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While droughts, intensified by climate change, have been affecting forests
worldwide, pest epidemics are a major source of uncertainty for assessing
drought impacts on forest trees. Thus far, little information has documented
the adaptability and evolvability of traits related to drought and pests sim-
ultaneously. We conducted common-garden experiments to investigate how
several phenotypic traits (i.e. height growth, drought avoidance based on
water-use efficiency inferred from δ13C and pest resistance based on defence
traits) interact in five mature lodgepole pine populations established in four
progeny trials in western Canada. The relevance of interpopulation variation
in climate sensitivity highlighted that seed-source warm populations had
greater adaptive capability than cold populations. In test sites, warming gen-
erated taller trees with higher δ13C and increased the evolutionary potential
of height growth and δ13C across populations. We found, however, no pro-
nounced gradient in defences and their evolutionary potential along
populations or test sites. Response to selection was weak in defences
across test sites, but high for height growth particularly at warm test sites.
Response to the selection of δ13C varied depending on its selective strength
relative to height growth. We conclude that warming could promote the
adaptability and evolvability of growth response and drought avoidance
with a limited evolutionary influence from pest (biotic) pressures.
1. Introduction
Forests of boreal and temperate regions are dominated by gymnosperm trees in
which conifers are a key component and comprise greater than 39% of the global
forests [1]. In this era of unprecedented climate change, numerous studies have
documented maladaptation of some tree species to environments due to adaptive
constraints (e.g. long lifespans and slow migration rates) [2–4]. Coniferous trees
show strong resiliency even to extreme climates [5], implying a high degree of
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adaptability to heterogeneous environments. However, global
warming has lowered such resiliency by increasing the dur-
ation and frequency of natural disturbances including
drought and insect outbreaks [6–11]. Drought could limit
tree growth, which could further adversely affect resource allo-
cation to tree defences against biotic agents [12–15]. The
interacting effects of drought and insect attacks promote tree
death possibly through depletion of carbohydrates and
carbon-dependent defence metabolites [14,16–18].

Pines are considered drought-tolerant species and have
well-defined defences against a broad range of ecologically
and economically important insect herbivores and pathogens
[7,11,19–21]. Frequent climatic events under ongoing global
change such as protracted drought can impose an additional
selective pressure on or directly affect functional traits that
enable local adaptation to dry conditions [17]. To withstand
drought stress, plants have evolved a drought avoidance
strategy [22,23] involving reduced water loss through
changes in hydraulic conductance to enhance water-use effi-
ciency, and maintain cellular homeostasis during drought.
Measurements of ecophysiological status can be used for
determining water-use efficiency, such as carbon isotope dis-
crimination δ13C [24]. High water-use efficiency inferred from
δ13C indicates the potential to maximize survival under
drought and thus has a synergistic effect on plant growth (fit-
ness). On the other hand, effects of biotic interactions are,
however, less predictable due in part to the specificity, condi-
tionality and complexity of their relationship with many
other factors [7]. For example, pest outbreaks have been pro-
moted by direct effects of warmer temperatures on pest life
cycles [25] and indirect effects of drought on improving
host susceptibility by reducing the efficiency of tree defences
[14,26–29]. Variable factors affecting host susceptibility to
pests prompt its equivocal relationship with growth or
drought avoidance. Currently, the interactions between
multiple traits in pine populations are poorly understood.

Range edge plant populations take on urgency for research,
given that they are a more sensitive harbinger of climate change
than central populations and may be trailing, suffering from
declining population sizes and low genetic diversity, and thus
at greater risk of mortality or extirpation [30]. In this study,
we selected autochthonous populations of lodgepole pine
(Pinus contorta Dougl. ex. Loud. var latifolia Englm.) located
along the eastern edge of the species distribution range and
relocated to four progeny trials (figure 1a–c) as analogues for
future climate change scenarios (e.g. +1–2 °C). Our goal was
to examine the adaptability and evolvability of several phenoty-
pic traits in a multi-variate context, including height growth,
δ13C indicating the ability to evade drought-caused physiologi-
cal stress (i.e. drought avoidance), and host suitability to two
most abundant pest species. Western gall rust (WGR; Endocro-
nartium harknessii Hirats.) is an important fungal disease on
lodgepole pine and widespread across the study region; the
second pest is mountain pine beetle (MPB;Dendroctonus ponder-
osae Hopkins), which is one of the most important agents of
lodgepole pine mortality in western North America (e.g.
[7,25]). We expected that warming likely promotes both adap-
tive capacity and evolutionary potential for populations from
a high latitude growing in proximal locations. To that end,
we sought specifically to test for the following three hypotheses:

H1: Warming promotes tree growth and δ13C increase.
Warm-origin populations growing in a warm test site
have greater height and higher δ13C than cold populations
in any test site; warm test sites create a higher evolutionary
potential for height growth and δ13C than cold test sites.

H2: There is an indeterministic association between warm
population and high pest susceptibility; evolutionary
potential of pest susceptibility in warm versus cold test
sites is not pronounced either.

H3: If H1 and H2 hold, then in a multi-dimensional trait
space, a warm climate still generates higher evolutionary
response to the selection of tree growth and δ13C, whereas
response to selection in pest susceptibility remains weak
and varies greatly within warm test sites.

2. Methods
(a) Plant material and experimental design
We selected five lodgepole pine provenances (populations here-
after), representing a total of 224 maternal half-sib families,
grown in four progeny test sites (greater than 35 years) arrayed
along various climatic gradients in central Alberta, Canada
(53–59 families from each test site used for this study;
figure 1b,c; electronic supplementary material, table S1). All 224
families were divided into 21 sets, each consisted of about 12
families (electronic supplementary material, figure S1). At each
site, the field design was sets nested in five replicates with 21
sets per replicate, and families within each set were planted in
four-tree row plots at a 2.5 m × 2.5 m spacing. All sites were
fenced and each trial had a border row of trees around the out-
side. Across the four progeny test sites, we chose a total of
1490 trees for phenotyping.

(b) Phenotypic measurements
Detailed phenotypic trait measurement procedures were
described in the electronic supplementary material, methods
S1. Concisely, height growth (m) was measured at age 35 years
with a clinometer. Carbon isotope ratio (δ13C, in ‰) analysis
was performed at Alberta Innovates in Victoria, using outside
slabs cut and ground from the 5 mm increment cores taken
from the north side of each tree at approximately breast height
(1.3 m) at age 35. Samples were analysed using an established
method on a MAT253 Mass Spectrometer with Conflo IV inter-
face (Thermo Fisher Scientific, Waltham, MA, USA) and a
Fisons NA1500 EA (Fisons Instruments, Milan, Italy). We
assessed the severity of WGR infection in the test sites by a quali-
tative scoring system with discrete categories ranging from no
gall symptoms to deceased (four tiers) for all trees sampled at
age 36. We also investigated these trees’ suitability to MPB.
Host tree suitability to MPB was evaluated by quantifying
defence chemicals (mainly monoterpenes) using a gas chromato-
graphy/flame ionization detector (Agilent Tech., Santa Clara,
CA, USA) based on cambial tissues collected by a hole punch
when trees were actively growing, coinciding with MPB flight
in western Canada. Then, chemical profiling was performed to
test against MPB performance based on laboratory bioassays
reported by Ullah et al. [31]. We used a cutoff of four categories
to classify trees with different MPB suitability levels (see
electronic supplementary material, methods S1 for details).

(c) Data analysis
(i) Detrending phenotype
Based on raw phenotypic data, we detrended phenotypic traits
caused by environmental variation within test site. We analysed
each trait in each test site using a mixed model with a spatial
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Figure 1. Map of the distribution range of Pinus contorta (a), five study populations (b) and four progeny trial test sites (c). The Pinus contorta distribution range is
shaded in green on the map with our study region marked by a red rectangle. MAT: mean annual temperature; MAP: mean annual precipitation (monthly average).
The study region is boreal forests, characteristic of a dry continental climate with cold winters and warm summers. Based on MAT, we defined: (i) JUDY and VIRG are
‘warm’ test sites, and TIME and SWAN are ‘cold’ test sites; and (ii) Judy Creek and Virginia Hills are ‘warm’ populations, and Deer Mtn, Inverness River and Swan Hills
are ‘cold’ populations. In addition, four capital letters were used for test sites, and full site names denoted populations throughout the paper.
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autocorrelation. In the model, population was a fixed effect, and
the random-effect terms consisted of replicate, set and genetic
effects derived from pedigree information (details in electronic
supplementary material, methods S2). The residuals included
spatially dependent and independent components with a first-
order autoregressive (co)variance structure (AR1 ×AR1). The
detrended phenotypic traits were obtained for each tree at each
site by removing the estimated design effects and autoregressive
residual effects. The detrended traits were used for all
subsequent analyses unless otherwise indicated.
(ii) Phenotypic selection, evolutionary potential and response
to selection

We performed selection analysis, as previously described [32], to
estimate how natural selection operates on δ13C and pest suit-
ability after adjusting for trait correlations. Succinctly, we used
height as a surrogate for fitness, because fast growth leads to
larger trees with higher survivorship and likely produces more
offspring over a lifetime owing to a larger crown size. Following
the Lande & Arnold (1983) method (formulae 4, 6c, 13b, and 14a
[33]), we calculated for each test site and all sites pooled linear
selection differentials (s =Cov[w, z]), linear selection gradients
(β = P−1s), quadratic selection differentials ðC ¼ Cov½w,ðz � �zÞ
ðz � �zÞT�Þ and quadratic selection gradients (γ = P−1 C P−1),
where w is the vector of relative fitness, z is the vector of
phenotype, P is the phenotypic variance-covariance matrix of
phenotypes (i.e. G-matrix). In all cases, the significance
was determined by assessing statistical uncertainties using 5000
bootstrap replicates.

As natural selection acts on variation in phenotypes regard-
less of their genetic basis, we furthermore tested for genetic
variation and evolvability with recourse to principles of heredity
and evolution. We calculated the phenotype-based narrow-sense
heritability by applying the formula, h2 =VA/(VA +Vɛ), to each
sample of the posterior distributions (model in the electronic sup-
plementary material, Methods S3). The 95% highest posterior
density intervals for the posterior distribution were used to cap-
ture the uncertainty in the h2 estimation. In addition to h2, the
additive genetic coefficient of variance (CVA) is another com-
monly used measure of the evolvability of a given trait, as it
links the trait to fitness and provides an estimate of the expected
response to selection [34,35]. CVA was calculated as VA standar-
dized by the trait mean (detrended then scaled), where VA is
extracted from the posterior distributions (model in electronic
supplementary material, Methods S3).

While these univariate heritable variation parameters act
mainly as an efficiency filter of inheritance across generations,
the structure of genetic covariance among traits also affects evol-
utionary changes. Considering the intricacies of evolutionary
dynamics, we used the posterior mean G-matrix across the iter-
ations of each model to predict the evolutionary response to
selection (ΔZ) using the multi-variate breeder’s equation [36],

DZ ¼ Gb ¼
Xn

i¼1

livivTi b, ð2:1Þ

where given a set of n traits, λi is an eigenvalue of additive gen-
etic (co)variance matrix G, vi is its corresponding eigenvectors
and β is directional selection gradients for the traits (table 1).
Given height as a proxy for fitness, we were unable to calculate
the selection gradient for height. Instead, we used two sets of β
values for height: 50% lower or higher than the selection gradient
in δ13C, which equalled range limits between β[δ13C]*0.5 and
β[δ13C] for one set while the other set was between β[δ13C] and
β[δ13C]*1.5. Each β set was generated by increasing values
within its limit for 100 steps at equal intervals. We calculated
the 95% CIs based on the mean posterior distributions of ΔZ
given different β values for height to capture the uncertainty in
the ΔZ estimation. If 95% CIs did not overlap between pairwise
comparisons, we took this as evidence that the trait underwent
different evolutionary shifts between sites.
3. Results
(a) Correlative patterns in traits and trait-climate
Correlation analysis revealed relationships between focal
traits and climatic characteristics. There was an intermediate,
positive correlation between height and δ13C (Pearson’s r =
0.302, p < 0.05; electronic supplementary material, figure
S2), whereas correlations between pest suitability versus
height or pest suitability versus δ13C were low and not sig-
nificant (all |r| < 0.05, p > 0.05; electronic supplementary
material, figure S2). Height and δ13C exhibited a high
relationship with mean annual temperature (MAT) of popu-
lation origin (r = 0.81 and 0.95, respectively; significance for



Table 1. Linear and quadratic selection gradients (β and γ) and selection differentials (s and C ) for each focal trait in each or all progeny test sites of Pinus
contorta. Height was used as a proxy for fitness and thus it was not possible to perform selection analysis for it. The signs and magnitudes indicate the
direction and strength of linear (selection gradient β or selection differential s) or quadratic selection (selection gradient γ or selection differential C ) on each
trait in each or all test sites combined. Linear (directional) selection includes positive (i.e. genetic hitchhiking) and negative (i.e. background selection) selection.
For quadratic selection, a negative significant selection value of γ or C indicates stabilizing selection, whereas a positive significant value is evidence for
disruptive selection. Mean (s.e.) values were estimated and significance was determined by performing 5000 bootstrap samples. Significance: ***p < 0.0001,
**p < 0.01, *p < 0.05.

trait test site

linear selection (negative or positive)
quadratic selection (stabilizing or
divergent)

β s γ C

drought avoidance (δ13C) TIME 0.020 (0.004)*** 0.021 (0.004)*** −0.006 (0.006) −0.006 (0.006)
SWAN 0.023 (0.004)*** 0.023 (0.004)*** −0.002 (0.006) −0.002 (0.006)
VIRG 0.002 (0.005) 0.002 (0.005) −0.008 (0.007) −0.008 (0.007)
JUDY 0.010 (0.006)* 0.009 (0.006) −0.016 (0.008)* −0.015 (0.007)*
all sites 0.029 (0.003)*** 0.029 (0.002)*** −0.006 (0.004) −0.005 (0.004)

severity of WGR TIME −0.009 (0.005)* −0.009 (0.005)* −0.008 (0.007) −0.008 (0.006)
SWAN −0.004 (0.004) −0.002 (0.004) −0.009 (0.005)* −0.008 (0.005)
VIRG −0.003 (0.005) −0.003 (0.005) −0.003 (0.006) −0.003 (0.006)
JUDY −0.003 (0.005) −0.003 (0.005) −0.002 (0.005) −0.003 (0.005)
all sites −0.002 (0.003) −0.002 (0.002) −0.003 (0.003) −0.003 (0.003)

suitability to MPB TIME −0.002 (0.004) −0.001 (0.004) −0.001 (0.004) 0 (0.004)

SWAN −0.005 (0.004) −0.004 (0.004) −0.008 (0.004)* −0.007 (0.004)*
VIRG −0.003 (0.005) −0.003 (0.005) −0.003 (0.005) −0.002 (0.005)
JUDY −0.006 (0.005) −0.005 (0.005) −0.007 (0.004)* −0.005 (0.004)
all sites −0.004 (0.002)* −0.003 (0.002) −0.004 (0.002)* −0.004 (0.002)
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height with p = 0.05 and δ13C with p < 0.05; figure 2a),
whereas the correlation of WGR severity and MPB suitability
with MAT was low and intermediate, respectively (r =−0.1
and 0.65, not significant at p > 0.05; figure 2a). Likewise,
there were high correlations of height and δ13C with mean
annual precipitation (MAP) of origin (r = 0.67 and 0.79,
respectively; not significant at p > 0.05); nonetheless, MAP
correlation with WGR was intermediate (r = 0.75) contrasting
with its low correlation with MPB (r =−0.1), albeit not signifi-
cant ( p > 0.05) for both. These correlation patterns revealed
that height and δ13C displayed a co-gradient variation with
MAT, and that there existed a negative trend between WGR
and MAT, and MPB and MAP; a positive trend between
MPB and MAT, and WGR and MAP (figure 2a). Populations
stemmed from warm sites had greater height and δ13C in test
sites compared to those from cold sites of origin (figure 2a).
We found that height and δ13C were expressed differently
in test sites with the highest mean values in warm sites (i.e.
JUDY and VIRG versus SWAN and TIME; electronic sup-
plementary material, figure S3). Both traits in test sites were
greater for populations transferred from warm locations
(figure 2b); when populations were transferred to warmer
test sites, both traits were enhanced (figure 2b). Meanwhile,
WGR severity increased when populations were transferred
to warmer sites (figure 2c); however, cold-origin populations
were more prone to WGR infection than warm-origin
populations (figure 2c). On the contrary, warm-origin popu-
lations were more conducive to MPB attack than cold-origin
populations in both warm and cold test sites (figure 2c). It
is noteworthy that all test sites were relatively warmer and
drier than most of the population-origin sites ( figure 2b
horizontal axis range and figure 1 legend).
(b) Evolutionary potential measures
We compared evolutionary potential of focal traits using two
genetic measures, h2 and CVA. Estimates of h2 of each trait
did not differ substantially between test sites (figure 3a).
Average point estimates of h2 were about 0.5 for these traits
(figure 3a), indicating significant additive genetic variation
and that these traits are under strong genetic control. Metrics
of CVA in height and δ13C were remarkedly higher in JUDY
and VIRG (figure 3b). By contrast, CVA had no noticeable
difference in WGR or MPB between test sites, and CVA was
close to zero (10 × 10−4) for MPB compared to about −1 for
WGR (scaled for showing in figure 3b).
(c) Estimation for phenotypic selection and response
to selection

By performing selection analysis via height as a fitness proxy
in a univariate manner, we identified selection patterns for
each trait in each test site. The form of selection in δ13C and
pest suitability differed depending on test sites (table 1).
The δ13C trait was under directional selection ( p < 0.0001) in
the two cold sites, TIME and SWAN (table 1), and under
both directional and diversifying selection (p < 0.05) in a
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Figure 2. Population trait means as a function of MAT at site-of-origin, population differentiation for focal traits as a function of MAT transfer distance and mean
trait values for each combination of the source population and test site groups. (a) Black lines depict a linear model-predicted relationship with 95% CI on a
population basis. Significant relationships suggest local adaptation. The relative density of underlying data points is represented by contour lines. The trait
values averaged by population are shown in coloured triangles. WGR and MPB denote western gall rust (Endocronartium harknessii) and mountain pine beetle
(Dendroctonus ponderosae), respectively; both traits were scaled and high/low values are indicative of high/low pest symptoms, respectively. Less negative
δ13C values suggest higher water-use efficiency and thus higher drought avoidance capability. Significance: ^p < 0.1 *p < 0.05, **p < 0.01, ***p < 0.001,
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warm site, JUDY (table 1). MPB suitability was under
divergent selection at SWAN and JUDY ( p < 0.05; table 1),
whereas WGR severity was under directional selection at
TIME and divergent selection at SWAN ( p < 0.05; table 1).
Moreover, these selection patterns were reflected by the
strength of correlation between height and another focal
trait studied. Specifically, height-δ13C correlation was higher
in TIME and SWAN than in JUDY and VIRG (r = 0.25
versus 0.08; figure 3c); there was a higher correlation between
height and WGR in TIME compared to the other sites
(r =−0.12 versus −0.04; figure 3c). In addition, we observed
that relatively low correlations between height and δ13C in
the two warm sites were caused by populations responding
differently in height and δ13C at warm sites compared to a
consistent positive pattern at cold sites (electronic
supplementary material, figure S4).
Further, a multi-variate analysis consistently showed
increased response to selection for height and δ13C in warm
environments after assuming that the selection gradient in
height was lower than that in δ13C (figure 3d ). However,
given a higher selection gradient in height relative to δ13C,
response to selection for δ13C was lower in warm than cold
sites, whereas height remained more selected for in warm
sites with less selective intensity compared with the previous
scenario (r = 0.62 versus 0.85, p < 0.0001; figure 3d ). With
regard to pest suitability, the overall response to selection
was lower than height or δ13C by one order of magnitude
(figure 3d ). The two cold test sites had relatively high
responses to selection for both WGR and MPB, whereas a
warm, more rainfall climate (e.g. VIRG) led to the highest
(lowest) response to selection for WGR (MPB), respectively
(figure 3d ). Similarly, a warm, less rainfall climate
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Figure 3. Narrow-sense heritability (h2), additive genetic coefficient of variance (CVA), between-trait correlation and predicted evolutionary response to selection
(ΔZ) for focal traits of Pinus contorta in each test site over one generation. (a) The h2 values with the proportion of phenotypic variance contributed by additive
genetic variance were estimated from phenotypic data. (b) We used phenotypic data to estimate VA for the CVA calculation. CVA is dimensionless. All traits were
scaled. For visualization convenience, CVA for MPB was multiplied by 10

4 on the graph. (c) The Pearson’s correlation coefficients were calculated for all pairs of traits
measured in each test site. (d ) We used the posterior means over 10 000 Markov chain Monte Carlo samples in calculating the predicted response to selection (ΔZ)
for each focal trait in four test sites. ΔZ was estimated based on the multi-variate breeder’s equation (ΔZ = Gβ). The 95% CIs were generated by using two sets of
β-values for height: 50% lower or higher selection gradients than in δ13C.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20221034

6

(e.g. JUDY) resulted in the lowest response to selection for
WGR but a relative high response to selection for MPB
(figure 3d ). Moreover, we observed only one positive
response to selection for a pest suitability—WGR at JUDY
(figure 3d ). These patterns in warm climate were in line
with a negative correlation between WGR and MPB at
VIRG and JUDY (figure 3c). Furthermore, the efficacy of
selection based on G-matrices indicated that VIRG and
JUDY had a smaller correlation between height and δ13C
(0.01–0.03) than SWAN and TIME (0.09–0.11) (electronic sup-
plementary material, figure S5). Meanwhile, autocorrelation
for these two traits was higher in VIRG and JUDY than in
SWAN and TIME (0.51–0.59 versus 0.3–0.38 and 0.43–0.44
versus 0.34–0.38 for these two traits, respectively) (electronic
supplementary material, figure S5).
4. Discussion
We showed how warming affects the evolution of height
growth versus resistance traits in a uni- and multi-dimen-
sional trait space by planting seed-source populations of
lodgepole pine in four test sites, mimicking future in situ
climate change scenarios over time. The selected populations
were based in the species range edge, possibly under the
greatest exposure to climatic change. These common-garden
studies revealed that warming would promote evolutionary
response to the selection of both height and δ13C, and affect
host suitability to pests depending on precipitation. Due to
fluctuating weak response to the selection of pest suitability,
there was a limited evolutionary influence of pest suitability
on height and δ13C response. The significance of the work
accentuates weak selection with high variability in pest suit-
ability, according with subtle ecological association between
warm climate (warm origin or test site) and high pest attacks;
moreover, biotic pressures from pests have a limited impact
on the evolution of height growth and δ13C.

(a) Do height growth and drought avoidance always
possess a synergistic relationship and high
evolutionary potential under warming?

It has been widely accepted for the use of δ13C as an indicator
of the intensity of drought exposure in plants (e.g. [37,38]).
This study showed that fast-growing populations had greater
xylem hydraulic conductance (i.e. high δ13C) in warm test
site, indicating the importance of maintaining water conduc-
tance to growth in warmer conditions. While δ13C indicates
drought avoidance by measuring reduced water loss—a
water-saving strategy, drought avoidance also involves
enhanced water uptake from roots—a water-spending strat-
egy [39]. Trees could rely on resource investment in rooting
depth to increase access to deep soil water to withstand
drought stress [40,41]. Our investigation of drought avoid-
ance strategies inferred from δ13C could be improved by
the further investigation into the below-ground determinants
of plant water relations using combinations of hydraulic traits
such as P50 (i.e. the water potential at which 50% of hydraulic
conductivity is lost) and water potential at stomatal closure or
turgor loss (e.g. [42,43]). Combining multiple interlinked, yet
distinct, aspects of plant water relations can better quantify
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water-use strategies based on interactions between plant
traits and environmental conditions. Moreover, considering
other drought adaptive strategies including drought escape
(e.g. flowering or pollination time), tolerance (e.g. osmotic
potential) and resilience (e.g. dendrochronological measure
indicating recovery capacity after drought) [22] allows for a
better understanding whole-plant drought strategies and
their relationship with plant growth and pest resistance.

We observed that height and δ13C differed in populations
and test sites. Higher positive sensitivity to temperature in
both traits at relatively warmer sites today tells us that trees
at relatively cooler sites may anticipate more rapid growth
and greater δ13C in a warmer future. Moreover, high additive
genetic variation or heritability suggests that directional
selection could increase adaptability to novel climatic scen-
arios. Consistently, we found that both height and δ13C had
greater evolutionary potential under a warmer exposure
based on CVA. It is worthwhile to note that the other
metric used—h2 may not reflect the true potential of adaptive
evolution due to environmental variation under natural con-
ditions greatly affecting phenotypic traits and fitness, leading
to a possibility of small or no significant change in h2 even
when VA is high or greatly alters [44,45]. An instance in
P. sylvestris also showed that progeny derived from warmer
climates outperformed local seed sources in ‘cold’ locations,
and local seeds grew best locally only in very warm source
locations [46]. In addition to adaptive evolution, lodgepole
pine hybridization with jack pine (P. banksiana Lamb) at our
study region has been found to enable an expansion of
range limits eastward [47], providing another evolutionary
avenue for these pine range-margin populations to enhance
genetic variation and adapt to changing climates.

(b) Selection and evolution of host suitability to pests
under warming

We found a positive or negative trend along a thermal cline
for two constitutive defences against a phytopathogen and
an insect herbivore, respectively. Populations from warm
versus cold environments had an inverse pattern of these
defence traits in test sites. This indicates that tree suitability
to different species of pests varies under different environ-
mental conditions. Nonetheless, this study used height
growth as a proxy for fitness, which might limit our inference
about the evolution of traits including pest suitability under
climate change. There are three main components of plant
fitness including growth, reproduction and survival [48].
Central to these components is metabolism, providing the
carbon necessary for allocation to various structures and
functions. However, natural selection that operates on pest
suitability and functional traits is likely more by directly
affecting tree survival and reproduction than through their
relationship with tree growth. Although trees with slower
growth rates are found to be more likely to die than faster
growing counterparts (e.g. [49]), a first-order constraint on
plant growth is photosynthetic capacity in assimilating
energy and matter.

Further, this study investigated trait patterns in associ-
ation with two climatic drivers—MAT and MAP. Other
than climate, edaphic conditions could be another important
selective force driving the evolution of growth and resistance
traits [50]. The test site JUDY had a more acidic brunisolic soil
with a pH of 3.9, compared to a luvisolic soil with a pH of
5.5 in.the other test sites (electronic supplementary material,
table S1). The difference in soil texture may contribute to
the disparity observed in response to the selection of pest
suitability in JUDY versus the other test sites.

Previous studies confirmed that pine populations grown
in optimal growing conditions had higher susceptibility to
pests than in less favourable conditions [51]. This study
demonstrated that selection in pest suitability was much
weaker than δ13C and varied greatly in two warm sites
with different rainfall, suggesting fluctuating weak selection
in pest suitability. This selection pattern in pest suitability
could be interpreted by pine life-history characteristics.
Pinus contorta commences reproduction at around 10 ± 5
years old [52,53], whereas MPB doesn’t typically attack
trees until they are much older, that is, greater than
60 years [54,55]. P. contorta produces serotinous cones with
viability for up to 10–15 years after the tree has been killed
[56,57]. This chronological discrepancy provides an extended
period during which trees that will be ultimately killed by
MPB can still grow and reproduce. Furthermore, the thick-
ness and constituents (e.g. nutrients and toxic secondary
compounds) of phloem, which are usually positively corre-
lated with tree age and size, are main direct factors
affecting host suitability to bark beetles or other phloem-feed-
ing insects [7,58]. In addition, conifer defences against bark
beetles are strongly mediated by environmental stress
[16,59], which increases uncertainties in defence selection.

(c) Evolutionary interactions of height growth, drought
avoidance and pest suitability

This study revealed that climate strongly influenced the
pattern of selection in δ13C and host suitability to pests,
albeit overall weak for pest suitability. As opposed to selec-
tion on isolated traits, multi-variate analysis assumes that
selection acting on one trait will produce an evolutionary
response in other genetically correlated traits, even though
selection does not act directly on them. Prediction of evol-
utionary changes in multiple traits relies on the form and
magnitude of selection in height growth and δ13C, and on
historical influences from pest attacks (e.g. [60]). We found
that evolutionary response to selection was strongest for
height in warmer sites, in accordance with its high adapta-
bility and evolutionary potential. Warming could also
promote response to selection in δ13C if it was under stronger
selection than height growth. If selection is stronger in height
than δ13C, then we could expect that a great extent of warm-
ing would likely select against high δ13C. These particular
results suggest that height growth is always selected for to
maintain a direct performance gain, but its strength of selec-
tion affects evolutionary changes in δ13C. Furthermore,
higher response to selection of height and δ13C in warm
sites may be modulated by populations responding differ-
ently to warm conditions (i.e. a strong selective pressure)
and higher selective efficiency under warming.

In addition, we demonstrated that under warming con-
ditions, precipitation significantly affected response to
selection in pest suitability, indicating that selection is likely
to be affected by warm temperature and rainfall interactions.
As such, we could expect different patterns of selection under
dry versus humid hot or through temperature and precipi-
tation interactions. Pest outbreaks are highly contingent on
climate with contrasting impacts for dry hot versus humid
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droughts and plant defences are highly variable across a gra-
dient of the environment [61], indicating possibly variable
selection over space and time.

In conclusion, this study provides evidence that rising
temperatures are beneficial to adaptive evolution in height
growth and δ13C (drought avoidance), resulting in taller and
more drought-tolerant trees, and that biotic pressures from
pest attacks have a limited influence on evolutionary response
to the selection of height growth and δ13C. Nonetheless, as
trees are sessile organisms with a long-life cycle of multiple
decades or even centuries but most pest species have seasonal
migration in an annual cycle [62], trees attacked by pests are
determined largely by pest behaviour and tree host–environ-
ment–pest interactions. As climate changes, we could expect
shifts in evolutionary response to the selection of growth
and drought avoidance towards high values without too
much evolutionary constraints by pest suitability. Great
impacts of pest suitability on growth or fitness would be
generated primarily at the ecological level possibly by a
sudden massive pest attack further exacerbated through an
interaction with drought spells.
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