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There are multiple methods based on gene expression, copy number variation, and methylation biomarkers for screening drug
response have been developed. On the other hand, many machine learning algorithms have been applied in recent years to
predict drug response, such as neural networks and random forests for the discovery of genomic markers of drug sensitivity
for individual drugs in cancer cell lines. In this paper, we propose a drug response prediction algorithm based on 1D
convolutional neural networks with attention mechanism and combined with pathway networks, which combines the
individual histological data affecting drug response and considers the topological nature of the pathways to find the
subpathways highly correlated with drug response and use this as a feature to predict drug response by training using
convolutional neural networks. Thus, the output values will represent the probability of occurrence of each of these two
categories. In this experiment, using five-fold cross-validation, the identification accuracy reached an average of 84.6%, which
is 4.5% higher than the direct random forest approach for drug prediction with an AUC value. This proves that the use of the
one-dimensionallD convolutional neural network with attention mechanism to predict the response of low-grade glioma

patients and drugs has better prediction results.

1. Introduction

Due to the wide genetic heterogeneity of human cancers,
many patients with seemingly identical tumor types always
perform differently to the same drug therapies [1]. Despite
the current efforts to develop cancer therapies, these thera-
pies are usually effective for only some patients, while the rest
will miss the optimal time for treatment. One way to address
this problem is to identify and apply molecular biomarkers as
a way to accurately predict individual responses to anticancer
drugs. With the rapid development of high-throughput tech-
nologies and the reduction in cost, this has opened the door
for researchers to assess the impact of multiple molecular fea-
tures on drug response and identify reliable biomarkers to
further establish valid predictors [2, 3].

In the last decades, there have been many approaches to
predict drug response by genomic characterization. There
are multiple methods based on gene expression [4], copy
number variation (CNV) [5, 6], and methylation [7] bio-
markers for screening drug response have been developed.
For example, Zhang et al. [8] proposed a method to identify
significantly related biomarkers and then used hierarchical
sequential logic models to predict drug responses, leading
to the development of sequential genomic classifiers. Also
He et al. [9] provides a comprehensive review of the clinical
relevance of CNV to drug efficacy. There are also several
existing data resources such as CancerDR [10], GEAR [11],
and CARD [12] that cover many molecular markers associ-
ated with drug response. Although these have contributed
significantly to preclinical studies, most approaches to


https://orcid.org/0000-0001-5505-1014
https://orcid.org/0000-0001-9438-6474
https://orcid.org/0000-0002-1156-6259
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8671348

identifying biomarkers and predicting drug response assume
that major genes act independently, ignoring the functional
relationships between genes in biological pathways. Drug
response is not determined by a few independent genes,
and in fact alterations in signaling pathways largely deter-
mine the efficacy of kinase inhibitors used in the clinic [13].

On the other hand, many machine learning algorithms
have been applied in recent years to predict drug response,
such as neural networks and random forests for the discov-
ery of genomic markers of drug sensitivity for individual
drugs in cancer cell lines [14]. Daemen et al. used least
squares support vector machines and random forests algo-
rithms to integrate molecular features at various levels of
the genome to predict drug response in breast cancer cell
lines [15]. Menden et al. used neural networks to predict
drug response, where each drug-cell line pair integrated the
genomic features of the cell line and used the chemical prop-
erties of the drug as a predictor [16] .Cortés-Ciriano et al.
modeled chemical and cell line information in machine
learning models such as random forest (RF) or support vec-
tor regression model to predict the drug sensitivity of
numerous compounds screened from the NCI60 panel
against 59 cancer cell lines [17]. Although various methods
have been developed to computationally predict drug
responses in cell lines, many challenges remain in obtaining
accurate predictions.

In this paper, we propose a drug response prediction
algorithm based on convolutional neural networks and com-
bined with pathway networks, which combines the individ-
ual histological data affecting drug response and considers
the topological nature of the pathways to find the subpath-
ways highly correlated with drug response and use this as a
feature to predict drug response by training using convolu-
tional neural networks. The method first combines multiple
histologies of genes and combines the network properties of
the pathways to calculate the most relevant subnetworks to
drug response, and then uses these subnetworks as feature
modules, and uses the degree of expression of genes in these
modules on different histologies as training features of the
convolutional neural network model for prediction of drug
response in different individuals. The algorithm in this paper
has low complexity and is able to identify the functional
pathway status of genes associated with drug response, and
experimental results show that the algorithm is more accu-
rate than traditional machine learning methods.

2. Drug Reaction Feature Extraction
and Classification

2.1. Data Sources. The TCGA database contains multiomics
data from many cancer and normal samples as well as drug
response data, here we collected expression, methylation,
copy number variation, and drug response data from 130
patients with low grade glioma in TCGA.

2.2. Methods. The specific process of convolutional neural
network-based drug response prediction algorithm: firstly,
drug signature genes are identified and scored comprehen-
sively, subpathway screening is performed using simulated
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annealing algorithm and subpathway multiomics scoring is
performed to construct the convolutional neural network
model.

2.2.1. Identifying and Scoring Drug Signature Genes. Current
studies have shown that drug response is closely related to
molecular characteristics such as gene expression, methyla-
tion, and copy number. Identifying drug response signature
molecules is essential for predicting drug response. Firstly,
we dichotomized the drug response profiles of 130 patients
in the TCGA database into four categories for drug response
profiles, which we dichotomized into two types, i.e.
responders (including complete and partial response) and
nonresponders (including stable disease and progressive dis-
ease). And this label was used as the label for subsequent
classification.

For the multidimensional histological data of 130
hypoglioma patients obtained from the TCGA database,
we combined the dichotomized labels with the three histo-
logical data separately and processed them using the one-
way Roger set regression algorithm to identify the drug-
sensitive characteristic molecules of each histology and
obtain their significance index p values as well as coeffi-
cient values, respectively.

To integrate the characteristic molecules from multiple
histologies, a new composite scoring was constructed, where
the p values of the significant indicators for each gene in
each histology were log processed and summed to yield a
composite scoring for the gene. This integrated scoring
allows the complementary nature of the histological infor-
mation to be highlighted, resulting in a more comprehensive
presentation of drug-sensitive signature molecules and
improved accuracy in the subsequent predictive analysis.

2.2.2. Subpathway Screening and Subpathway Multiomics
Scoring Using Simulated Annealing Method. The 130 sam-
ples were randomly divided in half into training and test
sets, and the training set was scored for gene synthesis, and
then this scoring was mapped to the KEGG pathway as the
weight of the gene, and then the simulated annealing algo-
rithm was applied to identify the subpathways that were
strongly associated with drug sensitivity. In this way, the
data from the different three dimensions are integrated and
their individual molecular features are expanded into func-
tional modules based on the topology of the network in
order to predict individual drug responses comprehensively
at the functional level.

The subpathways were then screened for the number of
genes contained in the subpathways greater than or equal
to 3, and the p value of the significance index of the subpath-
ways was required to be less than or equal to 0.05. The
screened subpathways were used as features, and the expres-
sion values of the genes in the subpathways in each histology
were combined to construct the feature scores of the sub-
pathways with respect to each histology.

The scoring on the three histologies of these subpath-
ways are then used as new classification features, and then
the convolutional neural network algorithm is applied to
train the classifier model.
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F1GURE 1: Structure of attention mechanism.

2.2.3. Construction of Convolutional Neural Network Model.
The 130 sample data were divided into a training set and a
test set, each with multiple features, each containing
(mRNA, Methyl, and CNV).

(1) Input data: The data were preprocessed to contain 17
time slices per data record (the data were derived
from subpathway screening using simulated anneal-
ing method, so each time interval contains 3 kinds
of data mRNA, Methyl, and CNV). When perform-
ing subpathway screening, the three data mRNA,
Methyl, and CNV are stored. This results in a
17 x 3 matrix. As the data needs to be spreading into
a vector of length 51 and then passed into the neural
network. The first layer of the network must then be
deformed into the original 17x 3 shape

(2) The first 1D CNN layer: The first layer defines a filter
(also called a feature detector) with a height of 1
(also called the convolutional kernel size). Only
when a filter is defined can the neural network learn
a single feature in the first layer. This may not be
enough, so we will define 100 filters. This way we
train 100 different features in the first layer of the
network. The output of the first neural network layer
is a 17x100 matrix. Each column of the output
matrix contains the weight of one filter. With the
defined kernel size and considering the input matrix
length, each filter will contain 17 weight values

(3) Maximum value pooling layer: To reduce the com-
plexity of the output and to prevent overfitting of
the data, pooling layers are often used after the
CNN layer. In this experiment, we chose a pooling
layer of size 3. This means that the output matrix
of this layer is only one-third the size of the input
matrix

(4) Dropout layer: The dropout layer randomly assigns
zero weights to the neurons in the network. Since a
ratio of 0.5 is chosen for this experiment, 50% of
the neurons will be zero-weighted. By this operation,
the network is less sensitive to small changes in the
data. Therefore, it is able to further improve the

accuracy of processing invisible data. The output of
this layer is still a 1x1700 matrix

(5) Using dense layer 1: In order to take the features
extracted earlier, in dense after a nonlinear change,
extract the association between these features and
finally map them to the output space, the vector of
length 1700 is reduced to a vector of length 512. Also
to be able to converge faster

(6) Using dense layer 2: The vector of length 512 is
reduced to a vector of length 256 for faster conver-
gence and more accurate classification in the subse-
quent fully connected layer

(7) Fully connected layer with Softmax activation: The
last layer will reduce the vector of length 256 to a
vector of length 2, since we have 2 categories to pre-
dict (i.e., “responsive” and “unresponsive”). Softmax
is used as the activation function. It forces the sum of
all 2 output values of the neural network to be one.
Thus, the output values will represent the probability
of occurrence of each of these two categories

2.2.4. Adding Attention Mechanism. Adding an attention
mechanism to the model in this paper involves three main
parts.

(1) calculating the similarity between the input vector
and the metric environment vector to find the part that
needs attention in the current situation (score-function),
(2). calculating the relevant attention weights while using
the function normalization (Alignment-function), and (3).
obtaining the output vector (Vector function) according to
the attention weights. The calculation formula is as follows:

€;= vl tanh (W, % c+ U, * y,),

o= exp (ei)j)
W T 1
ri1exp(e) (1)

z= Z‘xi,j *Yi
i

The structure is as follows (see Figure 1):

3. Experimental Results and Analysis

In this experiment, we analyzed the multidimensional his-
tological data and drug response data of 130 low-grade gli-
oma patients in the TCGA database and combined the
pathway information to predict the response of brain
low-grade glioma patients to temozolomide drug, although
high stability was not observed in the five-fold cross-vali-
dation process due to the limitation of the number and
quality of samples, the current methodological process
can basically predict the response of samples in the TCGA
database accurately and stably. This methodological pro-
cess is not limited to cancer and drugs, but can also be
applied if there are sufficiently large and good quality data,
which provides the potential for the discovery of biomark-
ers that are currently needed for therapeutic use in the
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FIGURE 2: First fold cross-validation results.
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FIGURE 3: Second fold cross-validation results.
Train and test accuracy Train and test loss
0.85
0.65
0.80 0.60
0.55
0.75
0.50
0.70
0.45
0.65 0.40
T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8
—— Train_acc —— Train_loss
—— Test_acc —— Test_loss

FiGure 4: Third fold cross-validation results.
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FiGure 5: Fourth fold cross-validation results.
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Ficure 6: Fifth fold cross-validation results.

TaBLE 1: Comparison results of accuracy rates.

Model name Recognition accuracy
Random forest 81.1%
One-dimensional convolutional neural network 81.6%
One-dimensional convolutional neural network with attention mechanism added 84.6%
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Figure 7: ROC curve of random forest method.

clinic, although the clinical translation of biomarkers is
still slow. Some contributions can be made to personalize
drug use for cancer patients.

In this experiment, random forest one-dimensional con-
volutional neural network and one-dimensional convolu-
tional neural network with attention mechanism were used
for prediction, respectively. Among them, the 1D convolu-
tional neural network with attention mechanism method
used in this paper applied a five-fold cross-validation (see
Figures 2-6).

This results in an average accuracy of 84.6% on the test
set after doing a five-fold cross-validation, which is 3.5%
higher than the direct random forest approach (see
Figure 7) for drug prediction with an AUC value.

This proves that the use of one-dimensional convolu-
tional neural network to predict the response of low-grade
glioma patients and drugs has better prediction results (see
Table 1).

The accuracy results of the three methods are shown in
the following Table 1:



4. Conclusion and Discussion

The identification accuracy in this experiment utilizing five-
fold cross-validation was 84.6 percent, which is 4.5 percent
higher than the direct random forest strategy for drug predic-
tion with an AUC value. This shows that using 1D convolu-
tional neural networks with attention mechanism and
combined with pathway networks to predict the response of
low-grade glioma patients to medicines is more accurate.
This methodological process is not limited to cancer and
drugs, but can be used in any situation where there is enough
large and high-quality data, allowing for the discovery of bio-
markers that are currently needed for therapeutic use in the
clinic, despite the fact that biomarker clinical translation is
still slow. Some contributions can be made to help cancer
patients customise their medicine use.

Predicting clinical drug response from molecular data in
human cancers is an important goal in precision medicine.
This paper combines the response records of patients with
low-grade gliomas of the brain to Timozolomide drugs in
the TCGA database with their multidimensional histological
data to evaluate different molecular data types in predicting
clinical drug response in the context of functional modules.
We found that the predictive power of multidimensional
histology data combined with pathway data was much
greater than that of single histology data. This method of
constructing characteristic subpathways combines pathway
classification features, thus improving the accuracy and sta-
bility of prediction.

The next step in the future could be to extend the work
to the identification of biomarkers so that the prediction
algorithm can not only predict the link between biomole-
cules and drug response, but also reveal novel biomarkers
about cancer therapy.
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