to index at most one dimension of any tensor. The above properties define 

a map from each tensor operand’s data dimension to the operator’s loop iteration space 

index, as illustrated in Fig. 6. Consider the conv2D operator defined in Eq. 1. It represents 

a 7D loop nest that has five tileable loops (we do not consider the small kernel stencil loops 

as tileable) corresponding to batch, input channel, output channel, image height, and image 

width. These five tileable iteration space dimensions are represented as 5 vertices within 

each conv2D operator in Figure 6. Each input/output multi-dimensional tensor has a vertex 

for each distinct dimension, within the yellow rectangles representing the tensors (we do 

not explicitly model the conv2D operators’ weight matrix (Ker) in this graph, but only the 

tensors that “flow” on the edges of the forward operator graph). The maps between each 

tensor dimension to the corresponding iteration-space dimension of the operator are also 

marked as edges connecting the corresponding vertices in the figure. It may be seen that the 

composition of these tensor-dimension-to-loop-index maps results in connected components 

in a graph comprised of the union of vertices from all operators in the graph. In the example 

of Fig. 6, there is a maximal FT-segment that includes all four operators, with respect to 

the batch (B) index. However, the minimal tile sizes for such an FT-segment would require 

the full extents along H and W, which would be infeasible for the massive images in digital 

pathology WSI (Whole Slide Imaging). But a smaller FT-segment exists, comprised of the 

first three operators (first two convolutions and one maxpooling), which is FT-compatible 

with respect to three indices (B, H, W ), where much smaller tile sizes can be used because 

the H and W dimensions are also tileable for this smaller FT-segment.

A set of operators that form a connected component represents a set of loop indices in the 

iteration spaces of those operators that are FT-compatible. Listing 2 shows the algorithm that 

identifies dimensions in the operator graph that are compatible with fused-tiled execution 

(connected components) and Listing 1 shows the corresponding data structures. First, we 

iterate through each node in the graph (Line 2). In Line 3, we set the connection map of a 

given node to the empty set. Then, for the given node, we iterate through each input edge 

(Line 4). In Lines 7 and 8, we map each dimension of the input edge to the iteration space 

in tmpIterToInpMap, i.e., we construct an iteration space to input dimension map. In Line 

9, we iterate through each output edge. Note that iterToOut contains the iteration space to 

output dimension map. Using iterToInp and iterToOut, we map each input edge dimension 

to the corresponding output edge dimension (Lines 11 and 12). Thus, after execution of the 

algorithm in Listing 2, we have an internal representation of a graph with the information 

illustrated in the example of Figure 6.
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4.2. Partitioning of DNN Pipeline into FT-compatible Segments

In this subsection, we explain how we partition the DNN pipeline into segments separated 

by checkpoints. The operators within a segment can be executed in a fused-tiled manner. 

Listing 3 shows the corresponding algorithms. Any node whose output size is less than the 

memory capacity (mayTile) can be checkpointed, whereas a node whose output does not fit 

in memory (mustTile) must be executed using the fused-tile strategy. Lines 2 to 4 classifies 

each operator as “must tile (mustTile == True)” or “may tile (mustTile == False)” based on 

the output tensor size and memory capacity. The loop in line 5 iterates over each node in 

the operator graph. We ignore “may tile” nodes in Line 6. For each “must tile” node, we 

try to find a fused-tileable path containing the current node that starts at a checkpoint and 

ends at a checkpoint (each checkpoint node must be “may tile”). For any such valid segment, 

the dominators of all nodes in the segment should either be a checkpoint (“may tile”) or 

be present in the segment. Moreover, all post dominators of a given node, except the post 

dominator of the end node, must be present in the partition. Lines 10 to 17 ensure these 

properties. Initially, we add the start node to a queue (Line 9). For each node in the queue, 

we check whether its post dominator is present in the current segment. If not, we move the 

endpoint of the current segment to a node that can be checkpointed and is topologically 

greater than or equal to the current post dominator (Lines 14–17). All nodes between the old 

endpoint and new endpoint are added to the queue in Line 18. As they are processed, their 

post dominators are also included in this segment.

Once a valid partition is segment, we identify all the compatible fused-tiled dimensions in 

function FTdimsIntersect (Lines 25 to 40). This is done by taking each dimension of the 

start operator of the segment and checking whether there is a fused-tileable path from start 

to end. For each operator, we check if the corresponding input dimension is fused-tileable 

(Line 32 to 33). If not, we mark the dimension as not fused-tileable compatible (False) and 

move to the next dimension. If it is fused-tileable compatible, we enqueue all operators 

that use the current operator’s output and are a part of this segment, along with the 

corresponding dimension to the queue (Line 36 to 38). Once all dimensions are processed 

FT dims is returned, which indicates whether each dimension is fused-tileable compatible. 

In Line 20, we check if the current partition can fit in memory and if not, we throw an 

“OUT_OF_MEMORY” error (as a suitable SFT was not possible).

4.3. Determination of Buffer Sizes for SFT Execution

Given a graph segmentation generated using Listing 4.2 and a minimal number of tiles, the 

exact required tile size of each operation must be computed. The checkpoints required to 

support a segmentation define the output tensors that must be stored and the dimensions that 

can be tiled. However, the exact tile sizes will vary for each operator due to the relationship 

of the input tensors to the iteration space and output tensors for a given operation. For 

instance, a 2D max pool with a stride of 2 results in a reduction in the output width and 

output height by a factor of 2. In contrast, the [B, C, K, Tw, Th] iteration space for a 2D 

convolution operation generating a tensor tile of size [B, K, Th,Tw] must have a valid input 

tensor of size [B, C, Th + 2fr, Tw + 2fs ] (see Table 3 for definitions for some common neural 

network operations).
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The computeTileSize function in Listing 4 calculates the required iteration space and 

tensor tile size for every node in a segment’s autograd network graph. The required tensor 

dimensions are deduced from the characterization of each operation, as per the tensor 

dimension dependencies from Table 4. The iteration space is deduced using a mapping of 

the tensor dimensions to the iteration space dimensions.

Table 4 defines the tile size required for each input tensor to process a tiled iteration space 

for two common operations (convolution and maxpool ) using the tiled tensor dimension 

requirements in Table 3 and inherent operation characteristics. Each input tensor has a 

set of vectors that define the required input size during the computation of an iteration 

space tile. Each vector represents an entry for each dimension in the tensor or iteration 

space (e.g., [Batch, Channel, Height, Width]). These metadata vectors support the tile size 

propagation for each input tensor (i) through each operation’s iteration space via i.size[i] = 

n.iterSpace[idx]*i.scale[:]+i.delta[:] in Line 20 to 22. The delta (δ) and (σ) vectors contain 

the parameters described in Section 4.1.1. inpToIter defines the mapping between an input 

tensor’s dimensions and the operation’s iteration space, e.g., [0, 1, 2, 3] for max pool and 

[0, 1, 3, 4] for convolution where iteration space dimension 2 (K) is not included in the 

input tensor (which has dimensions [B, C, H, W ]). Using these propagation functions, the 

required tile sizes for the source tensors of each edge can be computed and updated.

Figure 7 depicts an example autograd graph segment for a series of convolution (with 

kernels of size R × S) and max pooling (with a stride of p = 2) stages. The segments IN and 

OUT tensor are checkpointed in memory. The forward graph is shown by red arrows, and 

the backward graph for gradient (grad) and delta kernel (Δker ) operations are shown with 

green arrows. Pooling layers do not have any learned parameters and hence do not have a Δ 

kernel update operation. The edges are annotated with the width and height tile size (Th=Tw) 

(assuming the batch size Tb = B = 1 and the channel dimension is not streamable due to 

the convolutions), as computed by Listing 4. The Δker nodes are leaf nodes that update 

the kernel, but have no subsequent output tensors. Therefore, these nodes base their input 

iteration space requirements solely on the initial iterSpace. Note that while the output tile 

size being generated is 64, the grad operation requires a halo of size 2 ∗ fr and thus, the 

forward pass must generate a tile of size 66.

The computeTileSize function in Listing 4 computes the required iteration space 

(n.iterSpace) and initialize it for each terminating node in Line 5, and tensor (tensor.size) 

tile sizes for the operations in the auto_grad graph segment based on the number of tiles 

required for each dimension (e.g. numTiles) in Line 7. The function performs a reverse 

traversal of an autograd computation graph (see an example graph Figure 7) to calculate 

the tile sizes. The reversal traversal adds all leaf nodes, like Δker (with no input edges in 

the segment) to a ready queue (readyNodes) in Line 2. Once all output edges are ready, the 

required tile sizes can be updated and the node can be added to readyNodes. Note that a 

node will become ready when its last output neighbor marks itself as ready in Line 26 to 27.

The required input tensor tile sizes can be computed iteratively using the propagation 

functions in Table 4 (for simplicity without stride/dilation parameters). The iteration space 

tile size can be computed by using a max reduction over all output tensors Line 13 and 14. 
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When the readyQueue is empty, all nodes have been processed and the required tile sizes 

have been updated (this ends the while loop in Line 9).

5. Implementation

We implement SFT in PyTorch1, because it is a prevalent machine learning framework that 

has support for checkpoint/recompute using nn.Sequential and checkpoint _sequential. Our 

SFT PyTorch implementation includes custom tiled forward operators, custom tiled autograd 

functions (i.e., backward functions), static analysis, memory management for tiling, and 

training.

The tool works in two phases: static analysis and regular training execution. The static 

analysis is performed only once, before the start of the tiled training execution. The primary 

PyTorch modifications include:

• Customized tiled autograd functions: The tiled forward functions are not 

symmetric to the backward functions, we do not rely on auto-generated gradient 

functions in PyTorch. The autograd functions must compute the “ghost” cells 

(determined statically), and the ghost cells may differ during the forward and 

backward operations. Further, the updates by the Δkernel must correspond to the 

correct tile despite the overlap “ghost” cells. These details require modifications 

to the existing autograd functions.

• Optimized PyTorch internal context manager for recomputation in checkpoint 

segments across different tiled executions: By default PyTorch uses a 

naive context management strategy to save activations and meta-data for 

recomputation. There is no memory buffer reuse crossing multiple tiled 

executions, which wastes GPU memory and eventually results in out-of-memory 

errors. Also, redundant buffer allocations slow down the training process. We 

optimize the current context manager by using caching to share the same buffer 

across different tiled executions.

• Two new operators to handle our SFT checkpoint segments. The split node starts 

the segment and fetches the tiled-input data. The join node marks the end of 

the segment, collects all tiled-output pieces, and merges them into one tensor 

for further computation. We also extended the nn.Sequential container to support 

tiled execution with checkpointing. The existing nn.Sequential in Pytorch only 

accepts a tensor as input and produces an output tensor. However, SFT execution 

requires additional meta-information such as tile size, tile position, and padding 

size, which is obtained from our static tile size analyzer (Figure 4). This 

information is propagated along the chain of operators to provide the required 

metadata for forward and backward propagation.

We have intentionally created our APIs to be very close to the existing PyTorch API so that 

the users can easily port existing code to use the SFT framework.

1The software is available at https://github.com/HPCRL/SFT-CC2022-AE
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6. Evaluation

6.1. Experimental Setup

All experiments presented in this paper are performed using PyTorch v1.8.0a0 and Python 

v3.9.5. We used the Nvidia CUDA compiler version v11.3.109 and the Nvidia deep neural 

network library ś CUDNN v8.2. The experiments were carried out on two Nvidia GPU 

systems. An Nvidia 2080 Ti GPU was paired with an AMD Ryzen Threadripper 3990X 

64-Core CPU and CPU RAM is 128 GiB in the first platform. The second platform has 

an Nvidia A100 GPU paired with an Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz 56 

core CPU and CPU RAM is 384 GiB. Both of the machines run Ubuntu 20.04. These 

machines represent different GPU generations (Turing and Ampere). We evaluate VGG-16, 

VGG-19[19]and DarkNet[17] networks to demonstrate the efficacy of our approach.

We evaluate three strategies to perform a training epoch for a single input image (one 

forward and one backward pass using a batch size of 1) using a Mean Squared Error (MSE) 

loss function:

1. Pytorch-Base: A standard PyTorch[16] implementation of the training 

computing the forward and backward operations, where all intermediate 

activations are stored.

2. Pytorch-CheckPoint: A sequential checkpoint strategy using the checkpoint 
_sequential function [8] in PyTorch. This strategy splits the network into a given 

number of segments s. We evaluated s values from 2 (always included) to 2 L, 

where L is the length of the chain (and the total number of activation tensors 

stored is minimized).

3. SFT: The Segmented Fused-Tiled training strategy outlined in the paper. 

We split the original input along the height and width dimensions and 

execute the input in segmented tiles with our checkpoint/recompute PyTorch 

implementation.

For each model, we vary input image sizes from 512 to 20480 (20K) square (I×I). Image 

sizes of 10K and 20K represent ×4 and ×2 magnification for WSI used in pathology. The 

number of tiles along H and W dimension are varied as 2n, where n = 1, 2, 3, 4, 5 (i.e., 5 

different configurations are evaluated).

We measure the execution time for each of the three strategies and get the mean time over 5 

runs. The execution time for our method is selected by the best value among the 5 tile size 

configurations. The execution time is stable for all three strategies over multiple executions. 

The input image and model use float32 precision and the image data layout is NCHW.

6.2. Experimental Results

Figure 8 shows the experimental results. The square red cross represents the execution time 

obtained by the standard Pytorch-Base strategy, and its absence from the graph means that 

an out of memory error was encountered when attempting to train an image of the given 

size. Yellow crosses represent the results obtained with the Pytorch-Checkpoint strategy for 
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the shortest execution time among all possible number of segments (from 2 to 2 L). If both 

Pytorch-Base and Pytorch-Checkpoint strategies are available, we only show the execution 

time of Pytorch-Base (as checkpoint/recompute is not required). The blue dot shows the 

result obtained with our SFT strategy. The image size (H == W ) is plotted on the X-axis 

and the execution time (in seconds) is on the Y-axis. Since A100 has more device memory 

than 2080Ti (40GiB compared to 11GiB), the non-tiled strategies can process a larger input 

image size on the A100. Since VGG-16, VGG-19 and DarkNet networks do have a huge 

number of trainable parameters (59 MB for VGG-16, 78.4MB for VGG-19 and 79.7 MB 

for DarkNet), the GPU device memory is mainly consumed by inputs and intermediate 

activation required during training. For example, an input image of size 10K 10K stored in 

single precision (float32) would need a total GPU memory of 118GiB, 129GiB and 43GiB 

respectively for VGG-16, VGG-19 and Darknet to store all activations and models.

In all six plots, we observe that SFT training is able to process much larger input 

images than either the standard PyTorch-Base strategy or the PyTorch-checkpoint strategy. 

The vertical grey dashed line depicts the first image size that neither Pytorch-Base nor 

Pytorch-Checkpoint can handle for a given network and GPU pair. SFT has a small 

runtime overhead (as compared to Pytorch-Base or PyTorch-checkpoint) when the input 

activations fit in memory. However, the runtime continues to scale linearly with the image 

size.

7. Related Work

7.1. Operator Fusion

Considerable efforts have been directed at operator fusion, where two or more operators in 

a DNN pipeline are merged together to create a single combined kernel. The benefits of 

operator fusion include a reduction in kernel launch overhead. For example, this is a key 

optimization performed by the XLA [20] compiler. Several other efforts have also addressed 

such operator fusion [4, 15].

We note that the way “fusion” is used in this work is rather different from the operator-

fusion described above, where two or more operators in a DNN pipeline are fused together 

to create a single combined kernel. In contrast, we fuse the execution of corresponding tiles 

in a sequence of stages by invoking each operator’s kernel on small tiles of data. Thus, we 

do not generate any fused kernel code, but simply reuse existing kernels by changing the 

size of the input/output activations and the order of execution, as compared with standard 

execution of the operators.

7.2. Out-of-core Training

KARMA [21] is a system that combines out-of-core training with checkpointing. Out-of-

core training involves swapping out large activations from the GPU to the CPU memory 

to alleviate the memory bottleneck. Using a novel performance model, KARMA automates 

this decision-making of swapping versus recomputing activations for a given neural network. 

However, KARMA does not enable processing large-scale images where a single activation 

layer does not fit on a GPU.
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7.3. Multi-GPU Model Parallelism

Recent work leverages “model parallelism” [5, 23] to distribute the activations required 

during training across multiple GPUs. For instance, GEMS [12] provides a system for 

hybrid model and data parallelism, along with relaxed synchronisation. While they mention 

whole slide imaging in the potential applications, their approach uses a well known “patch” 

based analysis. Specifically, the experiments are conducted on 1K × 1K input size. Other 

prior approaches based on model parallelism also require this sub-optimal technique to 

handle large WSI images.

7.4. Unified Memory

Tensorflow Huge Model Support [6] incorporates Nvidia unified memory (UM) [13] along 

with several GPU memory optimization techniques to train standard CNNs. This work can 

support whole slide imaging (albeit they only demon-strate ×4 resolution and requires 100s 

of GPU days for training). However, the open-source implementation is not stable enough 

to run common neural networks like VGG16. Therefore, we could not compare this against 

SFT. For a single GPU setting, swapping the sections of the image back and forth across 

host memory and device memory would make the entire training process bandwidth bound. 

The PCIe bandwidth is about 5 orders of magnitude lower than the GPU peak performance 

at 32-bit precision. As a result, as reported by Chen at al. [6], HMS gets 30× slower as the 

image size (in pixels) quadruples (from 11K × 11K image to 21.5K × 21.5K image), while 

SFT time just increases by 4×, i.e., proportional to increase in image size.

7.5. Convolutions Over Distributed Memory

DistConv [9] is an extension of LBANN toolkit [10] that performs distributed convolutions 

over a cluster of GPUs. Given the size of the image, distributed convolutions place a 

lower bound on the number of GPUs that are required to train the network. For a 100K × 

100K image, for example, twenty 32GB GPUs will be required to simply hold the input 

image. The first stage of an image DNN pipeline typically increases the size of the output 

activations by a factor of 5–10 (the number of channels increases from 3 to at least 32, 

while the image height/width gets halved); further increasing the number of GPUs required. 

We were also not able to set up LBANN as per the documentation given. The version 

incompatibility among dependencies causes multiple compilation and linkage errors.

DistDL [11] shows performance improvement over DistConv and provides a PyTorch 

extension to partition a large image into multiple smaller disjoint images over a cluster of 

CPUs. However, the current implementation does not have a GPU backend support, making 

an empirical comparison impossible.

8. Conclusion

This paper develops a segmented fused-tiled (SFT ) approach to enable the training of Deep 

Neural Networks using very large images, overcoming a significant current limitation in 

popular ML frameworks like PyTorch and TensorFlow. We develop algorithms to generate 

fused-tiled-compatible segments and for determination of the memory requirements for the 

fused-tiled segments. Fused-tiled execution was enabled in the PyTorch framework and 
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was evaluated experimentally with VGG-16, VGG-19, and Darknet DNN pipelines on an 

Nvidia 2080Ti and an A100 machine. The implementation shows that there is minimal 

overhead for the tiled implementation and that the tiled implementation scales to large 

input image sizes well. Our developments enable arbitrarily large input image sizes to 

be used directly for training machine learning models instead of the current practice of 

using image pre-coarsening or patch-based processing in domains like digital pathology and 

computational neuroscience.
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A.: Artifact Appendix

A.1. Abstract

The artifact contains all the scripts and data required to reproduce the experimental results 

in the CC 2022 paper titled “ Training of Deep Learning Pipelines on Memory-Constrained 

GPUs via Segmented Fused-Tiled Execution”. The git repository contains:

• The SFT source code;

• The scripts to measure execution time of default PyTorch, PyTorch checkpoint, 

and SFT;

• Raw data that we used to plot Fig. 8 (for comparison).

A.2. Artifact check-list (meta-information)

• Program: A Pytorch based Python module(uu) to facilitate Segmented Fused-

Tiled Execution (SFT).

• Compilation: Detailed instructions to compile different frameworks and scripts 

to run each framework is provided below. A copy of these instructions 

can also be found at: https://github.com/HPCRL/SFT-CC2022-AE/blob/main/

README.md.

• Run-time environment: GCC >= 8.5; CUDA 11.3.0; cuDNN v8.2.0; Linux 

platform such as Ubuntu or CentOS.

• Hardware: Nvidia 2080Ti or Nvidia A100.

• Execution: All scripts to reproduce the results are provided in uu/benchmarking 

folder.

• Output: The script reports forward, backward and total execution time for 1 

input image per row, separated by comma. We use total execution time to plot 

Fig. 8.
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• How much disk space required (approximately)?: > 50 GB.

• How much time is needed to prepare workflow (approximately)?: Creating 

conda virtual environment and install dependency should be less than 5 mins. 

Building Pytorch from source code takes around 1 hour.

• How much time is needed to complete experiments (approximately)?: 
Should be less than 30 mins.

• Publicly available?: Yes

A.3. Description

A.3.1. How Delivered.

Our artifact is available on a public git repository: https://github.com/HPCRL/SFT-CC2022-

AE

A.3.2. Hardware Dependencies.

Nvidia 2080Ti or Nvidia A100.

A.3.3. Software Dependencies.

Conda, CUDA 11.3.0; cuDNN v8.2.0, Pytorch-v1.8, Linux

A.4. Installation

Clone the repository (recursively):

https://github.com/HPCRL/SFT-CC2022-AE

See the below file for instructions:

https://github.com/HPCRL/SFT-CC2022-AE/blob/main/

README.md.

Pytorch and uu module should be built before evaluation.

A.5. Experiment Workflow

Scripts are provided to run two different CNN models(VGG-16 and Darknet-19).

For VGG16 network:

$ cd uu/benchmarking

$ bash run-vgg.sh

For Darknet network:

$ cd uu/benchmarking
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$ run-darknet.sh

For large image 10kx10k and 20kx20k:

$ cd uu/benchmarking

$ bash large.sh

A.6. Evaluation and Expected Result

We expect the performance results to be close to those reported in the paper (Fig. 8). The 

results of the benchmark will be printed out in text files. We suggest using 2080Ti or A100 

and the exact same CUDA and cuDNN versions to reproduce the results presented in the 

experimental section. Different generations of GPU devices and different versions of the 

CUDA/cuDNN might produce different execution times and memory behaviors. We have 

included the raw data from our experiments in the uu/data-file/ folder.

As the image size (H, W) increases, the default PyTorch and PyTorch checkpoint will fail 

after a threshold and report an Out-of-Memory error. In contrast, in SFT, we can increase the 

number of tiles for big images, which will guarantee successful execution. We tested on two 

CNN networks on 2080Ti and A100 machines. For 10kx10k image, we can use 16×16 tiles, 

and for 20kx20k image, we can use 32×32 tiles(See uu/benchmarking/large.sh).
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CCS Concepts:

• Computing methodologies → Modeling methodologies; Machine learning; Neural 
networks; • Software and its engineering → Software performance; Compilers.
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Listing 1.

Data Structures

class Edge Meta {

  Vector < int > size ;

  Vector < int > inpToIter ;

  Vector < int > iterToOut ;

  Vector < float > delta ;

  Vector < float > scale ;

  OpMeta* src ;

  OpMeta* target ;

}

class OpMeta {

  int id ;

  int ready Cnt ;

  Vector < int > iterSpace ;

  Vector < int > fullIterSpace ;

  Vector < EdgeMeta > inEdges ;

  Vector < EdgeMeta > outEdges ;

  OpMeta * dominator ;

  OpMeta * postDominator ;

  Map <pair < EdgeMeta*, int >, vector <pair < EdgeMeta*,

    int >>> connection ;

}
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Listing 2.

Generate Graph IR

1 constructGraph(Vector g, int memCapacity){

2 for(i=0, i < len(g), i++)

3  g[i]. connection[] = {}

4  for parent in g[i]. inEdges

5  tmpIterToInpMap[] = {}

6  //connect input space to iteration space

7  for d in 0 to len(parent.inpToIter)

8   tmpIterToInpMap[parent.inpToIter[d]] = d

9  for outMeta in g[i]. outEdges

10  //using iter. space, connect inp. to out.

     space

11  for inpDimId, iterId in tmpIterToInpMap

12   g[i]. connection[< parent, inpDimId>]. insert(

      <outMeta, outMeta.iterToOut[iterId]>)

13 }
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Listing 3.

Partition DNN pipeline into Fused-Tileable segments

1 findSegments(Vector g, int memCapacity){

2  for n in len(g)

3   mustTile[n] =

4     (П(g[n]. outEdges.size[:]) < memCapacity)

5  for(i=0, i < len(g), i=end )

6   if(!mustTile[i]) continue

7   start = i; end = i + 1

8   //include all post dominators

9   // in the current segment

10   Queue q{i}

11   while(!q. empty())

12   prev_end = end

13   n = q.pop

14   if(g[n]. postDominator.id >= end)

15    end = g[n]. postDominator.id

16    while(end <len(g)&& mustTile[end])

17     end++

18    q. enque(prev_end:end)

19   FTdims = FTdimsIntersect(g,start,end)

20   bool success = checkMemCapacity(start,end,

21              FTdims);

22   if(!success) return(OUT_OF_MEMORY)

23 }

24

25 FTdimsIntersect(Vector g, int start,int end){

26  Map <<InTensorMeta *,int>,bool> FTdims

27  for parent in g[start].inEdges

28  for i in 0 to len(parent.size)

29   queue q({g[start],parent,i})

30   while(!q.empty())

31   node,inpTensor,dim = q.pop()

32   if(!len(node.connection[<inpTensor,i >]) !=

      len(node.outEdges))

33    FTdims[<parent,i>]=False

34    break

35   else

36    for(outMeta,odim) in node.connection[<

       inpTensor,i>]

37     if(outMeta.target < end)

38     q.enque({outMeta.target,outMeta,odim})
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39   FTdims[<parent,i>]=True

40  return FTdims

41 }
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Listing 4.

computeTileSize

1 computeTileSize(Graph auto_graph, Vector

   initialReadyNodes, int numTiles){

2  readyNodes.add(initialReadyNodes)

3  //Initialize the default iteration space

4  for n in auto_graph

5   n.iterSpace[:] = n.fullIterSpace[:]

6  for n in initalReadyNodes

7  n.iterSpace[:] = n.fullIterSpace[:]/numTiles

8  //Process all nodes whose outputs are “ ready “

9  while(readyNodes.notEmpty())

10  n = readyNodes.pop()

11  //Aggregate output tensor sizes to determine

12  //iteration space required for node n

13  rs = {0} //reduced output tensor size

14  for outMeta in n.outEdges

15   rs[:] = max(rs[:], outMeta.size[:])

16  for(i, idx) in enumerate(n.iterToOut)

17   n.iterSpace[i] = rs[idx]

18  //Update required input tensor sizes

19  for iMeta in n.inTensors:

20   for(i, idx) in enumerate(iMeta.inpToIter)

21    iMeta.size[i] = n.iterSpace[idx]*

22            iMeta.scale[:]+

23            iMeta.delta[:]

24   iMeta.src.outEdges[i].size[:] = iMeta.size

      [:]

25   //Identify ready neighbors

26   iMeta.src.readyCnt++

27   if iMeta.src.readyCnt == len(iMeta.src.

      outEdges)

28    readyNodes.add(iMeta)

29 }
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Figure 1. 
Example of a sequential DNN pipeline with 6 layers. For layer l, Fl is the operator of 

the forward function, and Bl is the corresponding backward function generated by the ML 

framework; Il represents an input activation (I0 is the input) and Gl represents a gradient.
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Figure 2. 
Checkpointing a network with 6 layers. The red dashed lines represent recomputation of the 

activations that were not stored. The backward pass therefore requires local forward passes.
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Figure 3. 
Tile size computation in a convolutional network with 2D convolutions using stride 1 with a 

kernel size R × S; fill/padding values are fr = (R − 1)/2 and fs = (S − 1)/2.
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Figure 4. 
Overview of our approach: FT segmentation (Section 4.2), tile-size analyzer (Section 4.3), 

and PyTorch execution management (Section 5).
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Figure 5. 
Tiling dataflow in a segment with 4 layers. The checkpoint-segment contains operator 1, 2, 

3.
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Figure 6. 
Illustration of FT-compatible segments
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Figure 7. 
Example neural network segment with two convolution and two max pooling layers. The 

numbers on each edge represent the Th and Tw iteration space required assuming a global 

(fullIterationSpace) output tensor tile size of [1, C, 64, 64], a global (fullIterationSpace) 

input iteration space of [1, C, 1024, 1024], and the creation of 4 tiles in each dimension (16 

total tiles), i.e., IN [1, C, Th = 256, Tw = 256] and OUT[1, K, Th = 64, Tw = 64]. Edge 

annotation denote the Th (and Tw) tile size required for the tensor.
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Figure 8. 
Experimental results VGG16, VGG19 and darknet on NVIDIA A100 and 2080Ti.
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Table 1.

Description of convolution parameters.

Description Description

B Batch size K Output channel

H Height of Input R Height of Kernel/Filter

W Width of Input S Width of Kernel/Filter

O h Height of Output f r Padding value in H

O w Width of Output f s Padding value in W

C Input channel p Stride size
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