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Since our initial demonstrations that
hydrogen sulfide (H2S) may func-

tion as a neuromodulator in the brain and
a smooth muscle relaxant in the vascular
system, accumulating evidence shows that
H2S may function as a signaling mole-
cule. We and others also found that H2S
has a cytoprotective effect. Because H2S
is well-known toxic gas, a cytoprotective
role has been overlooked. H2S protects
neurons from oxidative stress. It also
protects cardiac muscle from ischemia-
reperfusion injury. The finding led to
the application of H2S to the bypass
surgery patients in Phase II clinical trial.
Cystathionine β–synthase (CBS) and
cystathionine c–lyase (CSE) are well
known as H2S-producing enzymes. We
recently demonstrated that the other
H2S-producing enzyme, 3-mercapto-
pyruvate sulfurtransferase (3MST) along
with cysteine aminotransferase (CAT) is
localized to neurons in the brain and to
the vascular endothelium. However, the
regulation of H2S production by 3MST/
CAT pathway had not been well under-
stood. The present study shows that H2S
production by 3MST/CAT pathway is
regulated by Ca2+ and that H2S protects
retinal photoreceptor cells from light
induced degeneration by suppressing
excessive Ca2+ influx caused by intense
light.

We demonstrated that CBS is expressed
in the brain and can produce H2S, which
facilitates the induction of hippocampal
long-term potentiation (LTP), a synaptic
model of memory, by enhancing the
activity of NMDA receptors.1 H2S also
induces Ca2+ influx and Ca2+ waves in

astrocytes.2,3 Another H2S-producing
enzyme, CSE, was found in the thoracic
aorta, the ileum and the portal vein and
H2S relaxes these tissues.4 Based on these
observations we proposed that H2S may
function as a neuromodulator and a
smooth muscle relaxant. Subsequently,
H2S was found to activate ATP-dependent
K+ channels to relax vascular smooth
muscle.5 In addition to the function as a
signaling molecule, H2S also has a role as
a cytoprotectant.6-10 It protects neurons
from oxidative stress by reinstating
the levels of glutathione, an intracellular
major antioxidant.6-8 It also protects
cardiac muscle from ischemia-reperfusion
injury by preserving the mitochondrial
function.10

In the brain CBS is localized to
astrocytes,11,12 a type of glia, while 3MST
is localized to neurons.13 3MST and CAT
localized to vascular endothelium also
produce H2S that may regulate vascular
tone.14 3MST produces H2S from 3-
mercaptopyruvate, which is produced by
CAT from cysteine and a–ketoglutarate.
H2S production by 3MST/CAT pathway
requires a reducing substance, such as
dithiothreitol (DTT). However, the
corresponding endogenous reducing sub-
stance has not been identified. We recently
demonstrated that thioredoxin and dihy-
drolipoic acid (DHLA) are endogenous
reducing substances for 3MST to produce
H2S.15

3MST along with CAT is also localized
to retinal neurons, and H2S production
by the enzymes is regulated by Ca2+.16 In
the absence of Ca2+ the production is the
maximum and is decreased by Ca2+ in a
concentration-dependent manner. There
is no change in the activity of 3MST/CAT
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pathway to produce H2S in the presence
or absence of calmodulin or a calmodulin
inhibitor, W-7, suggesting that calmodulin
is not involved in the regulation on the
pathway by Ca2+ (Fig. 1).16

The center-surround organization is one
of the most important characteristics in the
retinal neurons. The negative feedback
from horizontal cells to photoreceptor cells
plays a key role in the center-surround
organization. When retinal photoreceptor
cells are exposed to light, the intracellular
concentrations of Ca2+ are decreased to
10 nM that activates 3MST/CAT pathway
to produce H2S. In darkness Ca2+ con-
centrations are increased to 600 nM that
cause the cessation of H2S production.
H2S, in turn, suppresses voltage-gated

L-type Ca2+ channels (VGCC) in photo-
receptor cells by activating vacuolar-type
H+-ATPase (V-ATPase) in horizontal cells,
leading to maintaining intracellular Ca2+

in photoreceptor cells in low levels
(Fig. 1).16

The retina is susceptible to oxidative
stress because of its high consumption
of oxygen and daily exposure to light.
Excessive light exposure leads to photo-
receptor degeneration whose death is an
irreversible injury caused by reactive
oxygen species and elevated intracellular
concentrations of Ca2+. The regulation of
Ca2+ by endogenous H2S may fail by the
excessive levels of light, and the photo-
receptor cell degeneration occurs. Even
under such conditions the administration

of a donor of H2S suppresses photo-
receptor degeneration. The increased
number of TUNEL- and 8-hydroxy-2’-
deoxyguanosine positive cells by intense
light was decreased by administration of
H2S.16 The enhancement of 3MST/CAT
pathway or the administration of H2S
may have clinical benefit for diseases with
retinal cell degeneration.
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Figure 1. When retinal photoreceptor cells are exposed to light, cGMP-gated channels are closed and the cell membrane is hyperpolarized.
The intracellular concentrations of Ca2+ in photoreceptor cells are decreased to approximately 10 nM, which activates 3MST/CAT to produce H2S.
H2S activates vacuolar-type H+-ATPase in horizontal cells to released H+ that suppresses the activity of voltage gated Ca2+ channels in photoreceptor cells.
By this mechanism H2S maintains intracellular Ca2+ in low levels. Excessive light exposure leads to photoreceptor degeneration caused by reactive
oxygen species and elevated intracellular concentrations of Ca2+. The regulation of Ca2+ by endogenous H2S may fail by the excessive levels of light,
and the photoreceptor cell degeneration occurs. Even under such conditions the enhancement of 3MST/CAT pathway or the administration of H2S may
have clinical benefit for diseases with retinal cell degeneration.
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