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U 
'NLIKE other degenerative diseases of the nervous 

system, such as schizophrenia and Huntington's dis- 
ease, Alzheimer's disease (AD) t leaves behind in 

the brain two clues that have provided a starting point for un- 
raveling the pathogenesis of this illness. One clue is the se- 
nile plaque, which consists principally of extracellular fibril- 
lar aggregates in a dense plaque core or as a diffuse infiltrate 
through portions of the neuropil. The second clue is the 
neurofibrillary tangle, an intraneuronal structure affecting 
discrete populations of neurons. It has been almost a faith 
among Alzheimer researchers that a complete understanding 
of how these pathological structures arise will solve the dis- 
ease. The rapid pace of research in the fieM stems directly 
from the identification and cloning of the constituent pro- 
teins within these structures. 

The Amyloid Precursor Protein (APP): Its Products 
and Mutations 
In 1984, Glenner (15) made what turned out to be a correct 
assumption: that amyloid in the cerebrovasculamre of Alz- 
heimer's patients contained the same protein as that of the 
senile plaque. The relative ease with which vascular amyloid 
could be purified and his success in obtaining the first direct 
sequence of the/3-amyloid peptide (AB) led directly to the 
cloning of the larger parent gene, the APP by other laborato- 
ties. This lO0-140-kD glycoprotein spans the membrane one 
time with a short carboxy terminal cytoplasmic tail and a 
long ectodomain (see Fig. 1). Remarkably, AB is cleaved 
from a site within the membrane (3' site), and at a site just 
outside the membrane (/3 site) to generate the peptide (see 
Fig. 1). A/~ is heterogeneous in length ranging from 39 to 
43 residues, and can aggregate in vitro and in vivo into 6-10- 
nm fibrils. 

Interest in AD soared in 1991, when the first of several 
APP mutations were linked to the disease by Alison Goate 
and John Hardy. Previously, a genetic basis for the disease 
was suspected becanse trisomy of chromosome 21 strongly 
predisposes to the development of Alzheimer's pathology, 
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mer's disease; APE arnyloid precursor protein; PHF, paired helical fila- 
ments. 

and the APP gene is located on chromosome 21. The known 
mutations are: (a) codon 717, which occurs in several un- 
related families; (b) codons 670/671, a double mutation, 
which occurs in Swedish kindred; and (c) codons 692 or 693, 
which shift, to varying degrees, the principle site of amyloid 
deposition from the brain parenchyma to the cerebrovascula- 
ture (reviewed in reference 14). In the case of the 693 muta- 
tion, which causes the variant condition, hereditary cerebral 
hemorrhage with amyloidosis of the Dutch type, deposition 
is principally in the cerebrovasculature. Another as yet 
unidentified locus responsible for the AD phenotype has 
been identified by linkage on the long arm of chromosome 
14 (39). In addition to these rare genetic causes of the dis- 
ease, a genetic risk factor for Alzheimer's disease is present 
on chromosome 19. The locus on chromosome 19 is believed 
to be the apolipoprotein E gene because homozygotes with 
the e4 allele of the apolipoprotein gene have an eightfold in- 
creased risk of developing the disease (38). 

Domain Organization of APP and Its Trafficking 
The ectodomaln of APP consists of an amino-terminal 17- 
residue signal sequence followed by a cysteine-rich domain, 
and an anionic domain of •100 residues (reviewed in refer- 
ence 26). The ectodomain undergoes N- and O-glycosyla- 
tion, tyrosine sulfation, and an unusual phosphorylation 
(20). APP undergoes alternative splicing that results in a va- 
riety of isoforms. These splice variants include exons-in the 
ectodomain, one with homology to the Ktmitz family of ser- 
ine protease i nhibitors and another with homology to the 
OX-2 surface antigen in leukocytes. A shorter 695-residue 
isoform predominates in neurons; whereas a longer isoform 
with these exons tends to be expressed in noun~Xtral tissue 
including glia (46). Another exon, exon 15, is alternatively 
spliced in white cells, where it may have a role in cell a'dhe= 
sion (24). In addition to APE at least two APP-like genre 
products are widely expressed and have homologues in Dro- 
sophila and Caenorhabditis elegans (7, 47). Notable among 
these homologues is the absence of the AB sequence. 

The holoprotein is internalized via clathrin-coated vesi- 
cles (13, 36), probably using the NPXY consensus sequence 
in the cytoplasmic tail. APP tratficks to the endosomal- 
lysosomal pathway, where a series of carboxy terminal frag- 
ments are generated (11). The function of this internalization 
pathway is not known. Although a receptor function has been 
suggested, no ligand has been identified. 
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Figure 1. A diagramatic representation of some 
possible steps involved in the pathogenesis of Alz- 
heimer's disease. The/~ and 7 cleavage sites of 
APP generate the A/$ fragment. ApoE has been 
identified among the components of the senile 
plaque. MT, microtubules that undergo dissolution 
with disease progression, and ultimately tan pro- 
tein aggregates to form PHE 

APP generates specific fragments with distinct fates in dis- 
crete cellular compartments. The most abundant secreted 
fragment is a 100-110-kD polypeptide cleaved between 
residues Lysl6 and Leul7 of the A/~ peptide, which precludes 
the formation of A/3 (10). The enzyme activity responsible 
for this cleavage, known as ot-secretase, awaits discovery; 
but because it cuts in the middle of the AI3 fragment, it has 
been dubbed a "good" enzyme. Less abundant secretory 
cleavages release both truncated fragments and longer frag- 
ments that may contain the A~ region (reviewed in reference 
41). Possible functions of APP, are a serine protease inhibi- 
tor identified first as protease nexin II, and later as Factor 
XI,-inhibitor (reviewed in reference 41). APP~ also has 
growth-promoting properties (34), which may follow from 
its ability to activate the mitogen-activated kinase in a ras- 
dependent manner (16). In the extracellular matrix, APPs 
can bind to heparin (40), laminin (22), and a basement mem- 
brane HSPG (33), where it may mediate adhesiveness. 

A/3 occurs as a soluble peptide released into culture 
medium, into normal human cerebrospinal fluid at ~10 
ng/ml, and into serum in vanishingly small amounts (42). 
One site of A/$ production is early in the endocytic pathway, 
a conclusion based on cell surface radioiodination of APP 
that indicated a precursor relationship to A/~, and a reduction 
in AB production with a COOH-terminal-deleted APP (25). 
Messengers that activate PLC such as bradykinin or that ac- 
tivate protein kinase C such as phorbol ester decrease At3 re- 
lease and increase APP~ (5, 35). On the other hand, the cal- 
cium ionophore A23187 increased AB production (37). 

The site of A/3 deposition on the abluminal side of blood 
vessel walls has raised the question of polarized release. In 
MDCK cells, 80-90% of both APP~ and A/3 are released 
from the basolateral surface; likewise, the holoprotein is in- 
serted preferentially in the basolateral membrane (17). Dele- 
tion of the cytoplasmic tail and mutagenesis of certain se- 
quences within the tail can shift a portion of these secreted 
products apically. The site of A/3 secretion appears to follow 
the holoprotein. These findings are consistent with both the 
abluminal deposition of A/$, as well as an appropriate 
basolateral secretion of APPs, in any of its putative roles as 
a growth promoter, an adhesion molecule, or a factor in 
blood coagulation. The cellular basis for the observed topog- 
raphy of A# deposition within the neuropil is more complex. 
In this regard, recent results raise the possibility that, in con- 

trast to MDCK cells, APP may move transcytotically in neu- 
rons from the axon to the dendrite (Dotti, C., personal com- 
munication; Koo, E., personal communication). 

Seeding the Plaque 
The finding of soluble AB under normal conditions and the 
suggestion that aggregated A~ is toxic opened the search for 
factors that enhance the aggregation and precipitation of this 
fragment. Knowledge of these factors will be important be- 
cause once A/~ aggregates, it appears to induce free radical 
damage to neurons (3). A potent theoretical approach to pro- 
tein self association is the concept of nucleation-dependent 
polymerization (21). Briefly, to seed the macromolecular ag- 
gregate, an initial thermodynamically unfavorable nuclea- 
tion step must precede the thermodynamically favorable ad- 
dition of monomers. The interval between the formation of 
protein nuclei in trace amounts and the detection of ag- 
gregates bears an exponential relationship to protein concen- 
tration. Small differences in protein concentration can 
change this lag time from years to milliseconds. 

Most of the soluble A/3 is 1-40. Aft deposited in Alzhei- 
mer's disease is heterogeneous at its carboxyl terminus: the 
two principle moieties are 1-40 and 1-42. When APP with 
the Swedish mutation was transfected into cells, AB in- 
creased in the medium (41), creating a concentration effect 
that could lead to aggregation. When the 717 mutation was 
expressed in cells, there was an increase in the percentage 
of A~1-42 (43), a finding that, combined with the known in- 
creased in vitro polymerization of A/31-42 compared to Affl- 
40 (21), could provide another mechanism of amyloidogene- 
sis. A/~1-42 is also more abundant in plaques from patients 
with the 717 mutation (19). 

The frequent occurrence of A/~ deposition in the aged may 
be related to a common age-related modification that affects 
many proteins: glycation. Glycation is a series of nonen- 
zymatic reactions leading to irreversibly cross-linked ad- 
vanced glycosylation end products. When Aft undergoes gly- 
cation, it can seed the accelerated aggregation of soluble AB 
in vitro (44). Similar mechanisms may underlie the progres- 
sive insolubility of tau aggregates in the form of paired heli- 
cal filaments (PHF) (28). It has also been suggested that ele- 
ments from the extracellular matrix (HSPG) or heavy metals 
(31) induce aggregation. 
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Once aggregated, A/~ appears to induce extensive damage 
to membrane systems. This damage is thought to be medi- 
ated by free radicals because the A/3 increases H202 and 
lipid peroxides in cells, and because antioxidants have a pro- 
teetive effect (3). Alternatively, toxicity may be mediated by 
the spontaneous assembly of A~ subunits into a membrane 
structure with some properties of an ion channel (2, 12). 

Neurofibrillary Degeneration 
NeurofibriUary tangles consist of highly ordered intraneu- 
ronal filaments called PHF assembled from the microtu- 
bule-associated protein, tau (30). These structures lie within 
neuronal cell bodies and neurites, where they induce 
processes to become swollen and dystrophic. The link be- 
tween APP and tangles is not understood, and it is compli- 
cated by a poor anatomical correlation between the sites of 
amyloid deposition and PHFs (9), and because PHFs occur 
in disease states devoid of amyloid. In cell culture, tau has 
a role in the establishment of polarity and, in this capacity, 
can serve as a rapid clongator of a single process (6, 23). On 
the other hand, neurons from a tan knockout mouse do be- 
come polarized (18). Tau mRNA is targeted to the axon hil- 
lock (29), and the protein is enriched in axons (27). A com- 
plex splicing pattern results in the appearance of ccrtain 
cxons as a function of development; the tau isoforrns also 
show spatial restrictions to either the central or peripheral 
nervous systems (1). Tau undergoes multiple phosphoryla- 
tions (45) on scrincs and threonines, several of which arc 
amino to a prolinc, a finding that has triggered a search for 
tan kinascs among both proline-directed and nonprolinc- 
directed kinases. Although the effects of phosphorylation at 
specific sites are unknown, increased tan phosphorylation 
can decrease the affinity of tau for microtubules, and it can 
inhibit tau's tendency to suppress microtubulc dynamics (8). 

Tau protein from PHFs is unable to bind to microtubules, 
(4) and it is abcrrantly phosphorylated (30). The additional 
phosphorylation sites in PHF tan coincide with consensus 
sequences for both prolinc-directed and nonproline-directed 
kinases (32). Because phosphate cannot bc detected on thcsc 
sites under normal conditions, it is more likely that deregula- 
tion of a kinase, rather than a phosphatasc, is responsible for 
the disease-related modifications of tan protein. Further- 
more, it appears that several different kinases get activated 
in the course of the disease process, raising a more global 
cellular problem involving the dysregulation of the cell's 
phosphorylation state. While tan protein in the PHF is a clue 
to the nature of the damage incurred, its vestigal presence 
may represent no more than a molecular accident of its abil- 
ity to assemble into highly resistant filaments during the 
degeneration of the neuron. Neuronal degeneration in AD 
involves a disassembly of several cytoskeletal systems, in- 
eluding microtubules and neurofilaments, as well as the loss 
of other structures such as synapses. This form of cell death 
is reminiscent of the neuron's response to injury or a necrotic 
death, rather than apoptosis. Injury in many cells induces 
mitosis; however, the irretrievably postmitotic state of neu- 
rons may activate enzymes related to cell division without 
accomplishing mitosis. 
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