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Abstract

Genome duplication, which leads to polyploidy, poses challenges to the meiotic segregation

of the now-multiple homologous chromosome copies. Genome scan data showed previ-

ously that adaptation to polyploid meiosis in autotetraploid Arabidopsis arenosa is likely mul-

tigenic, involving genes encoding interacting proteins. But what does this really mean?

Functional follow-up studies to genome scans for multigenic traits remain rare in most sys-

tems, and thus many mysteries remain about the “functional architecture” of polygenic adap-

tations. Do different genes all contribute subtle and additive progression towards a fitness

optimum, or are there more complex interactions? We previously showed that derived

alleles of genes encoding two interacting meiotic axis proteins (ASY1 and ASY3) have addi-

tive functional consequences for meiotic adaptation. Here we study derived versus ancestral

alleles of the meiotic cohesin subunit REC8, which has roles in chromatin condensation,

recruiting the axes, and other critical functions in meiosis. We use genetic and cytological

approaches to assess the functional effects of REC8 diploid versus tetraploid alleles, as well

as their interaction with ancestral versus derived alleles of ASY1 and ASY3. We show that

homozygotes for derived (tetraploid) REC8 alleles have significantly fewer unpaired univa-

lents, a common problem in neotetraploids. Interactions with ASY1 and ASY3 are complex,

with the genes in some cases affecting distinct traits, and additive or even antagonistic

effects on others. These findings suggest that the road to meiotic adaptation in A. arenosa

was perhaps neither straight nor smooth.

Author summary

Genome duplication, which results in polyploidy, is fairly common in eukaryotes, espe-

cially plants, and has been linked to adaptation and speciation in nature, as well as

increased yield and stress resilience in crops. Yet, newly formed polyploids face many

challenges. To understand more fully how polyploids evolve and adapt, or to more effi-

ciently utilize them in crop improvement, it is important that we learn what it really takes

to be polyploid. As part of a longer-term effort to characterizing the multigenic adapta-

tions to polyploid chromosome segregation, here we functionally characterize the effect in
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meiosis of ancestral versus derived alleles of one gene under selection in a polyploid, as

well as its interactions with two other genes. The at-times complex interactions we dis-

cover provide insights into what seems to have been a sometimes-rocky path to multigenic

adaptation.

Introduction

Our understanding of the genetic architecture of adaptation has benefitted greatly from

improvements in whole genome sequencing, which have made it possible to undertake so-

called “genome scans” for selection. This ability, in turn, opens the opportunity to study the

genetic basis of adaptation from a “reverse genetics” perspective, where we start from identify-

ing genes with signatures of selection, and use these to try to understand what traits they affect

and why they might have been important in adaptation [1–3]. This reverse approach comple-

ments the forward phenotype-based approach, and has the potential to provide novel insights

into the molecular basis of adaptation, especially for non-obvious, or multigenic traits. Never-

theless, challenges remain [4], and functional follow-up to test the effects of the genes with evi-

dence of selection remain rare in most systems, especially for multigenic traits, which are

particularly laborious and high-risk. We know from theory and empirical studies that multi-

genic adaptation should be common [5–9], a notion which genome scan data, including our

own [10–12], generally support. However, while genome scans have already provided insights

into the genetic architecture of multigenic adaptation, we know comparatively less about what

can be thought of as the “functional architecture” of multigenic adaptation. How strong are

the effects of individual loci when multiple loci are under selection? Do selected alleles act

additively, synergistically, or even antagonistically? Do they have overlapping pleiotropic func-

tions, or do they contribute independently to different aspects of adaptive traits?

Over the last decade, Arabidopsis arenosa has emerged as a model organism for studying

the molecular basis of adaptation (e.g. [13,14]), among other things to whole genome duplica-

tion (WGD), which gives rise to polyploidy [10–12,15–17]. Genome scans to investigate adap-

tation to polyploidy have provided evidence that multiple genes encoding meiosis proteins are

among the loci showing the strongest evidence of selection in the polyploid A. arenosa lineage

[10–12,17]. This is hypothesized to reflect the fact that WGD poses a serious threat to fertility

and genome integrity, by presenting novel challenges to chromosome pairing and segregation

during meiosis [18–20].

The challenges polyploids face in meiotic segregation of the additional chromosome copies

may be particularly acute in autopolyploids, which are formed from within-species WGD, and

thus possess multiple, equally similar homologous copies of each chromosome [21,22]. During

diploid meiosis, the formation of crossovers (COs) between pairs of homologous chromo-

somes is essential for promoting the stable segregation of homologs during anaphase I, as well

as for introducing genetic diversity within offspring [23]. In most organisms, CO maturation

is facilitated by formation of the meiotic axis and synaptonemal complex, proteinaceous struc-

tures that organise chromosomes into threadlike arrays of chromatin loops and synapse

homologous axes together along their length, respectively [24,25]. In autopolyploids, due to

the presence of more than two copies of each homolog, synapsis and subsequent CO formation

can occur between multiple homologs simultaneously, creating linkages called multivalents.

These structures are associated with an increased risk of chromosome mis-segregation and can

lead to the formation of unbalanced, or even inviable gametes [20,22]. In a recent study, we

found that polyploid meiotic stabilization is likely attributable, at least in part, to a
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strengthening of crossover interference or an increase in its efficiency of propagation along the

chromosomes, which in turn helps reduce the number of multivalents and unpaired univalents

[16]. We hypothesized that this could result from stiffening of axial element structures, which

may explain why the meiotic axis proteins ASY1 and ASY3 show evidence of selection in A.

arenosa autotetraploids [10,11]. We also found that established polyploids had shorter synap-

tonemal complexes and fewer crossovers than neopolyploids; likely all of these features func-

tion together to stabilize polyploid chromosome pairing and segregation [16].

The genome scans done for adaptation to WGD in A. arenosa demonstrated that at least

eight essential meiosis genes are under strong selection in naturally established populations of

autotetraploid A. arenosa, suggesting that meiotic adaptation in the polyploid lineage is an

example of multigenic adaptation [10,11]. Of the multiple meiotic genes putatively under

selection in the tetraploid, all are known to encode proteins that directly or indirectly interact,

and are all known from mutant studies in other species to regulate related processes relevant

to chromosome pairing and segregation that clearly represent challenges for polyploid meiosis.

We already showed that derived alleles for genes encoding two meiotic axis proteins, ASY1

and ASY3 (homologs of Hop1 and Red1 in S. cerevisiae), affect multiple traits associated with

tetraploid meiotic stability, such as reduced multivalent frequency and reduced axis length

[15]. The derived alleles of ASY1 and ASY3 have primarily additive effects, though ASY1 has a

generally stronger effect than ASY3 [15]. This additivity is perhaps unsurprising, given that

ASY1 and ASY3 are directly-interacting critical components of the chromosome axis [26,27].

What the derived alleles of the remaining genes showing evidence of selection do, and whether

or not they also contribute additively to the same phenotypes, remained untested.

In this study, we continue the task of understanding this multigenic adaptation by investi-

gating the functional role of the derived (tetraploid-specific) allele of the meiotic cohesin sub-

unit REC8 in the stabilisation of autotetraploid meiosis. This is motivated by the fact that

REC8 is an essential component of meiosis known to affect relevant traits like axis assembly,

axis / synaptonemal complex length and crossover frequency [16–19,28–31]. Moreover, REC8

is known to directly interact with the axis components and to recruit them to the chromo-

somes [32]. We also previously showed that REC8 might have been one of the oldest selective

sweeps in tetraploid A. arenosa, likely predating selection on ASY3, and maybe even ASY1

[12]. This makes it especially interesting to understand its functional effects as it might have

been a “frontline” player in the early adaptation of the polyploid lineage. We bred established

tetraploid lines of A. arenosa that are homozygous for the ancestral, diploid alleles of REC8 in

an otherwise tetraploid background. Since REC8 interacts with the axis proteins to ensure cor-

rect formation of the meiotic axis, we also studied the genetic interaction of derived alleles of

REC8 with those of ASY1 and ASY3.

We find that one of the strongest associations with the derived, tetraploid allele of REC8 is a

reduced frequency of undesirable metaphase I univalents, which neotetraploids have signifi-

cantly more of than evolved tetraploids do [16]. Otherwise, we find generally subtle quantita-

tive effects on several other meiotic traits. Interactions between the ancestral vs. derived alleles

of REC8 with the ancestral vs. derived alleles of axis proteins are complex. Sometimes their

effects are independent, whilst for other traits they are additive, and even sometimes antago-

nistic. Based on our findings, we propose a multi-step, multi-gene model that may explain the

evolution of enhanced tetraploid meiotic stability in A. arenosa, in which the derived allele of

REC8 may have been selected initially to reduce univalent frequency. The subsequent evolu-

tion of derived alleles at ASY1 and then ASY3 modified additional traits, including reducing

multivalent rate, and have both additive and antagonistic interactions with the derived allele of

REC8. We also recognize an alternate possibility, namely that REC8 may be under selection

primarily to maintain interactions with other proteins that are evolving functional novelty.
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Results

The effect of ancestral vs. derived alleles of REC8 on tetraploid metaphase I

phenotypes

To test the effects of ancestral, diploid (D) versus derived, tetraploid (T) alleles of REC8 on

meiotic stability in tetraploid A. arenosa, we first generated lines that were homozygous for

either the D or T alleles. We did this as described previously, by taking advantage of the fact

that D alleles of some genes persist within one lineage of autotetraploid A. arenosa due to gene

flow from diploid populations [11,33,34]. Using PCR-based markers, we identified plants

from the tetraploid KOWA population [35] that were heterozygous for T and D alleles of

REC8. We intercrossed these plants to generate lines that were either homozygous for the T

allele (REC8 TTTT), homozygous for the D allele (REC8 DDDD) or heterozygous (REC8

TxD) in an otherwise tetraploid background (S1 Fig). Note, heterozygotes are referred to as

“TxD” because the genotyping approach used did not allow us to confidently differentiate

between heterozygotes with different copy numbers of the T or D alleles (TDDD, TTDD, or

TTTD plants).

To assess meiotic stability in REC8 TTTT, REC8 TxD and REC8 DDDD plants, we first

performed cytological analysis of DAPI-stained metaphase I spreads as we did previously for

ASY1 and ASY3 [15]. We emphasise that this analysis was only performed on male meiocytes

(which are experimentally more tractable for cytological analysis) and therefore our results

and conclusions are only directly relevant to male meiosis. Metaphase I images from each

genotype were scored blind for the frequency of different bivalent shapes (rod, bowtie, cross

and ring) as well as for the presence of abnormal multivalent configurations or unpaired (uni-

valent) chromosomes (Fig 1A). Bivalents with different shapes may arise from differences in

CO number and positioning [36], though while likely accurate for CO number, they may not

always be reliable for CO position (see:[15,37]). In general, “rod” bivalents are interpreted as

possessing a single distal CO (close to a chromosome end), “bowtie” bivalents as possessing a

Fig 1. Analysis of REC8 TTTT, TxD and DDDD metaphase I cells. (A) Key explaining the shapes of different metaphase I chromosomal configurations.

Example images of each metaphase configuration (stained with DAPI) are shown (bottom, each box) alongside a stick interpretation, with chromatin shaded in

grey (middle) and a cartoon indicating the predicted centromere (black circle) and CO (open circle with cross) position on recombining chromosomes. (B)

Stacked bar chart showing the mean proportional frequency of different bivalent shapes in REC8 TTTT, TxD and DDDD metaphase I cells. (C) Plots showing

the number of different chromosomal configurations per cell in REC8 TTTT, TxD and DDDD metaphase I cells. Dots indicate trait means and error bars 95%

confidence intervals calculated from GLMM models. Significant between genotype p values are indicated: � p< 0.05.

https://doi.org/10.1371/journal.pgen.1010304.g001

PLOS GENETICS Multigenic adaptation to polyploid meiosis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010304 July 13, 2022 4 / 20

https://doi.org/10.1371/journal.pgen.1010304.g001
https://doi.org/10.1371/journal.pgen.1010304


single interstitial CO, “cross” bivalents possessing a single proximal CO (close to the centro-

mere), and “ring” bivalents possessing at least two COs (one on each chromosome arm). Mul-

tivalent chromosomes arise when 3 or 4 chromosomes are linked simultaneously by COs,

while univalents are formed when a chromosome fails to form a single CO.

We only included images that were of sufficient quality that at least 10 of the 16 possible

chromosome pairs could be reliably scored. The presence of overlapping or partially-spread

chromosomes prevents us from confidently scoring all chromosomes within the majority of

metaphase I cells, thus this cut-off that was chosen prior to data analysis in our prior study of

ASY1 and ASY3 [15], as this cutoff provided a good compromise between high quality spreads,

and yet having sufficient numbers (both of chromosomes and images). Moroever, since it was

the same cut-off as previously used, it increases comparability among results [15]. In total, our

final dataset included 186 cells from 10 REC8 TTTT plants, 110 cells from 6 REC8 TxD plants

and 115 cells from 9 REC8 DDDD plants (S1 Table). We then used generalized linear mixed

models (GLMM), including genotype as a fixed effect and plant as a random effect, to test for

statistical differences in the frequency of different metaphase I chromosomal configurations in

different genotypes (Fig 1B and 1C). GLMMs have been used previously for this type of analy-

sis, as they are well suited for analysing count data, and they can account for biological varia-

tion by the inclusion of biological replicates (plants) as a random factor within the models,

preventing the introduction of type I errors by sample pseudoreplication [15]. In addition to

our counts-per-cell GLMM analysis (Fig 1C), we also performed GLMM analysis on count

data normalised against the total number of scorable chromosomes in each cell (S2 Fig) and

Kruskal-Wallis tests on data pooled from all plants of each genotype (S2 Table) to further con-

firm significant between-genotype differences identified in the counts-per-cell GLMM

analyses.

We identified several differences in the frequency of metaphase I chromosomal configura-

tions in the different genotypes (Fig 1B and 1C). With respect to bivalent shape, we found that

REC8 TTTT plants had significantly more bowtie bivalents per cell than either the REC8

DDDD (Poisson-GLMM, 5.66 95% CI [5.28, 6.06] vs. 4.83 95% CI [4.42, 5.29], p = 0.0072) or

REC8 TxD plants (Poisson-GLMM, 5.66 95% CI [5.28, 6.06] vs. 4.99 95% CI [4.54, 5.47],

p = 0.033). We also found cases where heterozygotes have more extreme phenotypes than

either homozygote: REC8 TxD plants have significantly fewer cross bivalents than REC8

TTTT plants (Poisson-GLMM, 0.63, 95% CI [0.396, 1.01], vs. 1.44, 95% CI [1.018, 2.05],

p = 0.0057) and significantly more ring bivalents than REC8 TTTT plants (Poisson-GLMM,

3.55, 95% CI [2.65, 4.75] vs. 2.32, 95% CI [1.81, 2.96], p = 0.028). Why the heterozygotes have

extreme values for these traits is unclear, but parallels previous findings for ASY1 [15]. Finally,

we also found that REC8 TTTT plants had significantly fewer univalent chromosomes per cell

compared with REC8 DDDD plants (Poisson-GLMM, 0.16 95% CI [0.082, 0.31] vs. 0.55 95%

CI [0.27, 1.09], p = 0.012) or REC8 TxD plants (Poisson-GLMM, 0.16 95% CI [0.082, 0.31] vs.

0.48 95% CI [0.29, 0.79], p = 0.0086. Note, the Kruskal-Wallis test for this one comparison was

not significant, S2 Table). This parallels the previous finding that neotetraploids (carrying D

alleles of all meiosis genes) have increased univalent frequencies relative to evolved tetraploids

[16]. REC8 genotype showed no significant effect on multivalent frequency, another polyploid

meiotic stabilization trait.

Metaphase I phenotypes are preceded by REC8 genotype-specific

differences in pachytene cells

Chromosome pairing and CO-designation, which affect metaphase configurations, occur

before metaphase I, during the pachytene substage of meiotic prophase I [23,25,38]. Hence, we
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investigated CO patterning and chromosome behaviour in more detail in A. arenosa pachy-

tene cells using a combination of immunocytochemistry and super-resolution microscopy.

We imaged late-pachytene REC8 TTTT and REC8 DDDD cells labelled for ZYP1, HEI10,

ASY1 and DAPI using 3D-SIM microscopy (Fig 2A). ZYP1 is a component of the synaptone-

mal complex [39] and detecting it allowed us to identify, segment and measure each synaptic

bivalent or synaptic quadrivalent in each pachytene cell using the Simple Neurite Tracer plugin

to ImageJ [40]. ASY1 is a component of the meiotic axis [27] and binds with greater intensity

to unsynapsed regions of the axis, allowing us to quantify the extent of asynapsis and highlight

the presence of synaptic partner switch (SPS) sites within cells, which are also often flanked by

regions of increased ASY1 intensity [16]. SPS sites are regions where homologs exchange their

synaptic partner, switching from one homolog to synapse with one of the other two available

homologs, a situation unique to polyploids, much more common in neopolyploids than

evolved polyploids, and positively correlated with metaphase I multivalent frequency [16].

HEI10 is a marker of CO-designated sites in late-pachytene cells [41]. Imaging this selection of

proteins allowed us to quantify SC length, CO position, CO frequency, SPS site position and

SPS site frequency along each component chromosome in each cell, all of which are meiotic

phenotypes that differ between neo- and established polyploids (Figs 2B and S3; [16]). We also

used this information to predict the expected metaphase I outcome (bivalent, univalent or

Fig 2. Analysis of REC8 TTTT and DDDD late-pachytene cells. (A) Example images of REC8 TTTT (top) and REC8 DDDD (bottom) late-pachytene cells

imaged using 3D-SIM and labelled for ZYP1 (red), ASY1 (green), HEI10 (grey) and DAPI (blue). Maximum intensity projections of 3D images are presented.

Scale bar = 5 μm. (B) Top row—plots showing the number of late-HEI10 foci (left), number of SPS sites (middle) and total SC length in μm (right) per cell in

REC8 TTTT and DDDD late-pachytene cells. Bottom row—plots showing the predicted number of metaphase I bivalents (left), multivalents (middle) and

univalents (right) per cell based on the relative position of late-HEI10 foci and SPS sites along pachytene chromosomes in REC8 TTTT and DDDD cells. Dots

indicate trait means and error bars 95% confidence intervals calculated from GLMM models. (C) Cumulative frequency plots showing the distance of single

late-HEI10 foci from the nearest chromosome end (left) and the distance between two late-HEI10 foci (right) in units of relative SC length in REC8 TTTT

(blue) and REC8 DDDD (red) late-pachytene cells. (D) Frequency of different synaptic and crossover outcomes.

https://doi.org/10.1371/journal.pgen.1010304.g002
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multivalent) for each set of four homologs by comparing the relative positions of CO-desig-

nated sites and SPS sites (Figs 2B and S3) [16].

In total we imaged 50 cells from 5 REC8 TTTT plants and 39 cells from 4 REC8 DDDD

plants (S3 Table). Between-genotype statistical differences in CO frequency, SPS frequency

and SC length were calculated using GLMMs (Fig 2B). We found no statistically significant

differences between REC8 TTTT and REC8 DDDD genotypes, however there were clear

trends. We use the term ‘trend’ in this study to describe inferences made from the directional-

ity or magnitude of consistent, yet statistically non-significant differences (p-values between

0.05 and 0.15) within our sample data. We found that REC8 TTTT cells tend to have fewer SPS

sites per cell than REC8 DDDD cells (Poisson-GLMM, 2.10, 95% CI [1.66, 2.66] vs. 2.76, 95%

CI [2.16, 3.54], p = 0.112) and shorter SC length (LMM, 398 μm, 95% CI [376, 420] vs. 425 μm,

95% CI [400, 449], p = 0.094). No significant differences were detected in the frequency of pre-

dicted metaphase I outcomes between different genotypes, with REC8 TTTT cells having only

marginally fewer predicted univalent / trivalent associations per cell than REC8 DDDD cells

(Poisson-GLMM, 0.092, 95% CI [0.018, 0.459] vs. 0.133, 95% CI [0.0305, 0.584], p = 0.712).

This latter observation suggests the failures that cause univalency in metaphase I may primarily

arise from defects later in meiotic progression than observed here.

To assay CO positioning we pooled measurements from all bivalents of each genotype, and

distributions were compared using Kolmogorov-Smirnov tests (Fig 2C). For pairs of chromo-

somes possessing a single CO between them, we compared the distance of late-HEI10 foci

from the nearest chromosome end as a proportion of total chromosomal SC length. In total we

analysed 664 and 514 single-CO bivalents from REC8 TTTT and REC8 DDDD plants, respec-

tively. No significant differences in the position of single COs relative to chromosome ends

were detected between genotypes (K-S Test, D = 0.04, p = 0.73). There was, however, a signifi-

cant difference in the spacing of double-COs, by comparing the relative distance between late-

HEI10 foci on paired chromosomes with two late-HEI10 foci, as a proportion of total chromo-

somal SC length. In total, we analysed 90 and 68 double-CO bivalents from REC8 TTTT and

REC8 DDDD plants, respectively. Intriguingly, COs were on average closer together in REC8

TTTT cells (median relative inter-CO distance = 0.56) compared with REC8 DDDD cells

(median relative inter-CO distance = 0.68, K-S test, D = 0.24, p = 0.02). Note that this result

goes counter to expectation for evolved A. arenosa, which has more widely spaced COs than

the neotetraploid [16].

From our pachytene measurements, we were also able to quantify the frequency of individ-

ual 4-chromosome units that were connected as either two pairs of synaptic bivalents or as a

single synaptic quadrivalent (Fig 2D). A similar analysis was previously used to show that A.

arenosa neo-polyploid pachytene cells contain a much higher relative frequency of synaptic

quadrivalents than A. arenosa established tetraploids [16]. In REC8 TTTT pachytene cells,

75% of four-chromosome units (n = 300) were synapsed as pairs of bivalents and 25%

(n = 100) were synapsed as quadrivalents. This is consistent with previously measured frequen-

cies of synaptic bivalents and quadrivalents in A. arenosa established tetraploids [16]. The fre-

quency of synaptic quadrivalents was slightly higher in the REC8 DDDD plants (30%, n = 94),

although this difference was not statistically significant (Fisher’s exact test, p = 0.15).

In the subset of synaptic quadrivalents that contained a single SPS site and two COs, it was

also possible to classify them as “cis” or “trans”. In cis quadrivalents the two COs occur on the

same side of the SPS site (generating two bivalents at metaphase I), whilst in trans quadriva-

lents the two COs occur either side of the SPS site (generating one trivalent and one univalent

at metaphase I). It was previously shown that neo-polyploid A. arenosa pachytene cells have a

greater frequency of unfavourable trans configurations than established polyploid A. arenosa
pachtyene cells [16]. Consistent with this, in both REC8 TTTT and REC8 DDDD pachytene
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cells, the relative frequency of cis configurations (for REC8 TTTT 96%, n = 69, for REC8

DDDD 97%, n = 58) vastly outnumbers the trans configurations (for REC8 TTTT 4%, n = 3,

for REC8 DDDD 3%, n = 2), but there is no statistical difference between the two genotypes in

these proportions (Fisher’s exact test, p = 1).

Derived alleles of ASY1 and ASY3 quantitively alter REC8 allele-specific

metaphase I phenotypes

Though the chromosome axes and cohesin complexes are distinct protein structures, REC8 is

known to recruit the axis proteins and interact with them directly [32]. Two axis proteins,

ASY1 and ASY3, also show strong evidence of having been under selection in tetraploid A. are-
nosa [10–12], and have been shown to have relevant functional effects on tetraploid meiosis

[15]. Thus, we wished to test if there might be genetic interactions between the derived alleles

of REC8, ASY1 and ASY3. To do this, we generated lines homozygous for the T or D alleles of

all 3 genes (REC8, ASY1 and ASY3) in an otherwise tetraploid background. To achieve this,

we crossed plants from the TBG population that were homozygous for the D alleles of ASY1

and ASY3 (ASY1 DDDD ASY3 DDDD) [15] with plants from the KOWA population that

were homozygous for the D allele of REC8 (REC8 DDDD). The TBG x KOWA F1 plants were

then inter-crossed to generate F2 and F3 populations of plants that segregated homozygotes for

either the T or D alleles of REC8, ASY1 and ASY3 (S1 Fig). For brevity, we henceforth refer to

the resultant REC8 TTTT ASY1 TTTT ASY3 TTTT and REC8 DDDD ASY1 DDDD ASY3

DDDD plants as RAA TTT and RAA DDD, respectively.

We first quantified the frequency of different chromosomal configurations in meiotic meta-

phase I cells of RAA TTT and RAA DDD plants (Figs 3A and 3B and S4). In total, we imaged

102 cells from 4 RAA TTT plants and 108 cells from 5 RAA DDD plants (S4 Table). Regarding

bivalent shape, no significant between-genotype differences were identified, however there

was a trend for an increased frequency of bowtie bivalents in the RAA TTT cells compared

with RAA DDD cells (LMM, 5.45, 95% CI [4.77, 6.13] vs. 4.80, 95% CI [4.19, 5.41], p = 0.14),

which mirrored differences in bowtie bivalent frequencies in REC8 TTTT versus REC8

DDDD lines. Intriguingly, univalent frequencies were significantly increased in RAA TTT

cells compared with RAA DDD cells (Poisson-GLMM, 1.27, 95% CI [0.88, 1.84] vs. 0.683, 95%

CI [0.47, 0.99], p = 0.018), which was opposite to the difference observed for REC8 TTTT vs.

REC8 DDDD. The RAA TTT cells also had significantly fewer multivalents compared with

RAA DDD cells (LMM, 1.21, 95% CI [0.91, 1.51] vs. 1.77, 95% CI [1.50, 2.04], p = 0.0134),

which mirrored the previously published effects of ASY1 and ASY3 T alleles on reducing meta-

phase I multivalent frequency [15], on which REC8 alleles had no effect (Table 1).

Derived alleles of REC8, ASY1 and ASY3 affect crossover patterning and

synapsis in tetraploids

To further investigate the combined effects of derived alleles of REC8, ASY1 and ASY3 on CO

patterning and synapsis, we imaged RAA TTT and RAA DDD late-pachytene cells labelled for

ZYP1, HEI10, ASY1 and DAPI using 3D-SIM microscopy. In total, we imaged 50 cells from 5

RAA TTT plants and 50 cells from 5 RAA DDD plants (Fig 4A and S5 Table).

We found that RAA TTT plants had significantly fewer SPS sites per cell than RAA DDD

plants (Poisson-GLMM, 2.42, 95% CI [2.02, 2.90] vs. 4.04, 95% CI [3.50, 4.65], p = 0.000012)

and a trend for fewer COs per cell (LMM, 17.5, 95% CI [16.7, 18.2] vs. 18.3, 95% CI [17.6,

19.1], p = 0.1) (Fig 4B). The SPS reduction is similar to, but stronger than, that previously iden-

tified for plants that were segregating the T and D alleles of ASY1 and ASY3 (Table 1) [15],

suggesting that for this trait, all three genes contribute additively to the evolved phenotype.
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Fig 3. Analysis of RAA TTT and RAA DDD metaphase I cells. (A) Stacked bar chart showing the mean proportional frequency of different bivalent shapes

in RAA TTT and RAA DDD metaphase I cells. (B) Plots showing the number of different chromosomal configurations per cell in RAA TTT and RAA DDD

metaphase I cells. Dots indicate trait means and error bars 95% confidence intervals calculated from GLMM models. Significant between genotype p values are

indicated: � p< 0.05.

https://doi.org/10.1371/journal.pgen.1010304.g003

Table 1. Effect trends of ASY1, ASY3 and REC8 on several key meiotic traits.

Trait ASY1�

TTT /

TDT

ASY3�

TTT /

TTD

ASY1+3�

TTT /

TDD

REC8

TTT /

DTT

All 3

TTT /

DDD

Comments

Rods

(Tet>Dip)

+60% (+22%) +50% (-10%) = ASY1 (and less so ASY3) increase rods, but, it appears, only when REC8 = T; could be

antagonistic?

MV

(Neo>Est)

-29% (-17%) (-24%) = -32% Only axis genes,

primarily ASY1

UV

(Neo>Est)

-71% +86% Antagonistic effect

HEI10dist

(Est>Neo)

-18% (+22%) Antagonistic effect

SClgth

(Est<Neo)

-11% (-3.5%) (-4.6%) (-6%) (-5%) T alleles of all 3 correlate with shorter SC

SPS#

(Est<Neo)

-27% (-16%) (-11%) (-24%) -40% All 3 contribute additively to reducing SPS#

Table notes: Effects of ASY1, ASY3 and REC8, or all three (column headings) on several key meiotic traits that differ between diploids and tetraploids (rods), or between

neotetraploids and evolved tetraploids (all other traits) as shown below each trait name, where “Dip” = Diploid, “Tet” = Evolved Tetraploid, “Neo” = neo-tetraploid,

“Est” = established tetraploid. “MV” = multivalent frequency, “UV” = univalent frequency, “HEI10dist” = single HEI10 focus distalisation, “SClgth” = SC length, “SPS#”

= SPS site number. Homozygous genotypes for all three compared to yield single gene effects are given in headers for all three genes in each comparison as e.g. TTT vs

DDD, showing REC8, ASY1, ASY3 in turn. Statistically significant differences are given in bold, and non-significant, but clearly trending ones in parentheses (as

mentioned in the text, “trend” indicates a clear, but statistically not quite significant difference, e.g. p > 0.05, but near or below p = 0.1). Trend “direction” is given by a

plus or minus with respect to the “T” (tetraploid) allele. In other words, “-”means that homozygotes for the T allele have a lower trait value relative to homozygotes for

the D allele. “=“ indicates trait values for D and T are about equal. � Indicates that the left three columns are data trends from a separate, previously published

experiment on ASY1 and ASY3 where REC8 was T [15].

https://doi.org/10.1371/journal.pgen.1010304.t001
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The predicted metaphase I outcome data showed a trend that mirrored the metaphase I results,

with RAA TTT cells tending to have fewer multivalents per cell than RAA DDD plants (Pois-

son-GLMM, 0.46, 95% CI [0.31, 0.69] vs. 0.7, 95% CI [0.50, 0.98], p = 0.12), while for predicted

univalent / trivalents the difference was not significant (Poisson-GLMM, 0.21, 95% CI [0.11,

0.42] vs. 0.19, 95% CI [0.09, 0.40], p = 0.81).

Once again, we also analysed the relative distance of single-COs from bivalent ends and the

relative distance between double-COs, and identified differences between the two genotypes

(Fig 4C). In total, we analysed 699 RAA TTT and 655 RAA DDD single-CO bivalents, and 51

RAA TTT and 60 RAA DDD double-CO bivalents. The distribution of single COs was shifted

significantly further away from the chromosome ends, in units of relative SC length, in the

RAA TTT plants (median distance = 0.32) compared with the RAA DDD plants (median dis-

tance = 0.28, KS-test, D = 0.085, p = 0.016). This shift may explain the greater frequency of

bowtie shaped metaphase I bivalents in the RAA TTT plants compared with the RAA DDD

plants. No significant differences were detected in CO spacing between the two genotypes,

although there was a trend for double-COs to be spaced slightly further apart in the RAA TTT

plants (median distance = 0.71) compared with the RAA DDD plants (median distance = 0.58,

KS-test, D = 0.24, p = 0.066), which is the opposite direction to the difference observed in

REC8 TTTT versus REC8 DDDD plants.

Fig 4. Analysis of RAA TTT and RAA DDD late-pachytene cells. (A) Example images of RAA TTT (top) and RAA DDD (bottom) late-pachytene cells

imaged using 3D-SIM and labelled for ZYP1 (red), ASY1 (green), HEI10 (grey) and DAPI (blue). Maximum intensity projections of 3D images are presented.

Scale bar = 5 μm. (B) Top row—plots showing the number of late-HEI10 foci (left), number of SPS sites (middle) and total SC length in μm (right) per cell in

RAA TTT and DDD late-pachytene cells. Bottom row—plots showing the predicted number of metaphase I bivalents (left), multivalents (middle) and

univalents (right) per cell based on the relative position of late-HEI10 foci and SPS sites along pachytene chromosomes in RAA TTT and DDD cells. Dots

indicate trait means and error bars 95% confidence intervals calculated from GLMM models. Significant between genotype p values are indicated: ���

p< 0.0005. (C) Cumulative frequency plots showing the distance of single late-HEI10 foci from the nearest chromosome end (left) and the distance between

two late-HEI10 foci (right) in units of relative SC length in RAA TTT (blue) and RAA DDD (red) late-pachytene cells. (D) Frequency of different synaptic and

crossover outcomes.

https://doi.org/10.1371/journal.pgen.1010304.g004

PLOS GENETICS Multigenic adaptation to polyploid meiosis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010304 July 13, 2022 10 / 20

https://doi.org/10.1371/journal.pgen.1010304.g004
https://doi.org/10.1371/journal.pgen.1010304


A significant difference was also detected between genotypes in the relative frequency of

synaptic bivalents and quadrivalents. The RAA TTT pachytene cells had a much greater fre-

quency of synaptic bivalents (72%, n = 287) than RAA DDD cells (54%, n = 217), with RAA

DDD cells therefore having a much greater frequency of synaptic quadrivalents (46%, n = 183)

than RAA TTT cells (28%, n = 113) (Fisher’s exact test, p< 0.0001) (Fig 4D). Interestingly,

however, there was a significantly greater frequency of unfavourable trans configurations

within the RAA TTT synaptic quadrivalents (6%, n = 5) than in the RAA DDD cells (1%,

n = 1) (Fisher’s exact test, p = 0.037), which is consistent with the RAA TTT cells exhibiting a

greater frequency of metaphase univalents (Fig 4D).

Discussion

As part of an ongoing effort to understand polygenic adaptation of meiosis after whole genome

duplication in Arabidopsis arenosa, here we present a detailed cytogenetic analysis of estab-

lished autopolyploid A. arenosa plants segregating derived (T) and ancestral (D) alleles of the

meiotic genes REC8, ASY1 and ASY3. We analyse effects observed in tetraploid plants carrying

alternate alleles of REC8 in an otherwise tetraploid genetic background, as well as plants carry-

ing alternate alleles at all three genes. All three genes are part of a larger group of eight or so

genes encoding interacting meiotic proteins showing strong evidence of having been targeted

by natural selection during the evolution of autotetraploid A. arenosa [10–12,17]. We find evi-

dence that there is a range of interactions among at least REC8, ASY1 and ASY3 derived alleles

for different meiotic traits ranging from independent effects, to additive and in some cases

even antagonistic interactions (Table 1). Our findings, in combination with prior discoveries

in A. arenosa, provide information relevant to better understanding the perhaps non-linear

adaptive walks that might occur during multigenic adaptation, and lead us to propose a multi-

step evolutionary model for autopolyploid meiotic stabilisation, which we discuss below. An

alternative, and not mutually exclusive view, is that REC8, which interacts directly or indirectly

with almost all other meiotic proteins under selection in A. arenosa tetraploids, may act as a

core node in an interacting set of proteins, and thus must co-evolve with all of them to con-

tinue to successfully coordinate their activities. In this latter model, REC8 would have been

under selection not for its direct phenotypic effects, but rather for maintaining a functioning

set of complex interactions among other evolving proteins. Both models could explain why

REC8 has a strong signature of selection while having a relatively subtle effect on phenotype.

T alleles of REC8, ASY1 and ASY3 genetically interact

A previous study comparing established tetraploid and neo-tetraploid A. arenosa plants (gen-

erated from colchicine-doubling of diploid plants) identified a number of phenotypic differ-

ences between these lines that likely explain the differences in meiotic fitness between the

meiotically stable established tetraploids and meiotically unstable neo-tetraploids [16]. These

differences can mostly be explained by increased effectiveness of crossover interference in the

evolved tetraploids, resulting in altered synaptic and CO patterning behaviour in prophase I,

which, ultimately, lead to lower frequency of harmful univalent and multivalent chromosomal

configurations at metaphase I. Consistent with this, neo-tetraploids display a significantly

higher frequency of both univalents and multivalents.

Strikingly, in this study we find that lines segregating the T or D alleles of REC8 display sig-

nificant differences in the frequency of univalent chromosomes at metaphase I, with REC8

TTTT plants having fewer univalents than REC8 DDDD plants. This was not observed in a

prior study of alternate alleles of the meiotic axis proteins ASY1 and ASY3 [15]. Surprisingly,

in lines homozygous for the REC8 D as well the D alleles of ASY1 and ASY3 (instead of T
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alleles as above), the univalent phenotype is reversed, with RAA TTT plants possessing a

greater frequency of univalents compared with RAA DDD plants (Table 1). In isolation, this

observation might suggest that the RAA TTT plants have lower meiotic stability than the RAA

DDD plants. However, the RAA TTT plants also display a significant reduction in multivalents

(to which REC8 does not seem to contribute; Table 1) when compared with the RAA DDD

plants, which would in turn lead to an increase in meiotic stability in the RAA TTT plants. The

univalent and multivalent differences we observed in our metaphase I analysis are mirrored in

the trends of predicted metaphase I fate of pachytene chromosomes based on the relative posi-

tions and frequencies of SPS sites and late-HEI10 foci. Taken together, these results suggest

that the T alleles of REC8, ASY1 and ASY3 exert distinct, and in this case opposing, effects on

stabilizing polyploid meiosis. Yet effects are not always antagonistic. For other traits, discussed

below, effects are additive or independent (Table 1), hinting that pleiotropic multigenic adap-

tations can show complex interactions among alleles at different loci.

Trends in synapsis and CO patterning in late-prophase I cells are more consistent with

additive, or at least non-antagonistic effects among the T alleles of all three genes (Table 1).

Both the REC8 TTTT and RAA TTT plants also have fewer synaptic partner switch (SPS) sites

and lower total synaptonemal complex (SC) length than the REC8 DDDD and RAA DDD

plants, respectively. This mirrors differences between SPS number and SC length in established

tetraploid and neo-tetraploid A. arenosa [16], with T alleles functioning to shift pachytene phe-

notypes closer towards those observed in more stable established tetraploids. In the case of SC

length, T alleles of all three genes show effects (albeit at times subtle) in the same direction,

and for SPS number, the three genes have what appear to be additive effects, with REC8 and

ASY1 contributing to a similar extent, ASY3 less so, and all three genes together having a

greater effect than any one of them alone (Table 1).

Interactions with additional genes under selection, which are as yet untested, will also be

interesting, including the cohesin regulators SWI1 and PDS5, which both also show evidence

of selection in tetraploid A. arenosa [10–12,17]. Intriguingly, it was recently shown in S. cerevi-
siae that Rec8 regulates chromosome axis length by modulating Pds5 abundance [42]. Pds5

depletion has also been shown to reduce chromosome axis length in S. cerevisiae, S. pombe and

mice [43–45]. There are five orthologues of PDS5 in A. thaliana [46] and one of these, PDS5B,

is under strong selection in tetraploid A. arenosa [10]. Whether or how derived alleles of these

genes might interact to decrease axis length remains to be tested.

There was also a modest decrease in COs in the RAA TTT late-pachytene cells compared

with the RAA DDD cells, but no difference was observed between REC8 TTTT and REC8

DDDD cells, suggesting either REC8 alleles do not differ in their effects on this trait, or that all

three genes function synergistically. Mechanistically, the changes in CO number may be linked

to the changes in SC length, as chromosome axis/SC length is known to influence CO fre-

quency [38,47–49]. This decreased CO frequency, combined with the greater effect of ASY1

and ASY3 T alleles on decreasing SPS site frequency [15], likely explains why RAA TTT plants

exhibit a decrease in metaphase I multivalents and an increase in univalents compared with

RAA TTT plants.

Surprisingly, in REC8 TTTT plants the relative distance between double-COs was shorter

than in REC8 DDDD plants, suggesting that the T allele of REC8 functions to weaken CO

interference, which goes against the trend of the evolved polyploids, which seem to have more

effective crossover interference than neopolyploids [16]. In RAA TTT plants, however, dou-

ble-COs are spaced relatively further apart than in RAA DDD plants suggesting that the pres-

ence of the T alleles of ASY1 and ASY3 counteracts this REC8-T effect to promote stronger

CO-interference. The involvement of the axis proteins is also consistent with recent experi-

mental observations in A. thaliana, where CO positioning is sensitive to gene dosage of ASY1
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and ASY3 (but not REC8) and CO interference is absent in asy1 mutants [50]. For at least one

trait, the proportion of rod bivalents, the effects of ASY1 and ASY3 seem to depend on a

REC8-T allele being present, though REC8 genotype does not by itself affect this trait

(Table 1).

Suppression of univalents may represent an important first step in the

evolution of stable autopolyploid meiosis

It was recently suggested that the sweep in REC8 might be one of the oldest of the tetraploid-

adaptation sweeps in tetraploid A. arenosa [12]. Here, we find that the derived T allele of REC8

is associated with a reduced frequency of univalent chromosomal configurations at metaphase

I in autopolyploids, likely positively contributing to meiotic stability. ASY1 and ASY3 derived

alleles, oddly, seem to counteract this effect, while on the other hand reducing multivalents,

another polyploid meiotic challenge to which REC8 alleles do not seem to contribute

(Table 1). The derived REC8 allele also contributes quantitatively to several traits that ASY1

and ASY3 also contribute to, and in the same direction. We propose, based on the synthesis of

these findings, that the T allele of REC8 might have been initially selected early in the evolu-

tionary stabilisation of tetraploid A. arenosa lineages to promote the suppression of univalents,

which are common in neo-polyploids [16]. Univalents pose a particularly serious problem for

meiosis, and, hence, fertility, due to their extremely high likelihood of mis-segregating at ana-

phase I. In tetraploids, the effect of univalents on fertility is likely to be less pronounced com-

pared with diploids, as the polyploid background acts as a buffer against the loss (or gain) or

additional chromosome copies in aneuploid plants. Nonetheless, an increased likelihood of

aneuploid offspring stemming from meiotic univalents will still lead to karyotypic instability

over generations, negatively affecting overall population fitness. Therefore, the selection pres-

sure to reduce the univalent frequency was likely very strong in A. arenosa neo-polyploids.

The derived allele of REC8 likely solved this one issue, but either worsened others, or left them

unsolved, which then later evolution of novel alleles at other interacting partners then helped

mitigate, in an evolutionary “fine-tuning” process. As an alternative hypothesis, it may be that

ASY1, and to a less extent ASY3, and/or perhaps other cohesin-interactors under selection in

tetraploid A. arenosa are actually the prime drivers of many of the meiotic adaptations, while

REC8 must co-evolve with its partners to maintain proper interactions, and that thus its own

phenotypic effects are relatively subtle and diverse. This model would not explain why the

REC8 sweep would be older, but here we caution that if there were successive sweeps on some

of these genes, we can only see the most recent, meaning that depending on their history,

ASY1 and ASY3 may have been under selection for longer than they appear, and may coincide

with the timing of selection on REC8. Moreover, we note that these two models are not mutu-

ally exclusive, and both may contribute to different aspects of REC8 evolution.

Our first model is supported by the idea that likely the pressure to resolve univalent-associ-

ated issues will have been stronger than the pressure to resolve multivalent-associated issues.

This is because, whilst multivalents are also prone to missegregation, the likelihood of misse-

gregation is lower in multivalents than in univalents as, in some configurations, multivalent

chromosomal associations will still lead to a high probability of balanced segregation [20].

Indeed, there are examples of some natural autotetraploid species that retain both a high fre-

quency of multivalents and high levels of fertility [51], but we are not aware of reported cases

where high univalent rates are tolerated in a sexually reproducing evolved tetraploid. Nonethe-

less, that multivalents still pose a problem is supported by their correlation with reduced fertil-

ity in many species [19], and thus we propose that, following the initial selection of the T allele

of REC8 to resolve the more urgent univalent-issues, ASY1 and ASY3 were later selected to
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reduce the frequency of multivalents and strengthen CO interference and, in so doing, cause a

partially undesirable but necessary uptick in the frequency of univalents. Likely this is tolerated

merely because even though the increase relative to RAA DDD is significant, the overall univa-

lent rate remains low in the RAA TTT plants.

Overall, our results hint that multigenic adaptation of meiosis in A. arenosa is also pleiotro-

pic, and does not follow a linear accumulation of subtle additive effects, but rather represents a

winding, and sometimes rough road up a novel fitness peak.

Material and methods

Plant material

Plants segregating the T and D alleles of REC8 were identified using PCR markers (see below)

from the established autotetraploid KOWA accession of A. arenosa, collected from Kowary,

Poland (50.76317N, 15.84389E). Plants segregating the T and D alleles of ASY1 and ASY3

were identified from the established autotetraploid TBG accession of A. arenosa, collected

from Triberg, Germany (48.13972N, 8.23667E). A summary of the breeding strategy is shown

in S1 Fig. In brief, two KOWA REC8 TTDD plants were identified and crossed and KOWA

REC8 TTTT, TxD and DDDD plants identified in the F1 generation were used for cytological

investigation. Two TBG ASY1 TDDD ASY3 TDDD plants were also identified and crossed

and TBG ASY1 DDDD ASY3 DDDD plants were identified in the F1 population. TBG ASY1

DDDD ASY3 DDDD plants were then crossed with KOWA REC8 DDDD plants and progeny

were backcrossed for several generations to generate REC8 TTTT ASY1 TTTT ASY3 TTTT

(RAA TTT) and REC8 DDDD ASY1 DDDD ASY3 DDDD (RAA DDD) plants that were used

for cytological investigation. All plants were grown together in the same controlled environ-

ment room with 16 h of light (125 mMol cool white) at 20˚C and 8 h of dark at 16˚C.

Genotyping of REC8, ASY1 and ASY3

DNA extraction and genotyping of ASY1 and ASY3 using CAPS markers was as described in

[15]. Genotyping for REC8 diploid (D) versus tetraploid (T) alleles was carried out using a

KASP marker and further confirmed using a CAPS marker and Sanger sequencing. The KASP

genotyping was carried out as described in [52] with the following changes: 35 cycles of ampli-

fication were used, and the 384 plate was read on a PHERAstar plate reader (PHERAstar FSX

Microplate Reader for HTS | BMG LABTECH). KASP primers for REC8 were F1_FAM 5’

GAAGGTGACCAAGTTCATGCTTTCATGGGAACTACAGGAGA 3’, F1_VIC 5’

GAAGGTCGGAGTCAACGGATTTTCATGGGAACTACAGGAGG 3’ (where GAAGGTG

ACCAAGTTCATGCT and GAAGGTCGGAGTCAACGGATT are the FAM and VIC tails,

respectively) and common primer R1 5’ TAATTGAAGCTGCTCCACGT 3’. These were

designed around the D versus T SNP allele (see S3 Fig). Primers for REC8 CAPS marker were

F 5’ CGTGCGAATATGCCACCTA 3’ and R 5’ TCTTGGTGAGGAAGTTGGC 3’ and the

PCR amplicon was digested with Alw26I (BsmAI) (10 U/μL) (Thermofisher) at 37˚C for 1.5

hours. The diploid allele was cut twice and thus gave products of 527bp, 220bp and 115bp;

whereas the tetraploid allele was only cut once and thus gave two products of 747bp and

115bp. (see Alw26 restriction sites in S3 Fig). Genotyping for ASY3 was initiated with a KASP

marker using the following primers: R1_FAM 5’ GAAGGTGACCAAGTTCATGCTTTCCC

CTTTGTTTCTTTGGC 3’, R1_VIC 5’ GAAGGTCGGAGTCAACGGATTTTCCCCTTT

GTTTCTTTGGT 3’ and common primer F1 5’ ATTGGCACTGCTATGAATTC 3’. The assay

for this marker was as described for REC8 KASP. This KASP marker for ASY3 identified

DDDD genotypes but could not distinguish DxT from TTTT genotypes. Thus, further geno-

typing was carried out by the ASY3 CAPS marker.
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Metaphase I cytology

For the preparation of DAPI stained metaphase I spreads from A. arenosa we followed the pro-

tocol described in [53], with minor modifications. First, inflorescences were fixed in 3:1 etha-

nol:glacial acetic acid. Buds of the correct size (approx. diameter 0.9mm) were removed from

the fixed inflorescences and incubated in 300 μl enzyme mix (0.3% cellulase, 0.3% pectolyase

in 10 mM citrate buffer) in a moist chamber for 90 minutes. For each slide, two digested buds

were transferred into 2 μl of 80% acetic acid on the slide surface and macerated briefly with a

brass rod. An extra 20 μl of acetic acid was then added to the slide and the slide was placed on

a 45˚C hot block for 30 seconds whilst a mounted needle was used to stir the liquid droplet. 2 x

200 μl of 3:1 ethanol:acetic acid was then added and the slide was dried using a hairdryer.

Slides were mounted in 7 μL 1 μg/mL DAPI in Vectashield mounting medium (Vector Labo-

ratories) and imaged using a Zeiss Axio Imager epifluorescence microscope. All metaphase I

images are freely available via the ETH Research Collection under DOI: 10.3929/ethz-b-

000542141.

Immunocytology

For the preparation of immunostained pachytene spreads for 3D-SIM imaging we followed

the protocol described in [54]. First, anthers containing meiocytes of the desired stages were

dissected from fresh floral buds. Anthers were then macerated in 10 μl digestion medium on a

No. 1.5 coverslip (Marienfeld) using a brass rod and incubated at 37˚C in a moist chamber for

4 minutes. 10 μl of 2% Lipsol (SciLabware) was then added to the coverslip and spread out

using a mounted needle, before adding 20 μl of 4% paraformaldehyde (pH 8) and leaving the

coverslip to dry for 3 hours. The coverslip was then blocked in 0.3% bovine serum albumin in

1 x phosphate buffered saline (PBS) solution for 15 minutes at room temperature. 50 μl of pri-

mary antibody was added to the coverslip and incubated overnight at 4˚C. 50 μl of secondary

antibody was added to the coverslip and incubated at 37˚C for 2 hours. The coverslips were

washed in 1 x PBS before and after each antibody addition. Finally, coverslips were incubated

in 10 μg/mL DAPI for 5 min and mounted on a slide in 7 μL Vectashield (Vector Laborato-

ries). The following primary antibodies were used at 1:500 dilutions: anti-ASY1 (guinea pig),

anti-ZYP1 (rat), and anti-HEI10 (rabbit). The following secondary antibodies were used at

1:200 dilutions: anti-guinea pig Alexa Fluor 488 (Thermo Fisher), anti-rat Alexa Fluor 555 (F

(ab0)2 fragment, Abcam) and anti-rabbit Alexa Fluor 647 (F(ab’)2 fragment, Thermo Fisher).

Cells were imaged using a Zeiss Elyra PS1 microscope in 3D-SIM mode. 3D measurements of

SC length and CO and SPS positions were performed using the Simple Neurite Tracer plugin

to ImageJ [40]. All immunocytological images are freely available via the ETH Research Collec-

tion under DOI: 10.3929/ethz-b-000542141.

Statistical analysis

All statistical analyses were performed in R (Version 1.2.5019). As described previously [15],

generalized linear mixed models (GLMMs) and linear mixed-effect models (LMMs), and asso-

ciated p values, were obtained using the glmer() and lmer() functions of the lme4 R package.

Poisson-GLMMs were utilised for count data and LMMs for continuous data, as appropriate.

LMMs were also substituted for Poisson-GLMMs in the event of a singular fit. Predicted

means, standard errors and 95% confidence intervals were obtained using the lsmeans() func-

tion. Kolmogorov-Smirnov tests, Kruskal Wallace tests and posthoc Dunns tests were per-

formed using the functionsks.test(), Kruskal.test() and dunnTest(), respectively.
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Supporting information

S1 Fig. Overview of breeding strategy. Lines used for analysis are labelled in red. Dotted line

indicates several generations of backcrossing.

(TIFF)

S2 Fig. Normalised analysis of REC8 TTTT, TxD and DDDD metaphase I cells. Plots show-

ing the percentage of chromosomes contained in different chromosomal configurations per

cell (normalised against the total number of scorable chromosomes per cell) in REC8 TTTT,

TxD and DDDD metaphase I cells. Dots indicate trait means and error bars 95% confidence

intervals calculated from GLMM models. Significant between genotype p values are indicated:
� p< 0.05.

(TIFF)

S3 Fig. Quantitative 3D-SIM imaging of late-pachytene cells. (A) Example image of a REC8

TTTT late-pachytene cell imaged using 3D-SIM and labelled for ZYP1 (red), ASY1 (green),

HEI10 (grey) and DAPI (blue). Maximum intensity projections of 3D images are presented.

Yellow boxes highlight the positions of SPS sites and magnified images of these regions are

shown. A 3D model of this cell, generated using the Simple Neurite Tracer plugin to ImageJ, is

also shown, with synapsed pairs of chromosomes labelled in different colours and CO sites

marked by green spheres. Scale bar = 5 μm. (B) 3D models of the two synaptic quadrivalents

from the cell in (A) are shown. Cartoon diagrams depicting each component chromosome in a

different colour and CO sites as black circles are shown to demonstrate how chromosomes

switch their synaptic partner. A straightened and scaled version of each cartoon diagram is

also shown and quantitative measurements of CO and SPS site positions are indicated. The

predicted metaphase I outcome of each synaptic quadrivalent is also shown.

(TIFF)

S4 Fig. Normalised analysis of RAA TTT and RAA DDD metaphase I cells. Plots showing

the percentage of chromosomes contained in different chromosomal configurations per cell

(normalised against the total number of scorable chromosomes per cell) in RAA TTT and

RAA DDD metaphase I cells. Dots indicate trait means and error bars 95% confidence inter-

vals calculated from GLMM models. Significant between genotype p values are indicated: �

p< 0.05, �� p< 0.005.

(TIFF)

S5 Fig. Alignment of REC8 fragment used for genotyping. The top sequence is an Arabidop-
sis arenosa tetraploid sequence obtained from a draft assembly [12]. The other two sequences

were obtained from Sanger sequencing of PCR product of DNA from two KOWA plants using

the CAPS primers. In yellow: REC8 primers for CAPS marker; in turquoise: D versus T SNP

allele for CAPS genotyping; boxed up and clear: REC8 KASP primers; and boxed up and grey:

Alw26 restriction sites.

(TIFF)

S1 Table. Chromosomal configurations scored from REC8 TTTT, TxD and DDDD meta-

phase I cells.

(CSV)

S2 Table. Summary of p-values from non-parametric significance tests of metaphase I

chromosomal configuration data.

(CSV)
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S3 Table. Measurements from REC8 TTTT and REC8 DDDD late-pachytene cells.

(CSV)

S4 Table. Chromosomal configurations scored from RAA TTT (4xTTTT) and RAA DDD

(4xDDDD) metaphase I cells.

(CSV)

S5 Table. Measurements from RAA TTT and RAA DDD late-pachytene cells.
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