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Abstract: The article presents a new concept—steganography in thermography. Steganography is a
technique of hiding information in a non-obvious way and belongs to sciences related to information
security. The proposed method, called ThermoSteg, uses a modification of one of the parameters of
the thermal imaging camera—integration time—to embed the signal containing hidden information.
Integration time changing makes the microbolometer array heat up while reading the sensors. The
covert information can be extracted from the stream of thermograms recorded by another thermal
camera that observes the first one. The covert channel created with the ThermoSteg method allows
the transmission of covert data using a thermal sensor as a wireless data transmitter. This article
describes a physical phenomenon that is exploited by the ThermoSteg method and two proposed
methods of covert data extraction, and presents the results of experiments.
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1. Introduction

Information is now one of the essential goods, and information security mechanisms
are developing very quickly. For most of the usage scenarios, the best way to secure data
is to use cryptography. However, in some specific cases, another method can be used—
steganography [1–4]. Steganography is a technique that enables data transmission in a
hidden way. For steganography, the critical factor is to make the data ‘covert’, so that no
one would be able to receive the information. This approach differs from cryptography’s
approach, where the data can be received by virtually anyone, but cannot be decrypted by
anyone except the authorised recipient.

Steganography creates so-called covert channels—communication channels where
the data are transmitted in a hidden manner. The key element of these covert channels
is the method of hiding data, which should be kept secret similar to the way in which
the encryption key in cryptography is kept secret. Covert channels can be designed
with different approaches: using unused bits in network protocol headers, modifying
time-dependent parameters, or by using phenomena that are, in most cases, treated as
unwanted or random. Many of the covert channels provide a bitrate smaller than tens
of bits per second [4]. The very small bitrate makes the imperceptibility of the covert
channel better according to the “magic triangle of steganography”. The covert channel
should be imperceptible, robust and have a large capacity (bitrate). The rule of the “magic
triangle” says that only two of these features can be achieved and the third feature will
not be fully implemented (Figure 1) [5,6]. There are sophisticated covert channels that
provide a bitrate on the order of tenths of a bit per second. The perfect example of such a
covert channel is BitWhisper [7], where the authors achieved a bitrate of 8 bits per hour
(2.22× 10−3 bps). Such low values make it impossible to use covert channels for audio
or video transmission, but they are sufficient for signalling or the basic control of devices.
Covert channels can be used when the fact of the presence of the communication should be
kept secret, for example when the sensors that are placed in the enemy’s territory or on
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commonly used devices have a dual purpose, where secondary functionality is meant to be
secret. Steganographic communication between sensors makes it harder to discover them.
Steganographic communication might also be used as a part of so-called hardware trojans.

Imperceptibility

Capacity

Robustness

Digital 
watermarking

Naive 
steganography

Secure 
steganography

Figure 1. “Magic triangle of steganography.” [5,6].

Covert channels and their usage are a popular research topic. The principles of covert
channel creation were described in 1989 in Wolf [8]. Since then, many new and more
sophisticated types of covert channels have been published. One of the most exploited
fields is computer network steganography, where two types of covert channels can be
distinguished—timing covert channels and storage covert channels. The first type uses
the modulation of the interval between two network events, such as the beginning of
packet transmissions in wireless channels [9] or adjusting silence periods in VoLTE trans-
mission [10]. The other type, storage channels, exploits unused or partially used fields in
network protocols, such as the Timestamp field in IEEE 802.11 Beacon frames [11]. Covert
channels can also be embedded in other types of media, such as audio [12] and video [13]
streams. It is also possible to create a storage covert channel in a phase drift of signals
modulated with QAM modulations [14,15].

Such a broad selection of different covert channel types makes them an interesting
subject for computer security teams. Covert channels can be a potential security breach
and can be used for data leakage from network-isolated computer systems via ‘Air-Gap’.
Many experiments of this type have been performed by Mordechai Guri [16–18] and
other researchers [19–21]. For example, it is possible to use very low contrast or fast
flickering images, which are invisible to human subjects, to transmit data using a computer
display [22]. Another way is to use relatively cheap hardware to detect electromagnetic
emissions from a USB [23]. Temperature can also be used as a medium for a covert
channel. Two network-isolated computers can communicate via a covert thermal channel
by stimulating CPU load on one computer as a transmitter and reading temperature
sensors on the other computer as a receiver [7]. Covert channels created this way enable
covert transmission with a bitrate of 8 bits per hour at a distance of up to 40 cm. Another
example of hiding data in a non-obvious way with the use of thermal signals is presented
in [24]. The method presented is based on the active heating of material by means of
laser radiation. Unfortunately, the authors do not provide any bandwidth estimates of the
proposed method.

This paper proposes a new type of covert channel that utilizes thermal cameras
and their sensors to make steganographic communication possible. The covert channel
is established between two thermal cameras, where one is acting as a transmitter, and
the other can receive data. The steganographic transmission is possible thanks to the
modification of some operational parameters of custom made microbolometric thermal
cameras created for navigation systems [25]. The proposed covert channel can be classified
as a timing channel because the data are hidden in the time characteristics of the thermal
signal acquired from the part of the microbolometric sensors matrix that corresponds to
the thermal image of the other’s camera sensor. The method uses a non-obvious way of
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modifying the camera’s parameters to enable transmission capabilities in microbolometric
detectors.

2. Principles of the Method

The covert channel is a particular example of a telecommunication channel. In every
communication channel, there must be a transmitter and a receiver. One camera acts as a
hidden information transmitter (Tx) and the other as a receiver (Rx). Both cameras’ primary
function is that of an ordinary thermal imaging camera. Such cameras could be an element
of a security system or smart building infrastructure. In the proposed solution, two thermal
imaging cameras are facing each other, as shown in Figure 2.

Camera Tx Camera Rx

Figure 2. The concept of the covert channel using two thermal cameras, one for data transmission
(Tx) and one for data reception (Rx).

The standard reading procedure needed to produce the thermal image is to retrieve
data from the successive rows of thermal sensors. When the row of sensors in the matrix
is read, an electric current flows through it. This current causes a temporary increase in
the microbolometers’ temperature, according to Joule’s Law. This phenomenon in the
microbolometer arrays is called self-heating [26]. Such a phenomenon is shown on a
thermal image made with an FLIR SC7900VL and with a microscopic lens, presented in
Figure 3.

Active, photosensing area

Read-Out Circuit

Chip wirebonding

Thermal sensor enclosure

Figure 3. Thermal image of Micro80 detector array, made with a microscopic thermal camera.

The temperature change is significant enough to be sensed by a remote sensor, and for
the exemplary case shown in the picture above, it reaches 2.2 °C in temperature amplitude.
The secondary remote sensor, sensing the self-heating phenomenon, can be, for example,
another thermal camera. This secondary thermal camera (Rx) facing the camera with a
microbolometric sensor (Tx) can provide a thermal signal visible in the thermogram.

In the area observed by the Rx camera, it is possible to distinguish the area (ROI—
Region of Interest) in which the Tx camera lens is visible. Thanks to the fact that the
thermal camera lens is transparent to the infrared spectrum, the thermal signal produced
in the Tx camera by the self-heating phenomenon can be sensed remotely through the lens.
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This signal can be sensed by the Rx camera by observing the area that the Tx camera is
occupying. The area is dependent on the Tx camera’s lens size, the Rx camera’s focal length
and the distance between the cameras. An exemplary image of such an observed lens has a
size of Xp ·Yp pixels and is marked in Figure 4, presenting the image obtained by the Rx
Camera observing the Tx Camera. It should be noted that both cameras operate normally,
which enables the registration of regular thermograms in both cameras.

Figure 4. Image captured by Rx camera after nonuniformity correction. In the highlighted square,
the Tx camera’s lens is visible.

2.1. Covert Data Coding and Embedding

Coding of the covert data is performed by changing one of the main operational
parameters of the microbolometer focal plane array—the integration time (ti). Integration
time regulates how long the measurement current from the Readout circuit flows through
the row of bolometers in the array, which makes the self-heating phenomenon controllable.
Reducing this time causes the current to flow shorter through the row in the bolometer,
which results in less heating of the elements of this row; similarly, increasing ti will cause
the elements of the currently read line to heat up more. These temperature differences can
be detected with the use of the receiving camera. A detailed description of the operation of
the readout circuit in the microbolometer array and its thermodynamic consideration are
presented in [26]. The covert data are bivalently encoded using two different integration
times ti1 and ti2. The hidden data embedding process is shown in Figure 5—the digital
signal Uint, with the pulse width encoded by the covert data, controls the length of the
integration process in the integration circuit. This paper considers the case when the covert
data are binary. For this reason, the set of different integration times contains two values. It
is possible to extend the method to use three or more different integration times to encode
more values at a time.
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Figure 5. Data embedding scheme.

2.2. Covert Data Reception—Amplitude Analysis

The ROI observation area contains Xp ·Yp pixels. Each observation is a subject of noise
that is dependent on the NETD of the thermal camera and the optical path attenuation.
The signal from the single detector can have an insufficient signal-to-noise ratio to extract
subtle temperature changes in the observed microbolometric camera. To increase the
signal-to-noise ratio, the spatial averaging is conducted in such a way that the average
value of all Fn pixels observed in the ROI is computed for each thermogram according to
the formula:

F(n) =
∑x2

x=x1 ∑
y2
y=y1 pxy

(x2 − x1)(y2 − y1)
, (1)

where pxy is the value of the pixel with the coordinates (x,y) in the n-th thermogram, x1
and x2 are the numbers of the first and last columns of the analyzed area, while y1 and y2
are the numbers of the first and the last lines of the analyzed area.

This creates the signal F = {F0, F1, ..., FN} of values from the averaged pictures, which
constitutes the ROI’s temperature signal sampled with the camera operating frequency fp.
An example of the F signal is shown in Figure 6.

0 5 10 15 20 25 30
Time [s]

3915

3920

3925

3930

3935

F(
n)

Figure 6. Exemplary F signal exhibiting strong 1/f noise.
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The F signal shows noticeable low-frequency noise resulting from the influence of
external factors, that is, changes in the temperature of the camera’s surroundings. This
noise has a typical 1/f spectral density and is very common in thermal sensors [27–29]. The
spectral noise character and usable signal encoding scheme make it possible to separate
one from another by means of a temporal filter. For further analysis, only the changes
of higher frequency that interest us should be extracted; this is performed with the filter
described by the equation:

F′(n) = F(n)− ∑n
i=n−w F(i)

w
f or n = {w, w + 1, ..., N}, (2)

where F(n) is the n-th sample of the F signal, F′(n) is the n-th sample of the F′ signal, N is
the length of the F signal, w is the width of the applied window.

The width of the window w should be selected experimentally according to the
spectral characteristic of the low frequency noise. The exemplary resulting F′ signal is
shown in Figure 7.

0 5 10 15 20 25 30
Time [s]

3

2

1

0

1

2

3

4

F′
(n

)

Figure 7. Signal F′ after high-pass filtering.

In Figure 7, one can see the moments of the higher and lower amplitudes of the signal.
The amplitude changes are the direct consequences of the integration time manipulation in
the observed microbolometric array. Changes in signal amplitude can be easily estimated
with power metrics according to the Formula (3). The resulting signal used for the analysis
is shown in Figure 8.

F′p(n) = [F′(n)]2. (3)

The F′p signal still exhibits some noise, which is why it is then averaged over a temporal
window of length w′. The result of this averaging is the F′f signal calculated with (4) and
presented in Figure 9:

F′f (n) =
∑n

i=n−w′ F′p(i)
w′

. (4)

The value of w′ should be selected experimentally according to the characteristics of
the signal received.
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Figure 8. Signal F′p, which is the power of the filtered signal F′.
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Figure 9. Signal F′f averaged with window size w′ = 5.

In signal F′f , one can clearly see the characteristics of the binary waveform. To create a
binary F′b signal, it is required to perform a threshold classification of the samples:

F′b(n) =

{
1 when F′f (n) ≥ F′f
0 when F′f (n) < F′f ,

(5)

where F′f is the average value of all samples of the F′f signal. An example of the F′b signal
is shown in Figure 10. The signal character corresponds to the signal used to supply
the integration time changes in the Tx camera. The F′b binary signal proves that hidden
information is embedded in the F received signal.



Sensors 2021, 21, 6395 8 of 16
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Figure 10. Received binary signal F′b.

2.3. Covert Data Reception—Variance Analysis

The algorithm’s effectiveness depends on the thermal amplitude of the received signal
that is the consequence of the integration time values ti, chosen to encode the thermal
signal in the Tx camera. For a low signal amplitude caused, for example, by a large distance
between the receiving and transmitting agents or lower lens transmission, amplitude
demodulation can cause a high error rate. For such a situation, detection based on the
signal variance analysis has been developed.

Having the F = {F0, F1, ..., Fn} signal calculated on the basis of (1), one can calculate
the value of the F′′ signal consisting of the value of the standard deviation of the F signal
calculated in a temporal window with a width of ws according to Equation (6). Signal
F′′(n) is also presented in Figure 11.

F′′(n) =

√√√√ 1
ws

n

∑
i=n−ws

[F(i)− (
1

ws

n

∑
j=n−ws

F(j))]2. (6)

0 5 10 15 20 25 30
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

F′
′ (n

)

Figure 11. Signal F′′ (6) calculated with ws = 5.

In Equation (6), ws denotes the width of the window in which the standard deviation
is calculated and F′′(n) denotes the n-th sample of the signal F′′. The F′′ signal should be
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filtered (7) to obtain the F′′f signal (Figure 12). Then, (8) should be classified, as a result of
which the signal F′′b will be obtained.

F′′f (n) =
∑n

i=n−w′′ F′′(i)
w′′

(7)

F′′b (n) =

{
1 when F′′f (n) ≥ F′′f
0 when F′′f (n) < F′′f .

(8)

0 5 10 15 20 25 30
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

F′
′ f(n

)

Figure 12. Signal F′′f calculated with w′′ = 4.

2.4. Covert Data Extraction

The sampling frequency of F′b and F′′b binary signals is equal to the frequency of camera
operation fp. The covert data stream is sampled with a lower frequency, and every covert
bit is conveyed by the specific number of equal value samples of F′b and F′′b signals. This
number is defined as B:

B =
fp

W
, (9)

where W is the assumed hidden binary bit rate (e.g., 2 bps).
Based on this information, the binary sequence decoding process is performed. The

algorithm written in Python finds the first change in the value of the sample input signal
F′ or F′′ considering it the beginning of the covert bit. Then the algorithm averages the
value of B samples counted from the beginning of the covert bit. If the mean value of these
samples is greater than 0.5 then this is classified as the 1 covert bit. Otherwise, it is the 0
covert bit. Because some samples in the signals F′ and F′′ may be lost, the algorithm is able
to synchronize to the binary string. The decoding algorithm is presented in Algorithm 1.
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Algorithm 1 Decoding algorithm.

1: procedure DECODESIGNAL(data, B, correction)
2: decodedData← [ ] . Initialize an empty vector
3: i← 1
4: bl ← 0
5: recvBit← 0
6: while data[i] = data[0] do
7: i← i + 1
8: end while
9: repeat

10: if i + b > length(data) then
11: break
12: end if
13: if average(data[i : i + B]) > 0.5 then
14: recvBit← 1
15: else
16: recvBit← 0
17: end if
18: append(recvBit, decodedData) . Append recvBit to the end of the vector
19: i← i + B
20: if correction = 1 and i < length(data) and data[i] 6= recvBit then
21: o f f set← correction
22: while o f f set > 0 do
23: if data[i] = data[i− o f f set] then
24: i← i− o f f set
25: break
26: end if
27: o f f set← o f f set− 1
28: end while
29: end if
30: until break
31: return decodedData
32: end procedure

3. Experiments
3.1. Equipment

Two thermal imaging cameras based on FPGA Cyclone V and Lynred Micro80 matrices
(80 × 80 pixels) [25] were used to perform the experiments. The camera matrices were
positioned opposite each other at a distance of 14 cm, as shown in Figure 13. The cameras
worked under the control of the GNU/Linux system and transmitted data using a dedicated
protocol based on UDP over a network operating in the Gigabit Ethernet standard. The
cameras generated thermograms with the frequency fp = 44 Hz, as it can be easily divided
by two and by four. Further analysis was carried out using software written in Python on
a PC.
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Figure 13. Camera setup for the method evaluation.

3.2. Results and Discussion

In order to determine the parameters of the method, attempts were made to transmit
1024 data packets of 10 bits each (every possible combination). Data packets were preceded
by a one-bit preamble, which served as the start of the packet mark. The end of the
data packet was also signalled with one stop-bit. The experiment was repeated for four
different assumed binary bit rates W = {0.5, 1, 2, 4} b/s and three sets of integration
times ti1 = (82.05 µs; 328.21 µs), ti2 = (123.08 µs; 287.18 µs), ti3 = (164.10 µs; 246.15 µs).
The bit error rate was determined using the amplitude analysis method and the amplitude
variability analysis method for each set of integration times and binary bit rates. Any
errors in the preambles were not taken into account when determining the bit error rate.
Computed BER values are presented in Tables 1 and 2. Graphical comparisons of the
results are shown in Figures 14–16.

Table 1. Bit error rate determined for the amplitude analysis method.

aaaaaaaaaaa
W

tint
ti1 ti2 ti3

0.5 b/s 2.12% 2.55% 7.69%

1 b/s 2.97% 4.07% 9.87%

2 b/s 6.45% 6.50% 12.67%

4 b/s 13.00% 31.62% 35.97%

Table 2. Bit error rate determined for the amplitude variance analysis method.

aaaaaaaaaaa
W

tint
ti1 ti2 ti3

0.5 b/s 1.69% 1.20% 10.00%

1 b/s 2.04% 2.41% 12.12%

2 b/s 5.57% 4.49% 25.47%

4 b/s 13.67% 12.46% 36.58%
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Figure 14. Bit error rate values as a function of bit rate and analysis method (AMP—amplitude
analysis, STD—variance analysis) for ti1 integration time set.
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Figure 15. Bit error rate values as a function of bit rate and analysis method (AMP—amplitude
analysis, STD—variance analysis) for ti2 integration time set.
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Figure 16. Bit error rate values as a function of bit rate and analysis method (AMP—amplitude
analysis, STD—variance analysis) for ti3 integration time set.

Both methods of analysis produced similar results for the recorded transmissions. For
ti1 and ti2, the variable analysis looks to be more promising as the BER values are almost
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two times better. The results create a chance for error-free transmission with the use of
correction and detection codes in the information layer.

The analysis of error distribution in received messages was also performed. This
analysis also shows how many messages have been received without errors. It is easy to
observe that this distribution has the character of a Poisson distribution with an expected
value equal to 0 in most cases. A different expected value was observed only with the
highest bit rates, mostly with ti3 integration times set. Results of the analysis are presented
in Figures 17–19. These figures show that most of the received messages were decoded
with at most one error bit, which can be easily corrected with simple correction methods.
They also show a slightly better number of correct messages decoded with amplitude
variance analysis for ti1 and ti2 integration time sets.
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Figure 17. Number of bit errors in messages transmitted with ti1 set calculated with amplitude
analysis method (AMP) and amplitude variance analysis method (STD).
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Figure 18. Number of bit errors in messages transmitted with ti2 set calculated with amplitude
analysis method (AMP) and amplitude variance analysis method (STD).
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Figure 19. Number of bit errors in messages transmitted with ti3 set calculated with amplitude
analysis method (AMP) and amplitude variance analysis method (STD).

Broadcasting information hidden by a thermal imaging camera does not disturb its
primary task of producing a usable thermal image. In such a case, however, one should be
aware of the need to introduce suitable correction of the thermograms, taking into account
the changing values of the integration time. The difference between thermograms acquired
with two different integration times is shown in Figure 20. With a shorter integration
time, the dynamics of the output raw signal from the sensors are lower. Some degradation
of thermal resolution (NETD) of the thermal camera will be present due to integration
time manipulation. Because the change of the integration time still produces usable
thermograms, there is a theoretical possibility of creating a full-duplex link with this
method.

tint1 tint2

Figure 20. Two thermograms of the same scene acquired with different integration times
(tint1 = 82.05 µs; tint2 = 328.21 µs).

4. Conclusions

The hidden transmission methods do not ensure high bit rates. Hence, their scope of
use is limited, for example, to the transmission of encryption keys or emergency device
control commands. The proposed method can be used to create a communication channel
between thermal imaging cameras transmitting, for example, encryption keys, performing
camera authentication or the detection of unauthorized devices to prevent counterfeits or to
eliminate rogue devices. This method can also be used to create a diagnostic interface with
the thermal cameras that are mounted in inaccessible places such as a fire control system
camera in a tank, or to transmit, for example, the coordinates of the transmitting camera,
thanks to which the recorded thermograms can be supplemented with the information
about the parameters of the monitored area. For such applications, bit rates of the order of
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single bits per second are sufficient. The undoubted advantage of the proposed method is
its undetectability with the use of radio communication analysis equipment.

The proposed method has a limited operating range but can be used in dense networks
of thermal imaging sensors, where the distances between the cameras are relatively small.
Combined with the methods of infrared camera detection, this can increase the security of
such networks.

5. Patents

The ThermoSteg method is a patent pending with application No. WIPO ST 10/C
PL437673.
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2016; pp. 266–270. [CrossRef]

http://dx.doi.org/10.1155/2018/1214681
http://dx.doi.org/10.1016/j.jisa.2020.102458
http://dx.doi.org/10.1016/j.future.2020.08.045
http://dx.doi.org/10.1016/j.future.2021.03.025
http://dx.doi.org/10.1109/host45689.2020.9300268
http://dx.doi.org/10.1109/infocom41043.2020.9155386
http://dx.doi.org/10.3934/mbe.2019374
http://www.ncbi.nlm.nih.gov/pubmed/31698623
http://dx.doi.org/10.1109/pst.2016.7906972
http://dx.doi.org/10.2478/v10178-011-0064-6
http://dx.doi.org/10.1117/12.542482
http://dx.doi.org/10.1080/17686733.2015.1055675
http://dx.doi.org/10.1109/MIXDES.2016.7529745

	Introduction
	Principles of the Method
	Covert Data Coding and Embedding
	Covert Data Reception—Amplitude Analysis
	Covert Data Reception—Variance Analysis
	Covert Data Extraction

	Experiments
	Equipment
	Results and Discussion

	Conclusions
	Patents
	References

