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Abstract

Cyclic AMP (cAMP) regulates many biological processes and cellular functions. The importance of spatially localized
intracellular gradients of cAMP is increasingly appreciated. Previous work in macrophages has shown that cAMP is produced
during phagocytosis and that elevated cAMP levels suppress host defense functions, including generation of
proinflammatory mediators, phagocytosis and killing. However, the spatial and kinetic characteristics of cAMP generation
in phagocytosing macrophages have yet to be examined. Using a Förster resonance energy transfer (FRET)-based cAMP
biosensor, we measured the generation of cAMP in live macrophages. We detected no difference in bulk intracellular cAMP
levels between resting cells and cells actively phagocytosing IgG-opsonized particles. However, analysis with the biosensor
revealed a rapid decrease in FRET signal corresponding to a transient burst of cAMP production localized to the forming
phagosome. cAMP levels returned to baseline after the particle was internalized. These studies indicate that localized
increases in cAMP accompany phagosome formation and provide a framework for a more complete understanding of how
cAMP regulates macrophage host defense functions.
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Introduction

Resident macrophages are essential in containing and control-

ling infections by recognizing and destroying invading pathogens.

Phagocytosis, the process by which macrophages internalize

microbes, apoptotic cells and small particles, is a highly regulated

process mediated via phagocytic receptors, such as Fcc receptors

[1], pattern recognition receptors such as Toll-like receptors [2],

and complement receptors [3]. Once internalized, microbes are

confined to an organelle known as the phagosome, which allows

them to be targeted for killing by a variety of microbicidal

mechanisms while remaining segregated from the rest of the

cell [4].

One important regulator of macrophage function is the second

messenger, cyclic adenosine monophosphate (cAMP) [5]. The

generation of cAMP is initiated when a ligand binds to a G

protein-coupled receptor, stimulating the enzyme adenylyl cyclase

(AC) to catalyze the cyclization of ATP. The production of cAMP

within the cell is tightly regulated, in part through activities of

cytoplasmic phosphodiesterases (PDEs) [6]. The intracellular

signaling of cAMP is coordinated primarily through two effector

molecules: protein kinase A (PKA) and exchange proteins directly

activated by cAMP (Epac) [7]. Previous work has shown that PKA

and Epac can have distinct, redundant, or even opposing effects

within the same cell, and both play important roles in modulating

host defense functions in macrophages [8,9].

cAMP serves as a negative regulator of phagocyte function [10]

and elevated cAMP levels are associated with suppression of

innate immune functions including the production of pro-

inflammatory mediators, phagocytosis, and microbial killing [5].

Early biochemical and fixed cell microscopy studies indicated

that intracellular cAMP production in macrophages and neu-

trophils increases during phagocytosis [11,12,13,14], through

regulation by PDEs [15]. More recent work has shown that

PDEs play an important role in creating discrete subcellular

pools of cAMP within the cell, with higher levels of cAMP

found at the plasma membrane and within the nucleus and

lower levels in the cytosol [16].

Studies employing classical biochemical and fixed-cell micros-

copy approaches [17] obtain suboptimal kinetic and spatial

resolution of cAMP pools. In recent years, the use of techniques

based on Förster resonance energy transfer (FRET) have allowed

monitoring of cAMP levels in live cells [18]. This provides better

spatial and kinetic information about intracellular cAMP dynamics

[19]. FRET microscopy has demonstrated that cAMP compart-

mentalization plays an important role in mediating intracellular

signaling events [20,21,22]. A wide range of cAMP biosensors

have been utilized, and these differ considerably in their

localization, dynamic range, temporal resolution and signal-to-

noise ratios [18].

Other quantitative fluorescence microscopic studies have

allowed the component activities of phagocytosis to be resolved

into distinct and characteristic patterns [23,24,25]. Some activities

are restricted to the early processes, such as extension of the

phagocytic cup, while other activities correspond to later processes

such as cup closure. To improve the temporal resolution of cAMP
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signaling during phagocytosis and to put cAMP signaling in the

context of other signaling activities, this study used an Epac-based

biosensor and FRET microscopy to measure localized changes in

this second messenger during Fcc receptor-mediated phagocytosis

by macrophages. Although no differences in total cellular cAMP

levels were detectable, either biochemically or by FRET live-cell

microscopy, a transient burst of cAMP production was demon-

strable in the immediate vicinity of the forming phagosome.

Materials and Methods

Cell culture and transfection
RAW264.7 macrophage-like cells (American Type Culture

Collection) were cultured as previously described [24]. To prepare

for microscopy, cells were plated at ,56105 cells per coverslip

(25 mm circular, No. 1.5) and transfected with plasmids using

Roche FuGENE 6 according to the manufacturer’s protocol

(Roche Diagnostics). Coverslips were assembled into temperature-

controlled chambers and cells were cultured in Ringers buffer

[24]. To measure phagocytosis, opsonized sheep erythrocytes were

prepared and added to the macrophages as previously described

[26].

Plasmids and protein purification
The Epac1-camps plasmid [27] (generously provided by Martin

Lohse, University of Wurzburg) was either used directly or its YFP

domain was mutated to Citrine (YFP-Q69M) by the Quickchange

Method (Stratagene). In addition, plasmids for monomeric CFP

(mCFP), monomeric citrine (mCit), linked mCFP-YFP (G4) and

linked mCFP-mCit (C4) were also used as experimental and

ratiometric controls [28]. All DNA sequences were confirmed at

the University of Michigan DNA Sequencing Core.

cAMP biochemical assay
RAW264.7 cells were cultured overnight and incubated with

the AC activator forskolin (200 mM) or the Bacillus anthracis Edema

Toxin (EdTx) (1.0 mg/ml protective antigen and 0.5 mg/ml edema

factor; BEI Resources, Manassas, VA), a microbial AC [29], for

the indicated time intervals. During the last 20 min of the

incubation, opsonized sRBCs were added at a ratio of 20:1. After

treatments, cells were lysed with 0.1 M HCl and intracellular

cAMP levels were determined by ELISA according to manufac-

turer’s instructions (Cayman Chemical) [30].

Image acquisition and processing
Images were collected using a wide field Nikon Eclipse TE-300

inverted microscope as previously described [31]. Excitation and

emission filters were positioned to visualize mCFP (ID): excitation

(ex) 430612.5 nm, emission (em) 470615 nm; mCit or YFP (IA):

ex 500610 nm, em 535615 nm; and FRET (IF): ex 430612.5,

em 535615 nm. A series of four images (phase-contrast, ID, IA,

and IF) were recorded every 30 seconds. The FRET calculator

(Center for Live Cell Imaging, University of Michigan, available

on request) was used to perform image processing based on the

equations of FRET stoichiometry [28]. Briefly, ID, IA, and IF

images were corrected first by subtracting camera noise (bias

correction) and then for unevenness in the field of illumination

(shading correction). FRET calibration constants were obtained

for the microscope using images of cells expressing mCit, mCFP

and the control linked mCFP-mCit molecule (C4 control). The

calibrated microscope was then used to calculate a corrected

fluorescence FRET image (EA), which reports FRET efficiency

corrected for variations in cell thickness. To measure relative

changes in donor and acceptor photobleaching. the molar ratio of

mCit to CFP (RI) was calculated for each image.

Particle tracking and processing
The particle tracking algorithm in the FRET calculator was

used to measure differences in EA and RI at and around the

forming phagosome (regions R1-R5), and in the total cell (TC), in

cells expressing either Epac-camps or C4 control. A 2.3 mm radius

circular region (R1) was drawn around the target erythrocyte and

4 additional concentric regions with radii of 4.6 mm (R2), 6.9 mm

(R3), 9.2 mm (R4) and 11.5 mm (R5) were drawn. The target was

tracked on the phase-contrast image throughout the time series

and was used to position the measurement circles. To synchronize

multiple phagocytic events, the beginning of phagocytosis was

identified in each time series as the first frame in which pseudopod

extension and cup formation were detectable (as seen in the IA

image). To account for differential photobleaching of donor and

acceptor, EA for each concentric region (R1-R5) was divided by

EA for the entire cell (TC). To determine differences between

background FRET and intracellular cAMP production, the

normalized EA Epac-camps R1-R5 was subtracted from the

corresponding normalized EA C4 R1-R5 images. To verify that

observed changes were not due to acceptor photobleaching, the

same analysis was performed using the RI images from C4 control-

and Epac-camps-expressing cells.

Statistical analysis
Data are presented as mean 6 SEM and were analyzed with the

Prism 4.0 statistical program (GraphPad Software). The group

means for different treatments were compared by ANOVA. When

significant differences were identified, individual comparisons were

subsequently analyzed using an unpaired t test with Bonferroni

correction. Statistical significance was set at a p value ,0.05.

Results

Biochemical and FRET-based cAMP measurements in
macrophages

To verify that changes in cAMP levels could be detected using

these methods, RAW cells were incubated with forskolin for

20 min or EdTx for 3 h (based on pilot studies showing that these

incubation times yielded maximal increases in cAMP) in the

presence or absence of an opsonized phagocytic target (Figure 1A).

cAMP was not detectable by ELISA in untreated RAW cells, but

increased to measurable levels following addition of either

forskolin or EdTx. EdTx resulted in 7.5-fold greater levels of

cAMP than did forskolin. The addition of a phagocytic target had

no effect on total cAMP levels measured in macrophages otherwise

incubated with forskolin or EdTx alone (Figure 1A).

To localize cAMP in live macrophages, we used a previously

described biosensor, Epac-camps, which distributes uniformly

through cytoplasm in cells [27]. Binding of cAMP causes a

conformational change in Epac-camps, resulting in a decreased

FRET signal [27]. Preliminary studies optimized the Epac-camps

biosensor for measuring cAMP in macrophages during phagocy-

tosis. Preliminary experiments using the linked mCFP-YFP (G4)

revealed cAMP-independent changes in FRET during phagocy-

tosis. We reasoned that these changes in FRET signal resulted

from decreases in cytoplasmic pH near forming phagosomes, as

YFP fluorescence can be affected by cytoplasmic pH [23]. We

therefore improved the mCFP-YFP Epac-camps by creating a

single point mutation in its YFP domain (Q69M), creating a

mCFP-mCIT Epac-camps biosensor that was relatively unaffected

by fluctuations in cytoplasmic pH [28].

Elevated cAMP in Macrophages
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RAW cells were transfected with either the C4 control plasmid

(mCFP covalently linked to mCit) or the mCFP-mCit Epac-camps

biosensor and FRET was detected as the processed EA image. EA in

cells transfected with the C4 control plasmid was 0.44860.004

(Figure 1B). Likewise, cells transfected with the modified Epac-camps

biosensor had a measured EA value of 0.25460.002 (Figure 1C).

When cells were incubated with forskolin, EA decreased 5% in Epac-

camps-expressing cells, indicating an increase in intracellular cAMP.

EA of control C4-expressing cells was unchanged after incubation

with forskolin. Furthermore, EdTx treatment produced a 10%

decrease in EA in Epac-camps-expressing cells, but no change in the

control cells. Thus, the biosensor-derived measurements confirmed

the biochemical data indicating that EdTx was a more potent

enhancer of intracellular cAMP than was forskolin. Attempts to

measure decreases in intracellular cAMP elicited by incubating cells

with an adenylyl cyclase inhibitor (SQ-22536) and a Gai-coupled

ligand, leukotriene B4. did not detect any increases in FRET signal

under either of these conditions This indicated that resting cellular

cAMP levels are on the low end of the probe’s dynamic range, such

that most probe molecules in cytoplasm do not contain bound

cAMP. Thus, a decrease in cAMP concentrations would not be

reported by the Epac-camps biosensor. Our data thus confirm that

RAW cells can make cAMP in response to stimulation and cAMP

increases at the whole cell level can be measured both biochemically

and by using a FRET-based cAMP biosensor.

Effects of macrophage phagocytosis on total cellular
cAMP levels

Having verified that changes in intracellular cAMP could be

measured in live cells using the modified Epac-camps biosensor, we

next examined cAMP levels in macrophages during phagocytosis.

RAW cells were transfected with either the control C4 plasmid or

the plasmid encoding the Epac-camps biosensor, and the total

cellular FRET was measured in individual cells during 20 min

incubations with or without opsonized sRBCs (Figure 2). Intracel-

lular expression levels of the C4 control and the Epac-camps

biosensor were similar to each other. Additionally, all transfected

cells bound and internalized opsonized targets at rates similar to

non-transfected cells (internalization completed within approxi-

mately 7 min). During imaging of live cells, the total cell EA

decreased slightly over time (Figure 2A) in both the Epac-camps and

the C4 control cells, indicating acceptor photobleaching. This was

supported by measurements of RI, which also indicated minor

photobleaching. However, the rates of decrease in EA were the same

for C4 control and the Epac-camps. Addition of opsonized targets

did not produce significant changes in total EA values or the rates of

EA decrease due to photobleaching (Figure 2B).

To investigate whether the number of particles ingested

correlated with changes in intracellular cAMP concentrations,

macrophages were incubated with opsonized sRBCs for 1 h and

then cAMP was measured using FRET microscopy (Figure 3).

Calculation of EA as a function of the number of ingested particles

revealed that total cellular cAMP levels were constant at all

phagocytic loads (Figures 3A and B).

Levels of cAMP near forming phagosomes
We next examined subregions of cells to determine whether

cAMP levels increased near the forming phagosomes. Cell

expressing either C4 control or Epac-camps were incubated with

Figure 1. Changes in cAMP measured by biochemical and FRET
microscopic methods in macrophages. A. RAW cells were plated
overnight at 26106 cells per well and stimulated with 200 mM forskolin
for 20 min or with EdTx for 3 h. During the final 20 min incubation,
either PBS (blank bars) or opsonized sRBCs (open bars) were added to
cells as indicated. Total cAMP was quantified as described in material
and methods. Data represent the mean 6 SEM. B. and C. Cells
expressing C4 control (B) or the Epac-camps biosensor (C) were either
analyzed directly or following treatment with the indicated compounds.
The relative amount of FRET after each condition was determined and
the results are graphed as mean 6 SEM (n = 50–100 cells per condition).

D. A representative phase-contrast (top) and corresponding EA image
(bottom) of an untreated or EdTx-treated macrophage. Color bar
indicates scale of ratio and scale bar is 10 mm.
doi:10.1371/journal.pone.0013962.g001

Elevated cAMP in Macrophages
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opsonized sRBCs and the amount of total cellular FRET as well as

the FRET in concentric regions of interest around the forming

phagosome were measured. The results were plotted as the

difference between signals from Epac-camps and C4 control cells

in each of the subregions, processed for both EA (Figure 4A) and

RI (Figure 4B). The interaction between the opsonized target and

cellular Fcc receptors resulted in a transient gradient of cAMP

radiating from the forming phagosome. This was indicated by

significant changes in EA in Epac-camps-expressing cells. Regions

closest to the phagosome (R1 and R2) exhibited significantly

elevated cAMP (Figure 4A and D). Levels of cAMP increased at

the plasma membrane approximately 1 min after the initiation of

phagocytosis, remained high for several minutes, and then

returned to baseline levels following completion of phagosome

formation. We observed no changes in EA in cells expressing C4

control (Figure 4C), confirming that the changes observed in Epac-

camps-expressing cells were indeed due to changes in intracellular

cAMP. In addition, the mCit/mCFP ratio RI did not change

significantly during phagocytosis by Epac-camps-expressing cells

(Figure 4B), further indicating that the changes in EA did not

reflect selective photobleaching of fluorescent proteins.

Discussion

This study investigated the spatial and temporal dynamics of

cAMP in live phagocytosing macrophages. Using cAMP FRET

biosensors, we show that levels of cAMP rise quickly at the nascent

phagocytic cup and return to baseline following internalization of

the particle. The timing of this localized rise in cAMP indicates

that it contributes to phagosome formation.

Previous studies measuring cAMP in phagocytes with biochem-

ical assays and fixed-cell microscopy were limited in their temporal

resolution. Using radioimmunoassays, total cAMP was measured

at different time points during Fcc receptor-mediated phagocytosis

in neutrophils or Kupffer cells. Increases in total cAMP were

observed between 30 sec and 15 min after addition of an

opsonized target and those levels returned to baseline after 3

and 60 min [11,12,13]. Studies of fixed neutrophils using an

antibody against cAMP showed a uniform distribution of cAMP

throughout the cytoplasm of unstimulated cells [14]. Upon

Figure 2. No change in total cAMP during phagocytosis. RAW
cells were transfected with plasmids for C4 control or the Epac-camps
biosensor. Total cellular EA was measured over time and plotted relative
to the first measured value. A. Measurements of unfed macrophages
showed small decreases in FRET, indicating selective photobleaching of
mCit. B. Transfected cells were fed opsonized targets and phagocytosis
was synchronized as described in material and methods. No significant
changes in cAMP were detectable during phagocytosis. Results are
shown as mean 6 SEM of 4–7 cells.
doi:10.1371/journal.pone.0013962.g002

Figure 3. Levels of intracellular cAMP are independent of the
number of particles phagocytosed. RAW cells were plated at
56105 cells per coverslip and transfected with plasmids encoding the
C4 control (A) or the mCFP-mCit Epac-camps biosensor (B). Opsonized
sRBCs were then added to the cultures and cells were permitted to
phagocytose for 1 h at 37uC. Non-ingested sRBCs were washed away
and the images were collected and analyzed. There was no significant
correlation between EA and the number of sRBCs ingested in the C4
control (A, p = 0.5509) or Epac-camps (B, p = 0.7879) cells, when
analyzed by linear regression (n = 50–52 cells per condition).
doi:10.1371/journal.pone.0013962.g003

Elevated cAMP in Macrophages
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phagocytic challenge with an opsonized target, higher concentra-

tions of cAMP were localized to the forming phagosome [14].

The FRET microscopic method introduced here has the

advantages of providing high specificity for cAMP and good

temporal and spatial resolution. Its disadvantages include a weak

signal and a small dynamic range. Mutation of YFP to Citrine in

Epac-camps improved the probe’s specificity for cAMP by

reducing potential artifacts resulting from local fluctuations in

cytoplasmic pH. The probe was bright enough to permit image

acquisition every 30 seconds, allowing measurement of localized

increases in cAMP throughout the 7- to 8-minute process of

phagocytosis. However, like most linked FRET biosensors, the

Epac-camps probe exhibited a limited dynamic range. Binding of

cAMP to Epac-camps resulted in a small decrease in FRET

Figure 4. Transient burst of cAMP at the developing phagosome. RAW cells expressing C4 or the Epac-camps biosensor were fed opsonized
targets and component images for phase-contrast and FRET were taken every 30 sec to capture the phagocytic process from initiation to closure of
the phagocytic cup. A. and B. Left insert: A phase-contrast (top) and corresponding EA image (bottom) of intact live macrophages transfected with C4
control (A) or Epac-camps (B), from the designated time intervals. Right inserts: One minute time course of a magnified portion of the cell transfected
with the specified plasmid (beginning immediately after the sRBCs were added to the culture). The red circle denotes the location of the opsonized
sRBC on the EA image. Color bar indicates scale of ratio and scale bar is 10 mm in the left insert and 5 mm.in the right insert C. To normalize for non-
specific cAMP-mediated effects during phagocytosis, the data are shown as the phagosome-specific difference in EA between C4 control and Epac-
camps (ec) biosensor-expressing cells. (ie., (EA(C4-phago)/EA(C4-cell)) 2 (EA(ec-phago)/EA(ec-cell)); n = 10 cells) D. To verify that the differences seen between
cells transfected with the C4 control construct and the Epac-camps construct were not due to selective bleaching of one of the fluorescent proteins,
the RI values are plotted (ie., (RI(C4-phago)/RI(C4-cell)) 2 (RI(ec-phago)/RI(ec-cell))).
doi:10.1371/journal.pone.0013962.g004
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efficiency: the fluorescent proteins are bright but the measurable

shift in FRET is a weak signal. Such small differences in FRET

efficiency can be problematic when trying to detect localized

signals surrounded by cytoplasm, especially in thick cells.

Moreover, the maximum and minimum FRET efficiencies

reported by the biosensor are restricted to the small range of

cAMP concentrations above and below the binding affinity of

Epac. The weak signal and small dynamic range of Epac-camps

explain why the decrease in FRET signals from cells treated with

EdTx or forskolin were less dramatic than the increases in signals

reported by the biochemical assay. Likewise, the failure of the

probe to report decreases in cAMP concentrations indicates that

concentrations of cAMP in unstimulated macrophages are at or

below the lower limit of detection by Epac-camps. Thus, the

probes were adequate to report transient increases in cAMP near

forming phagosomes but would have likely missed smaller foci of

elevated cAMP or any local decrease in cAMP. Although we did

not observe any differences in bulk cAMP during macrophage

phagocytosis by RAW macrophages (Figure 2), a transient increase

in cAMP was localized to the forming phagosome (Figure 4).

Previous work has shown that elevated cAMP inhibits both

internalization of opsonized particles [32] and the recruitment of

proteins necessary for pathogen destruction [9]. Although only the

phagocytosis of opsonized sRBCs was utilized in this assay, we

hypothesize that there would also be different levels of cAMP

generated in response to other internalized particles, particularity

bacteria. Previous work has shown using fixed-cell microscopy and

biochemical assays that cAMP is transiently localized to the

forming phagosome when the cells are ingesting opsonized

zymosan particles [11,12,13,14,15]. Additionally, increased levels

of cAMP have been linked to reduced actin assembly, inhibition of

phagosome-lysosome fusion and acidification, and increased

intraphagosomal growth of pathogens [33]. For these reasons,

our results showing transient elevation of cAMP during the initial

formation of the phagosome appear surprising. It is possible

that a transient and localized burst of cAMP plays a role in

mediating phagosome formation, although further studies will be

necessary to clarify the functional importance of this finding.

Additional work is also needed to further elucidate the spatial and

kinetic effects of cAMP on phagosome trafficking and eventual

pathogen destruction.

The regulation of intracellular cAMP is essential to a variety of

signal transduction events within cells. Previous work has shown a

correlation between the amount of cAMP produced at the

phagosome and the ability of the cell to internalize and kill an

invading pathogen [33]. The importance of cAMP as a negative

regulator of phagocyte function is further indicated by the fact that

several pathogenic microorganisms elevate cAMP in target host

cells [5]. Pathogens use cAMP to disable phagocytosis, intracel-

lular killing and inflammatory mediator generation, thus allowing

the pathogen to gain an advantage against the host. Perhaps

premature elevation of cAMP by toxins or immunomodulatory

compounds inhibits phagocytosis by prematurely inactivating

essential early activities.

These studies extend our understanding of cAMP signaling in

phagocytosing macrophages by putting its dynamics into the

context of signaling for phagocytosis. This is essential for

understanding host pathogen interactions and the immunomod-

ulatory effects of therapeutic agents that modulate cAMP levels.

Author Contributions

Conceived and designed the experiments: MB SS MPG JAS. Performed

the experiments: MB TW. Analyzed the data: MB SS JAS. Contributed

reagents/materials/analysis tools: MB MPG JAS. Wrote the paper: MB

MPG JAS.

References

1. Swanson JA, Hoppe AD (2004) The coordination of signaling during Fc

receptor-mediated phagocytosis. J Leukoc Biol 76: 1093–1103.

2. Medzhitov R (2009) Approaching the asymptote: 20 years later. Immunity 30:

766–775.

3. van Lookeren Campagne M, Wiesmann C, Brown EJ (2007) Macrophage

complement receptors and pathogen clearance. Cell Microbiol 9: 2095–2102.

4. Forman HJ, Torres M (2002) Reactive oxygen species and cell signaling:

respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166:

S4–8.

5. Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M (2008) Cyclic AMP:

master regulator of innate immune cell function. Am J Respir Cell Mol Biol 39:

127–132.

6. Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:

309–327.

7. Cheng X, Ji Z, Tsalkova T, Mei F (2008) Epac and PKA: a tale of two

intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai) 40:

651–662.

8. Aronoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M (2005) Cutting

edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein

kinase A and exchange protein directly activated by cAMP-1. J Immunol 174:

595–599.

9. Serezani CH, Chung J, Ballinger MN, Moore BB, Aronoff DM, et al. (2007)

Prostaglandin E2 suppresses bacterial killing in alveolar macrophages by

inhibiting NADPH oxidase. Am J Respir Cell Mol Biol 37: 562–570.

10. Peters-Golden M (2009) Putting on the brakes: cyclic AMP as a multipronged

controller of macrophage function. Sci Signal 2: pe37.

11. Birmelin M, Decker K (1984) Synthesis of prostanoids and cyclic nucleotides by

phagocytosing rat Kupffer cells. Eur J Biochem 142: 219–225.

12. Fulop T, Foris G, Leovey A (1984) Age-related changes in cAMP and cGMP

levels during phagocytosis in human polymorphonuclear leukocytes. Mech

Ageing Dev 27: 233–237.

13. Herlin T, Borregaard N (1983) Early changes in cyclic AMP and calcium efflux

during phagocytosis by neutrophils from normals and patients with chronic

granulomatous disease. Immunology 48: 17–26.

14. Pryzwansky KB, Steiner AL, Spitznagel JK, Kapoor CL (1981) Compartmen-

talization of cyclic AMP during phagocytosis by human neutrophilic

granulocytes. Science 211: 407–410.

15. Pryzwansky KB, Kidao S, Merricks EP (1998) Compartmentalization of PDE-4
and cAMP-dependent protein kinase in neutrophils and macrophages during

phagocytosis. Cell Biochem Biophys 28: 251–275.

16. Terrin A, Di Benedetto G, Pertegato V, Cheung YF, Baillie G, et al. (2006)
PGE(1) stimulation of HEK293 cells generates multiple contiguous domains with

different [cAMP]: role of compartmentalized phosphodiesterases. J Cell Biol

175: 441–451.

17. Brooker G (1988) Improvements in the automated radioimmunoassay for cAMP
or cGMP. Methods Enzymol 159: 45–50.

18. Willoughby D, Cooper DM (2008) Live-cell imaging of cAMP dynamics. Nat

Methods 5: 29–36.

19. Nikolaev VO, Lohse MJ (2006) Monitoring of cAMP synthesis and degradation

in living cells. Physiology (Bethesda) 21: 86–92.

20. Baillie GS (2009) Compartmentalized signalling: spatial regulation of cAMP by
the action of compartmentalized phosphodiesterases. FEBS J 276: 1790–1799.

21. Cooper DM (2005) Compartmentalization of adenylate cyclase and cAMP

signalling. Biochem Soc Trans 33: 1319–1322.

22. Lissandron V, Zaccolo M (2006) Compartmentalized cAMP/PKA signalling

regulates cardiac excitation-contraction coupling. J Muscle Res Cell Motil 27:

399–403.

23. Hoppe AD, Swanson JA (2004) Cdc42, Rac1, and Rac2 display distinct patterns

of activation during phagocytosis. Mol Biol Cell 15: 3509–3519.

24. Beemiller P, Hoppe AD, Swanson JA (2006) A phosphatidylinositol-3-kinase-
dependent signal transition regulates ARF1 and ARF6 during Fcgamma

receptor-mediated phagocytosis. PLoS Biol 4: e162.

25. Kamen LA, Levinsohn J, Swanson JA (2007) Differential association of

phosphatidylinositol 3-kinase, SHIP-1, and PTEN with forming phagosomes.
Mol Biol Cell 18: 2463–2472.

26. Knapp PE, Swanson JA (1990) Plasticity of the tubular lysosomal compartment

in macrophages. J Cell Sci 95(Pt 3): 433–439.

27. Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel

single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem

279: 37215–37218.

28. Hoppe A, Christensen K, Swanson JA (2002) Fluorescence resonance energy

transfer-based stoichiometry in living cells. Biophys J 83: 3652–3664.

29. Tang WJ, Guo Q (2009) The adenylyl cyclase activity of anthrax edema factor.
Mol Aspects Med.

Elevated cAMP in Macrophages

PLoS ONE | www.plosone.org 6 November 2010 | Volume 5 | Issue 11 | e13962



30. Lee SP, Serezani CH, Medeiros AI, Ballinger MN, Peters-Golden M (2009)

Crosstalk between prostaglandin E2 and leukotriene B4 regulates phagocytosis
in alveolar macrophages via combinatorial effects on cyclic AMP. J Immunol

182: 530–537.

31. Kamen LA, Levinsohn J, Cadwallader A, Tridandapani S, Swanson JA (2008)
SHIP-1 increases early oxidative burst and regulates phagosome maturation in

macrophages. J Immunol 180: 7497–7505.

32. Aronoff DM, Canetti C, Peters-Golden M (2004) Prostaglandin E2 inhibits

alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated

increase in intracellular cyclic AMP. J Immunol 173: 559–565.

33. Kalamidas SA, Kuehnel MP, Peyron P, Rybin V, Rauch S, et al. (2006) cAMP

synthesis and degradation by phagosomes regulate actin assembly and fusion

events: consequences for mycobacteria. J Cell Sci 119: 3686–3694.

Elevated cAMP in Macrophages

PLoS ONE | www.plosone.org 7 November 2010 | Volume 5 | Issue 11 | e13962


