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Abstract The loss of descending inhibitory control is thought critical to the development of

chronic pain but what causes this loss in function is not well understood. We have investigated the

dynamic contribution of prelimbic cortical neuronal projections to the periaqueductal grey (PrL-P)

to the development of neuropathic pain in rats using combined opto- and chemogenetic

approaches. We found PrL-P neurons to exert a tonic inhibitory control on thermal withdrawal

thresholds in uninjured animals. Following nerve injury, ongoing activity in PrL-P neurons masked

latent hypersensitivity and improved affective state. However, this function is lost as the

development of sensory hypersensitivity emerges. Despite this loss of tonic control, opto-activation

of PrL-P neurons at late post-injury timepoints could restore the anti-allodynic effects by inhibition

of spinal nociceptive processing. We suggest that the loss of cortical drive to the descending pain

modulatory system underpins the expression of neuropathic sensitisation after nerve injury.

Introduction
There is a pressing need to better understand the causal mechanisms of chronic pain and develop

effective therapeutic strategies that will alleviate its societal burden (Breivik et al., 2006). The brain,

as opposed to the periphery, has received increasing focus as a critical contributor to chronic pain

development (Ossipov et al., 2010; Denk et al., 2014; Baliki and Apkarian, 2015). The descending

pain modulatory system (DPMS) links brain and spinal cord to provide potent and targeted regula-

tion of nociceptive processing at multiple levels of the neuroaxis, including the spinal dorsal horn

(Millan, 2002; Tracey and Mantyh, 2007). Importantly, the DPMS can affect the perception of pain

and is a critical regulator of the development of the pain state following injury (Eippert et al., 2009;

Hughes et al., 2013; Drake et al., 2014; Hirschberg et al., 2017).

Typically, following acute injury, this descending regulation functions to inhibit spinal dorsal horn

circuits that subserve damaged tissue and, in doing so, moderate central sensitisation (Vanegas and

Schaible, 2004; Drake et al., 2014). However, net loss of inhibitory control has been noted in a

wide variety of human chronic pain disorders, and descending inhibitory systems are depleted and

non-functional in animal models of persistent pain (Yarnitsky, 2010; Hughes et al., 2013;

Hughes et al., 2015; Staud, 2012; Bannister et al., 2015). Similarly, trait deficiencies in endoge-

nous inhibitory control and/or its engagement by peripheral injury are thought to impart individual

vulnerability to chronic pain (Edwards, 2005; Yarnitsky, 2010; Granovsky, 2013; Denk et al.,

2014; González-Roldán et al., 2020). What causes this deficit/loss in the function of the DPMS is
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not well understood but could help identify critical and generalisable mechanisms of chronic pain

development that lay the foundation for the development of more effective therapeutic strategies.

In humans, the medial prefrontal cortex (mPFC) displays specific activity related to acute pain

processing, pain expectation, and endogenous pain modulation (Lorenz et al., 2002; Wager et al.,

2004; Wiech and Tracey, 2009; Legrain et al., 2011; Brooks et al., 2017). Importantly, the mPFC

shows alterations in structure and function that are related to and, sometimes, predictive of the tran-

sition to chronic pain (Apkarian et al., 2004; Baliki et al., 2006; Baliki et al., 2012). Direct corticofu-

gal projections from the mPFC to the midbrain link it to the DPMS to provide a route to pain state

regulation (An et al., 1998; Huang et al., 2019). The midbrain periaqueductal grey (PAG) is a core

component of the DPMS able to facilitate and/or inhibit spinal nociceptive processing via pain mod-

ulatory brainstem nuclei including the rostral ventromedial medulla and locus coeruleus (Man-

tyh, 1983; Waters and Lumb, 2008; Ossipov et al., 2010; Drake et al., 2016). Notably, altered

functional connectivity between the mPFC and PAG is observed in human patients with musculoskel-

etal, neuropathic, and inflammatory chronic pain, suggesting that altered cortical control may con-

tribute to maladaptation of the DPMS and that this mechanism may be relevant to chronic pain in

general (Cifre et al., 2012; Yu et al., 2014; Chen et al., 2017; Mills et al., 2018; Segerdahl et al.,

2018).

Recently, preclinical investigation has demonstrated the prelimbic (PrL) cortex, a division of the

rodent mPFC, is able to affect noxious thresholds in neuropathic rats (Huang et al., 2019). However,

whether the contributions of PrL neurons that target the PAG (PrL-P) in sensory and/or affective

aspects of the pain state are dynamically altered during the development of neuropathic pain is not

known. To assess this question, we transfected PrL-P neurons with excitatory optogenetic and inhibi-

tory chemogenetic actuator proteins to allow selective manipulation of their activity (Zhang et al.,

2010; Sternson and Roth, 2014). This enabled their contribution to sensory and affective aspects of

pain-like behaviour to be charted before and, at regular intervals, following peripheral nerve injury in

rats. We also used electrophysiological methods to investigate whether PrL-P neurons exert effects

on spinal dorsal horn nociceptive circuit activity to establish whether these effects are mediated by

descending control.

Results

Targeting mPFC ! PAG neurons in the PrL cortex
To make selective manipulations of mPFC neurons that project to the PAG, we expressed the excit-

atory light- activated ion channel, channelrhodopsin-2 (ChR2), and the inhibitory ligand gated

G protein–coupled receptor, hM4Di, in mPFC pyramidal neurons using an intersectional and Cre-

dependent approach (Figure 1A). This approach led to the expression of hM4Di-mCherry and/or

Chr2-YFP on average in 248±71 mPFC pyramidal neurons (n=3 rats) that were located in layer 5/6

(Figure 1B and C). Colocalisation of hM4Di-mCherry and Chr2-EYFP was found in 76.1±3.3% of

labelled neurons with 23.9±3.3% expressing hM4Di only and no cells that expressed ChR2-EYFP

alone. The majority of labelled neurons were found in the PrL cortex (PrL vs medial orbital 72±1.5%

vs 10.8±4.6%; Figure 1D and E). Successful targeting of the PrL-P neurons was confirmed by the

presence of hM4Di-mCherry and Chr2-EYFP labelled fibres within the ventrolateral (vl)PAG

(Figure 1F). In control animals, in which no CAV–CMV–CRE was delivered to the vlPAG, there was

negligible expression of actuator protein in the mPFC after delivery of Cre-dependent AAV vectors

(Figure 1—figure supplement 1).

PrL-P neurons bidirectionally regulate nociception in naive rats
To determine the effect of PrL-P neurons on noxious withdrawal threshold in healthy animals, ChR2/

hM4Di-expressing (NaivePrL-P.ChR2:hM4Di) and control (NaivePrL-P.Control) rats underwent Hargreaves’

testing with opto-activation or chemo-inhibition of PrL-P neurons (Figure 2A–F). Opto-activation of

PrL-P neurons (10–15 mW, 20 Hz, 10 ms pulse) in NaivePrL-P.ChR2-hM4Di rats produced a significant

increase in thermal withdrawal latencies ipsilateral, but not contralateral, to the transfected PrL-P

pathway (baseline vs PrL-P opto-activation=7.5±0.4 vs 10.4±0.9 s, p=0.008, paired t-test,

n=10; ; Figure 2B and C). The equivalent illumination paradigm in NaivePrL-P.Control rats did not alter

ipsilateral or contralateral withdrawal latencies (Figure 2B, C and D). Conversely, chemo-inhibition
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Figure 1. Transfected mPFC!PAG neurons arise mainly from the pre-limbic (PrL) cortex. (A) Intersectional viral vector strategy. We used a retrograde

canine adenovirus and Cre-dependent adeno-associated viral vectors to express genetically encoded actuators (both channelrhodopsin-2 [ChR2] and

hMD4i) within medial prefrontal cortex (mPFC) neurons that project to the periaqueductal grey (PAG). (B) Photomicrograph of mPFC showing labelled

neurons residing mainly in the PrL cortex. (C) PrL cortex with colocalisation of mCherry (hM4Di) and EYFP (ChR2) in neurons projecting to PAG (many

Figure 1 continued on next page
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(2.5 mg�kg�1 CNO i.p.) of PrL-P neurons in the same NaivePrL-P.ChR2-hM4Di rats that received opto-

activation significantly decreased the average withdrawal ipsilateral, but not contralateral, to the

transfected PrL-P pathway. (Baseline vs chemo-inhibition of PrL-P=10.3±0.6 vs 8.3±0.6s, p=0.006,

paired t-test, n=15; Figure 2E and F.) CNO had no significant effect on withdrawal thresholds in

NaivePrL-P.ChR2-hM4Di rats (Figure 2E and F). These findings demonstrate that there is a tonic level of

activity within the PrL-P pathway that dynamically regulates nociception in the absence of any pro-

cess of sensitization.

Tonic activity in PrL-P neurons delays the development of neuropathic
hypersensitivity
The tibial nerve transection (TNT) model of neuropathic pain was used to assess the contribution of

PrL-P neurons to the development of sensitisation (Figure 3A–D). TNTPrL-P.ChR2-hM4Di and

TNTPrL-P.Control rats had nociceptive sensory testing before and after CNO (2.5 mg�kg�1 i.p.,

Figure 3C) longitudinally up to 42 days post-nerve injury (Figure 3—figure supplement 1). Chemo-

inhibition of PrL-P neurons unmasked mechanical and cold hypersensitivity in TNT PrL-P.ChR2-h M4Di

rats, for the ipsilateral, nerve-injured, hindpaw at day 3 post-nerve injury (Figure 3E and I). The

mechanical withdrawal threshold (von Frey [vF]) was reduced on average by 80% on day 3 post-TNT,

from 6.0±1.3 g (pre-CNO) to 1.2±0.5 g (post-CNO) (two-way ANOVA, CNO F(1,30)=20.09,

p=0.0001; Sidak’s post-test day 3 pre-CNO vs post-CNO, p=0.008, n=16; Figure 3E). Similarly, the

number of cold-evoked nocicifensive behaviours (foot flicking, biting, and grooming) was signifi-

cantly increased ipsilaterally by PrL-P chemo-inhibition at day 3 post-TNT from 2.8±0.5 to 5.8±0.7

events (two-way ANOVA, CNO F(1,30)=9.6, p=0.004; Sidak’s post-test day 3 pre-CNO vs post-

CNO, p=0.003, n=16; Figure 3I). At 7 days post-nerve injury, PrL-P chemo-inhibition also signifi-

cantly decreased the ipsilateral mechanical withdrawal threshold from 2.5±0.5 to 0.30±0.06 g (two-

way ANOVA, CNO F(1,30)=20.09, p=0.0001; Sidak’s post-test p=0.001, n = 16; Figure 3E). For the

contralateral (uninjured) paw, PrL-P chemo-inhibition significantly reduced mechanical withdrawal

thresholds at day 3 post-TNT from 13.5±0.7 to 9.0±1.4 g (two-way ANOVA, CNO F(1,30)=5.77,

p=0.02; Sidak’s post-test day 3 pre-CNO vs post-CNO, p=0.03, n=16) but not thereafter

(Figure 3F). From 14 days post-nerve injury and up to 42 days, PrL-P chemo-inhibition ceased to sig-

nificantly change either mechanical or cold-evoked nocifensive behaviour on the ipsilateral hindpaw

(Figure 3E and I, Figure 3—figure supplement 1). In TNTPrL-P.Control rats, CNO failed to significantly

change either mechanical withdrawal thresholds or cold (acetone)-evoked nocicfensive behaviour on

either the ipsilateral or contralateral paw at any timepoint post-TNT (Figure 3G,H,

I, and K). Additonally, an equivalent vehicle injection delivered at 7 days post-nerve injury did not

affect pain-like behaviour in TNTPrL-P.ChR2-hM4Di rats (Figure 3—figure supplement 2) These results

suggest that PrL-P neurons provide a tonic descending drive to oppose peripheral sensitisation dur-

ing the early stages of the development of neuropathic pain, but this effect is lost as sensitisation

becomes established after 14 days.

Chemogenetic inhibition of PrL-P neuronal activity is aversive in TNT
rats with latent sensitisation
Neuropathic sensitisation is associated with negative affect (King et al., 2009; Hirschberg et al.,

2017), which raises the possibility that PrL-P neurons act to oppose the development of negative

affect. If so, then chemo-inhibition of PrL-P neurons in the early phase after nerve injury would be

Figure 1 continued

examples but several marked with white arrows). (D) Conjunction plot illustrating location of mPFC!PAG neurons throughout the mPFC (n=3 rats).

Darker shading indicates positional overlap of positively labelled (hM4Di) neurons from more than one animal (light=1 animal, mid=2, and dark=3).

Dotted red line demarks the PrL cortex. (E) Comparative distribution of mPFC!PAG neurons throughout the cortex (mean ± SEM). (F)

Photomicrograph showing ChR2-EYFP and hM4Di-mCherry containing fibres from mPFC projecting to the ventrolateral region of PAG (many examples

but several marked with white arrows).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. There was negligible expression of channelrhodopsin-2 (ChR2)-EYP and hM4Di-mCherry in control animals that did not receive

CAV–CMV–CRE into the periaqueductal grey.
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expected to cause aversion. To test this proposition, TNTPrL-P.ChR2-hM4Di and TNTPrL-P.Control rats had

place aversion testing with CNO conditioning between days 2 and 5 post-TNT (Figure 4A). TNTPrL-P.

ChR2-hM4Di animals showed an aversion to the CNO paired chamber (post-conditioning–pre-condi-

tioning time=�82.9±24.7 s, n=8; Figure 4B and C). We calculated the preference of each rat for the

CNO or vehicle paired chamber and found TNTPrL-P.ChR2-hM4Di animals showed a significantly

reduced preference score compared to the vehicle paired chamber (Figure 4C; CNO paired vs vehi-

cle paired=0.8±0.04 vs 1.06±0.06, paired t-test, p=0.04, n = 8). TNTPrL-P.Control animals showed no

difference in preference score for CNO and vehicle paired chambers (Figure 4D, CNO paired vs

vehicle paired=1.1±0.18 vs 1.00±0.21, paired t-test, p=0.81, n=9). These findings are consistent with

Figure 2. PrL-P neurons bidirectionally regulate nociception in naive rats. (A) Experimental timeline. (B) Illumination of PrL (445 nm, 20 Hz, 10–15 mW,

10 ms pulse, concomitant with hind-paw heating) in NaivePrL.ChR2:hM4Di rats increased thermal withdrawal latencies of the ipsilateral hindpaw but not in

NaivePrL.Control rats that did not express channelrhodopsin-2 (ChR2; paired t-test, t(9)=3.37, p=0.008, n=10 for ChR2:hM4Di group; t(6)=0.63, p=0.55, n=7

for control group). (C) Equivalent illumination of PrL had no effect on the thermal withdrawal latency of the contralateral hindpaw in either NaivePrL.ChR2:

hM4Di or NaivePrL.Control rats (paired t-test, t(9)=0.86, p=0.40, n=10 for NaivePrL.ChR2:hM4Di rats; t(6)=0.14, p=0.90, n=7 for NaivePrL.Control rats). (D) Optic

fibre tip locations in the medial prefrontal cortex from NaivePrL.ChR2:hM4Di (.) and NaivePrL.Control (○) rats. For simplicity, fibre placements are depicted in

a single hemisphere. (E) Systemic CNO (2.5 mg�kg�1 i.p.) in NaivePrL.ChR2:hM4Di rats decreased withdrawal latencies (mean value at 20–40 min post-

injection) of the ipsilateral paw but not in NaivePrL.Control rats (paired t-test, t(14)=3.26, p=0.006, n=15 for NaivePrL.ChR2:hM4Di rats; t(6)=0.63, p=0.55, n=7

for NaivePrL.Control rats). (F) CNO had no effect on the thermal withdrawal latency of the contralateral hindpaw in either NaivePrL.ChR2:hM4Di rats or

NaivePrL.Control rats (paired t-test, t(14)=1.22, p=0.24, n=15 for NaivePrL.ChR2:hM4Di rats; t(6)=0.43 p=0.68, n=7 for NaivePrL.Control rats).

The online version of this article includes the following source data for figure 2:

Source data 1. Numerical data to support graphs in Figure 2.
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PrL-P neuronal activity opposing the development of negative affect in the immediate period after

nerve injury.

Restoration of PrL-P neuronal tone attenuates allodynia in established
neuropathic sensitisation
To test whether the loss of function by PrL-P neurons in later stage neuropathic sensitisation could

be reversed, we employed opto-activation of PrL-P neurons to test if it was still able to suppress sen-

sitisation (Figure 5). Opto-activation in TNTPrL-P.ChR2:hM4Di rats (20 Hz, 10 ms, 10–15 mW) produced

Figure 3. Inhibition of PrL-P neurons unmasks hypersensitivity in neuropathic rats. (A) Experimental timeline. (B) Tibial nerve transection (TNT) was used

to produce the neuropathic injury. (C)- Sensory testing was conducted at 30 min after systemic delivery of CNO and (D) testing was conducted on the

lateral plantar surface of the hindpaw in a receptive field adjacent to injured tibial nerve. (E) In TNTPrL.ChR2:hM4Di rats, CNO (2.5 mg�kg�1 i.p.)

reduced the mechanical withdrawal threshold at 3 and 7 days post nerve injury on the ipsilateral (injured) hindpaw (two-way ANOVA, main effect CNO,

F(1,30)=20.09, p=0.0001; timexCNO, F(2, 60)=6.892, p=0.002; Sidak’s post-test day 3, p=0.008; day 7, p=0.001, n = 16) and (F) on the contralateral paw

at 3 days post-injury (two-way ANOVA, CNO F(1,30)=5.77, p=0.02; Sidak’s post-test, p=0.02, n = 16). (G and H) In TNTPrL.Control rats, the same dose of

CNO did not alter mechanical withdrawal thresholds on either the ipsilateral or contralateral hindpaw (two-way ANOVA, main effect; ipsilateral CNO, F

(1,14)=0.02, p=0.90, n=8 and contralateral CNO, F(1,14)=0.15, p=0.71, n=8, respectively). (I and J) In TNTPrL.ChR2:hM4Di rats, CNO increased acetone-

evoked nocifensive events at 3 days post-injury on the ipsilateral paw (two-way ANOVA, main effect CNO, F(1,30)=9.6, p=0.004; Sidak’s post-test,

p=0.003, n=16) but not contralaterally (two-way ANOVA, main effect CNO, F(1,29)=1.3, p=0.26, n=16). (K and I) In TNTPrL.Control rats, CNO did not alter

acetone-evoked nocicfensive behaviour (two-way ANOVA, main effect CNO ipsilateral, F(1,12)=0.02, p=0.89, n=7 and main effect CNO contralateral, F

(1,12)=2.2, p=0.16, n=7).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Numerical data to support graphs in Figure 3.

Figure supplement 1. Chemo-inhibition of PrL-P neurons affects nocicfensive behaviour in early but not late timepoints post-injury in neuropathic

animals.

Figure supplement 1—source data 1. Numerical data to support graphs in Figure 3—figure supplement 1.

Figure supplement 2. Delivery of vehicle does not affect sensitisation in TNTPrL.ChR2:hM4Di rats at 7 days post-TNT.

Figure supplement 2—source data 1. Numerical data to support graphs in Figure 3—figure supplement 2.
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an increase in the mechanical withdrawal threshold (baseline vs opto-activation vs recovery=1.7±0.5

vs 5.2±1.4 vs 2.1±0.5 g, one-way repeated-measures (RM) ANOVA, p=0.02; Sidak’s post-test base-

line vs opto-activation, p=0.01, n=9; Figure 5B). Equivalent illumination in TNTPrL-P.control rats did

not change the mechanical withdrawal threshold (baseline vs opto-activation vs recovery=1.4±0.5 vs

1.0±0.4 vs 1.4±0.3, one-way RM ANOVA, p=0.61, n=3; Figure 5B). This data indicates that the PrL-P

neurons are still capable of supressing neuropathic sensitization in late-stage TNT rats.

PrL-P produces antinociception in neuropathic pain by inhibition of
dorsal horn nociceptive responses
To better understand the mechanism by which the PrL-P neurons suppress neuropathic sensitisation,

TNTPrL-P.ChR2:hM4Di rats were tested in acute spinal electrophysiology experiments. Opto-activation

of PrL-P neurons attenuated the evoked responses of spinal dorsal horn wide dynamic range (WDR)

neurons (Figure 5C–F). The number of action potentials evoked by a punctate mechanical stimulus

with a 4 and 15 g vF hair was reduced on average by 43 and 23%, respectively (Figure 5D and E; 4

g vF, baseline vs opto-activation vs recovery=25.7±5.0 vs 14.63±3.1 vs 25.0±45.0 action potentials;

mixed model [REML], fixed effect treatment, p=0.007; Dunnett’s post-test baseline vs opto-activa-

tion, p=0.009, n=9; Figure 5E; 15 g vF, baseline vs opto-activation vs recovery=45.17±6.9 vs

34.5±6.9 vs 43.9±7.8; mixed model [REML], p=0.10, Dunnett’s post-test baseline vs opto-activation,

p=0.04, n=9). Similarly, cold-evoked spinal WDR neuron activity was significantly reduced by opto-

activation of PrL-P neurons (Figure 5F, average reduction of 47%, baseline vs opto-

activation=172.0±38.8 vs 91.7±42.2 action potentials, paired t-test, p=0.04, n=4). This data indicates

that the PrL-P neurons are acting to suppress neuropathic sensitisation (punctate and cold allodynia)

at a spinal level through the engagement of the DPMS.

Discussion
By using a longitudinal study design, we have been able to reveal the dynamic contributions of

PrL to PAG communication to neuropathic pain state development. In uninjured animals, we found

PrL-P neurons to exert tonic inhibitory control over evoked noxious withdrawal responses, suggest-

ing they were involved with the moment-to-moment regulation of nocifensive behaviour. Following

tibial nerve injury, rats developed mechanical and thermal allodynia that plateaued at around 14

days post injury. Chemo-inhibition of PrL-P neurons at 3 and 7 days post-injury revealed latent hyper-

sensitivity both ipsilateral and contralateral (day 3 only) to nerve injury and produced place aversion

in a conditioned place preference paradigm. However, chemo-inhibition of PrL-P neurons at more

than 14 days post-injury failed to significantly affect mechanically or thermally evoked pain-like

behaviour. These findings are consistent with there being a tonic activity in PrL-P neurons that sup-

presses hypersensitivity early after nerve ligation, but this is lost with time as the neuropathic pain

phenotype emerges. Despite the loss in function, opto-activation of PrL-P neurons during later

stages of neuropathic pain produces anti-allodynic effects in neuropathic animals achieved, at least

in part, by inhibitory effects on spinal nociceptive processing. We postulate that this cortical–mid-

brain–spinal network allows executive control of nociception and regulation of pain, and that it is the

loss of cortical drive to the DPMS, which is a major contributor to the expression of neuropathic sen-

sitisation after nerve injury.

Loss of endogenous inhibitory control of CNS pain processing (Staud, 2012) and altered func-

tional connectivity between the mPFC and the PAG is a shared feature of a wide variety of human

chronic pain conditions (Jensen et al., 2012; Yu et al., 2014; Chen et al., 2017; Segerdahl et al.,

2018)—our findings suggest these changes are causally related. The human mPFC, including the

anterior cingulate cortex (ACC), is increasingly recognised as a key locus in the development and

maintenance of chronic pain, with changes in structure and function that are associated with, and

sometimes predictive of, the transition to chronic pain (Apkarian et al., 2004; Baliki et al., 2012;

Hashmi et al., 2013; Baliki and Apkarian, 2015). The PAG is not only a key node in the DPMS but

also an important orchestrator of autonomic and sensorimotor systems that is engaged to support

mPFC function in aversive learning, emotional modulation, and pain modulation, which are all rele-

vant to the chronic pain phenotype (Keay and Bandler, 2001; Franklin et al., 2017; Rozeske et al.,

2018; Huang et al., 2019). In humans, changes in functional connectivity between the mPFC/

ACC and PAG are commonly observed in experimental paradigms that produce emotional,
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attentional, and placebo/nocebo influences on pain as well following the delivery of analgesic drugs

and often interpreted as reflecting engagement of the DPMS (Wager et al., 2004; Wiech et al.,

2014; Wanigasekera et al., 2018; Oliva et al., 2021). Moreover, changes in the functional connec-

tivity between regions of the mPFC and the PAG are often correlated with changes in pain percep-

tion and/or disease progression (Cifre et al., 2012; Hemington and Coulombe, 2015;

Harper et al., 2018; Segerdahl et al., 2018; Wanigasekera et al., 2018; González-Roldán et al.,

2020). Here, we provide evidence in rodents that the PrL, a component of the rodent mPFC, can

engage the DPMS to affect nociception, and loss in PrL-P neuron function is causally related to the

development of the neuropathic pain state in rats. We suggest that changes in functional communi-

cation between the mPFC and PAG, whether trait-, age- or disease-related, likely manifest as altera-

tions in the descending control of spinal nociception.

Preclinical findings suggest that loss of mPFC–PAG functional communication is explained by

both local and inter-regional network alterations. In neuropathic rodents, at 7–10 days post-nerve

injury, there is a decline in spontaneous and evoked PrL layer five pyramidal cell activity including

those that project to the PAG (Cheriyan and Sheets, 2018; Mitrić et al., 2019). This reduction in

PrL projection neurons excitability is produced in part by enhanced feedforward inhibition from local

Figure 4. Inhibition of PrL-P neurons produces aversion in neuropathic animals. (A) Conditioned place aversion

protocol. (B) Example heatmap visualisation of the time spent within the testing chambers prior (top) and

following conditioning with CNO or vehicle. (C) Group data showing conditioning with CNO in TNTPrL.ChR2:hM4Di

rats 2–5 days after tibial nerve transection (TNT) produced place aversion (paired t-test, t(7)=2.43, p=0.04, n=8). (D)

CNO administration to TNTPrL.Control rats did not produce place aversion (paired t-test, t(8)=0.25, p=0.81, n=9).

The online version of this article includes the following source data for figure 4:

Source data 1. Numerical data to support graphs in Figure 4.
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Figure 5. Activation of PrL-P neurons produces antinociception in neuropathic rats by inhibition at a spinal level.

(A) Experimental timeline. (B) Delivery of blue light (445 nm, 20 Hz, 10–15 mW, 10 ms pulse, concomitant with

hind-paw stimulation) produced a significant increase in mechanical withdrawal threshold of the injured (ipsilateral)

hind-paw in TNTPrL.ChR2:hM4Di rats (repeated-measures [RM] ANOVA, treatment, F(1.12, 8.96)=8.07, p=0.02; Sidak’s

post-test, *p<0.05, n=9) but not in TNTPrL.Controlrats (RM ANOVA, treatment, F(1, 2)=0.35, p=0.61, n=3). (C)

Example raw data trace illustrating suppression of von Frey hair evoked spinal dorsal horn neuron activity during

blue light (420 nm, 10–15 mW, 10 ms duration, concomitant with hind-paw stimulation) delivery to the PrL in

TNTPrL.ChR2:hM4Di rats (arrows demark beginning and end of stimulus). (D) Group data illustrating suppression of 4

g evoked spinal dorsal horn neuronal activity by illumination of the PrL in TNTPrL.ChR2:hM4Di rats (mixed model

[REML], fixed effect opto-activation, F[1.99, 13.98]=7.18, p=0.007; Dunnet’s post-test baseline vs opto-activation,

p=0.009, n=10). (E) Illumination of the PrL in TNTPrL.ChR2:hM4Di rats also supressed 15 g evoked spinal dorsal horn

neuronal activity (mixed model [REML], fixed effect opto-activation, F(1.52, 10.64)=2.94, p=0.10, Dunnet’s post-test

baseline vs opto-activation, p=0.046, n=10.) (F) Delivery of blue light to the Prl in TNTPrL.ChR2:hM4Di rats decreased

acetone-evoked spinal dorsal horn neuronal activity (paired t-test, t(3)=3.58, p=0.04, n=4).

The online version of this article includes the following source data for figure 5:

Source data 1. Numerical data to support graphs in Figure 5.
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GABAergic interneurons and driven by inputs from the basolateral amygdala (Zhang et al., 2015;

Cheriyan et al., 2016; Kiritoshi et al., 2016; Cheriyan and Sheets, 2018; Huang et al., 2019).

Opto-inhibition of BLA inputs to the PrL releases PrL-P neurons to engage descending inhibitory

control from the PAG (Huang et al., 2019). PrL-P neurons are glutamatergic and target both

GABAergic and glutamatergic neurons in the PAG (Franklin et al., 2017; Huang et al., 2019) but

engage descending inhibitory control from the PAG that is associated with the release of local

GABAergic control (Tovote et al., 2016; Huang et al., 2019). We suggest that the BLA–PrL–PAG–

spinal network is central to the expression of neuropathic pain and therapeutics that reengage corti-

cal control of descending pain modulation may be effective in treating both sensory and affective

disturbances in chronic pain. However, while BLA inputs to the PrL drive sensory hypersensitivity and

negative affect by reducing descending inhibition of the spinal dorsal horn, BLA inputs to the dorsal

cingulate regions mitigate pain-related aversion (Meda et al., 2019). Additionally, in neuropathic

rodents, the E/I ratio of BLA inputs into infralimbic projections to the PAG remain unchanged

(Cheriyan and Sheets, 2018). Thus, there appears region-specific alterations to BLA–mPFC–PAG

neuronal network that must be considered if novel and effective CNS therapeutic strategies are to

be realized.

We found that PrL-P neurons alter sensory and affective aspects of neuropathic pain, at least in

part, via actions on spinal dorsal horn nociceptive processing. Recently, Huang et al., 2019 dis-

sected BLA–PrL–PAG circuitry and demonstrated contributions of spinal noradrenergic alpha-2 adre-

noceptor and 5-hydroxytryptamine receptor 1/2 signalling to PrL effects on pain-like behaviour in

neuropathic rats; Huang et al., 2019. However, the expression of these receptors in the spinal ven-

tral horn confounds interpretation of effects on sensory/nociceptive versus motor processing

(Shi et al., 1999; Perrier et al., 2013). Here we show that, in neuropathic animals, peripherally

evoked spinal dorsal horn WDR neurons are inhibited by PrL-P neuronal activity confirming that the

PrL cortex is able to engage DPMS that originate in the PAG. Spinal WDR neurons are a known tar-

get of descending modulatory systems and their activity correlates well with both withdrawal

reflexes and pain perception (Maixner et al., 1986; You et al., 2003; McMullan and Lumb, 2006a;

Drake et al., 2016). It is significant from a therapeutic perspective that the PrL is able to affect noci-

ceptive information early in the ascending pathway, likely prior to extensive integration with other

nociceptive/non-nociceptive information, which would allow for selective and potent actions on the

pain experience and pain state development (Heinricher et al., 2009).

Spinal noradrenergic alpha2adrenoceptor signalling masks latent mechanical and cold allodynia

at early, but not late, timepoints post-tibial nerve injury and shows a remarkably similar chronology

to that observed in this study (Hughes et al., 2013). Notably, in addition to affecting the sensitivity

of the injured paw, antagonism of spinal alpha2-adrenoceptors reveals contralateral allodynia

(Hughes et al., 2013), something also observed after chemo-inhibition of PrL-P neurons. This indi-

cates that nerve injury drives central sensitisation that affects the response to nociceptive inputs

from the uninjured paw to produce contralateral hypersensitivity that can be revealed by blockade

of the descending modulation of spinal processing originating from the PrL cortex.

These observations, supported by those of Huang et al, suggest that spinal noradrenaline (NA)

release mediates a large part of the PrL analgesic actions in the spinal dorsal horn (Hughes et al.,

2013; Hughes et al., 2015; Huang et al., 2019). Our findings indicate that the progressive loss of

spinal noradrenergic tone in this neuropathic model is due to the loss in top-down executive control

from PrL-P neurons, but this is yet to be definitively tested. Despite this loss in function, potentiation

of spinal NA signalling with reuptake inhibitors can prevent the development of neuropathic pain

and reverse neuropathic hypersensitivity in late-stage neuropathic animals (Hughes et al., 2015),

and NA reuptake inhibitors are currently used to treat neuropathic pain in human patients

(Finnerup et al., 2015). Therapeutic strategies aimed at lifting the enhanced feedforward inhibition

in the PrL combined with potentiation of spinal NA signalling could provide a novel approach to

treat neuropathic pain in humans. However, targeted approaches are likely necessary as chemo-acti-

vation of locus coeruleus projections to the spinal dorsal horn and mPFC produce pain relief and

conflicting negative affect in neuropathic rats (Hirschberg et al., 2017).

At early post-injury timepoints, chemo-inhibition of PrL-P neurons produced place aversion indi-

cating that loss of cortical control over the PAG and associated DPMS worsens the affective state of

injured animals. This change in affective state is likely secondary to effects on spinal nociceptive

processing as neuropathic animals show ongoing pain-like behaviour and its relief, for instance by
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stimulating spinal NA receptors, produces place preference in neuropathic rats (King et al., 2009;

Hirschberg et al., 2017). However, direct effects of PrL-P neurons on affective processing should

not be overlooked given the role of the PAG in fear, anxiety, and depression (Tovote et al., 2015;

George et al., 2019). Interestingly, Rozeske et al., 2018 showed dorsal mPFC projections to the

PAG regulate the appropriate expression of aversive memories suggesting that loss of functional

communication between the PrL and PAG may lead to generalised aversion and negative

affect; Rozeske et al., 2018. The PrL has previously been shown to contribute to pain-related anxi-

ety, deficiencies in reward processing, and avoidance behaviour (Lee et al., 2015; Wang et al.,

2015; Zhang et al., 2015; Liang et al., 2020). Our findings add to the growing picture of mPFC-

PAG communication as a critical regulator in a range of disease-relevant features including emo-

tional coping, aversive learning, and autonomic control including nociceptive processing and, now,

neuropathic pain state development (Franklin et al., 2017; Rozeske et al., 2018; Huang et al.,

2019).

A 200-mm tapered optic fibre was inserted into the PrL to allow for light delivery in opto-activa-

tion experiments. This likely led to some damage/disruption to overlying cortical tissue in the cingu-

late cortex area 1 (CG1) area that is commonly referred to as the rodent ACC. We consider the

impact of these on animal behaviour to be minimal as tapered fibres produced negatable tissue

damage in post-mortem histological sections. However, a consideration of any ‘off-target’ effects is

presented for the reader. Lesion or pharmacological inactivation of the equivalent CG1 region has

been shown to not affect sensory thresholds and/or pain-like behaviour in rodents (Johansen et al.,

2001; Johansen and Fields, 2004; Navratilova et al., 2015); therefore, we are confident that

effects observed in our chemo-inhibition experiments are specific for CNO. Furthermore, the CG1/

ACC region has been shown to generate change in affective state to guide adaptive behavioural

and learning, particularly place avoidance (Johansen et al., 2001; Johansen and Fields, 2004). Our

data demonstrate that rats implanted with tapered optic fibres are still able to undergo place condi-

tioning, indicating that any cortical disruption produces by our fibres does not impact CG1/ACC

function relevant to our investigation.

In summary, we have identified specific contributions of PrL-P neurons to regulate nociception in

healthy animals and charted their dynamic contributions to neuropathic pain state development fol-

lowing injury. Our findings suggest that PrL-P neurons engage descending inhibitory control of the

spinal dorsal horn to regulate CNS nociceptive processing and moment-to-moment noxious thresh-

old to affect behaviour. Following nerve injury, tone in PrL-P neurons initially constrains the spatio-

temporal development of neuropathic hypersensitivity, but there is a progressive loss in the

functional communication between the PrL and PAG as the pain state develops. Our findings aid

interpretation of human clinical observations that demonstrate altered functional connectivity

between the mPFC and PAG is an important mechanism in the development of chronic pain.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain,
strain background

Wistar (rat)
male

Envigo, NL RCCHan

Transfected construct Canine adenoviral
vector

IGMM, FR CAV2-CMV-CRE

Transfected construct Adeno-associated
viral vector

UNC Vector Core, USA AAV2-EF1a-DIO-
hChR2-EYFP

Transfected construct Adeno-associated
viral vector

Addgene, USA AAV2-hSyn-DIO-
hM4Di-mCherry

Chemical compound Clozepine-N-oxide Tocris Bioscience, UK 4936

Antibody Anti-GFP
(chicken polyclonal)

Abcam, USA Ab13970 (1:5000)

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Antibody Anti-mCherry
(rabbit polyclonal)

BioVision 5993 (1:2000)

Other Optic fibre Optogenix, IT Lambda-B NA 0.66, length 4.4 mm, and
light-emitting length 2 mm

Other Q-probes Neuronexus, USA Q1 � 1-tet-10mm-121-Q4

Other Headstage chip Intan Technologies, USA RHD2132

Other Diode laser Omricon Laserage, DE LuxX445-100 445 nm/100 mW

Other OpenEphys
Acquisition System

OpenEphys, USA

Software, algorithm OpenEphys GUI OpenEphys, USA

Software, algorithm EthovisionXT Noldus, NL

Software, algorithm Prism GraphPad, USA

Software, algorithm GNU Image
Manipulation Program

GIMP, USA

Software, algorithm BORIS event
logging software

BORIS, IT

Animals
All experimental and surgical procedures were conducted in accordance with the UK Animals (Scien-

tific Procedures) Act (1998) and local ethical review. Adult male Wistar rats (n=56, 250–275 g;

Envigo, NL) were housed in the University of Bristol’s Animal Services Unit with cage enrichment

(e.g. cardboard tubes and wooden chews) on a reversed light cycle and with food/water provided

ad libitum. Where possible, animals were group-housed but were singly housed for up to 7 days

while healing from surgery occurred.

Experimental design
This study’s primary objective was to investigate the contribution of PrL-P neurons to the develop-

ment of sensory and affective aspects of neuropathic pain. To achieve this, opto- and chemogenic

actuator proteins were expressed in PrL-P neurons to enable interrogation of the behavioural and

neurophysiological consequences of their selective and specific opto-activation and chemo-inhibi-

tion. To selectively express actuator proteins in only PrL-P afferents, we used an intersectional, Cre-

dependent viral vector approach (Boender et al., 2014). Twelve animals were used to develop the

intersectional viral vector methodology in vivo. Briefly, Cre-dependent adenoviral vectors encoding

ChR2 or the inhibitory DREADD, hM4Di, were delivered to the PrL. To restrict their expression to

only those PrL neurons that project to the PAG, we delivered a retrograde canine adenoviral vector

(CAV2) that encodes Cre-recombinase to the PAG (Hnasko et al., 2006). CAV2 gains access to neu-

rons primarily via their synaptic terminals (Soudais et al., 2001) before being transported retro-

gradely to the neuronal cell body leading to Cre expression. Thus, Cre-dependent expression of

actuator proteins will only occur in those PrL neurons that synapse in the PAG. Control animals had

injection of Cre-dependent vectors to the cortex but no CAV-CMV-CRE to the PAG. Without Cre,

there should be no expression of actuator proteins allowing the evaluation of off-target effects of

CNO (as well as identification of nonspecific expression of actuators). Following the expression of

actuator proteins, the effect of selective opto-activation and chemo-inhibition of PrL-P neurons on

sensory (n=24) and affective aspects (n=20) of pain-like behaviour was assessed in neuropathic

(TNTPrL-P.ChR2-hM4Di and TNTPrL-P.Control) and uninjured (NaivePrL-P.ChR2-hM4Di and NaivePrL-P.Control)

rats. This investigation used a longitudinal design in which the contribution of PrL-P neurons to pain-

like behaviour and nociceptive processing were assessed before and up to 42 days following periph-

eral nerve injury. Five neuropathic rats were then used in acute spinal electrophysiological experi-

ments to assess the effects of PrL-P neurons on nociceptive processing in the spinal dorsal horn.
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Animals were assigned to experimental groups from different cages and selected at random but

with no explicit randomisation protocol. The experimenter was blinded to the experimental group

and test substance. Some animals were removed from the analysed data sets due to the following:

. Lack of or off-target transfection (n=4/44)

. Incorrect placement of optic fibres outside the PrL (n=3/24)

. Overt stress behaviour noted during experimental testing (n=3/44)

. Incompatible laser stimulation parameters (1/24)

. Incorrect dosing schedule in conditioned place aversion paradigm (1/20)

Where appropriate, removal from one experimental protocol did not mean removal from the

entire investigation, as for example, incorrect placement of an optic fibre did not preclude data

from this rat being included for chemo-inhibition experiments, which were not dependent on correct

fibre placement.

Final experimental group numbers were as follows:

Figure Experiment Rats (n)

2 Opto-activation of PrL-P neurons in
uninjured rats for Plantar Test

10 NaivePrL-P.ChR2-hM4Di

7 NaivePrL-P.Control

Chemo-inhibition of PrL-P neurons in
uninjured rats for Plantar Test

16 NaivePrL-P.ChR2-hM4Di

7 NaivePrL-P.Control

3 Chemo-inhibition of PrL-P neurons in
tibial nerve transection (TNT) rats for sensory testing

16 TNTPrL-P.ChR2-hM4Di

7 TNTPrL-P.Control

4 Chemo-inhibition of PrL-P neurons in
TNT rats for place aversion

8 TNTPrL-P.ChR2-hM4Di

9 TNTPrL-P.Control

5 Opto-activation of PrL-P neurons in
TNT rats for sensory testing

9 TNTPrL-P.ChR2-hM4Di

3 TNTPrL-P.Control

Opto-activation of PrL-P neurons for
acute spinal electrophysiology

5 TNTPrL-P.ChR2-hM4Di

Surgery
All surgeries were conducted using sterile technique. Throughout procedures, animals were kept

hydrated and maintained at 37˚C using a thermostatically controlled heat mat. Post-surgery, all ani-

mals were monitored closely until wounds had healed and the animal reached pre-surgery body

weight.

Stereotaxic injection/implants
Animals underwent recovery surgery for the delivery of viral vectors to the PAG and mPFC, and

implantation of optic fibres over the PrL. Rats were anesthetised with Ketamine (50 mg�kg�1; Zoetis,

UK)/Medetomidine (0.3 mg�kg�1; Vetoquinol, UK), prepared for surgery, and placed in a stereotaxic

frame (Kopff, Germany). PrL-P projections extend bilaterally from each hemisphere with the ipsilat-

eral projection being denser than the contralateral projection (~60 vs 40% of total labelled cells from

retrograde tracing; Floyd et al., 2000). We targeted this denser ipsilateral PrL-P projection, and the

targeting of left or right PrL-P pathways was counterbalanced among animals. The TNT experiments

were similarly counterbalanced, and the tibial nerve in the hindlimb contralateral to the transfected

PrL-P was ligated and transected, as has been done for similar investigations (Lee et al., 2015;

Huang et al., 2019).

We wanted to investigate cortical control of the DPMS that routes via the PAG. The ventrolateral

column of the PAG is a known source of descending pain modulation (McMullan and Lumb, 2006a;

McMullan and Lumb, 2006b) and it is the caudal section that receives ascending inputs from the

lumbar spinal cord that represents the hindpaws Mouton et al., 1997. In the rat, the caudal vlPAG

is primarily innervated from rostral portions of the PrL (Floyd et al., 2000). Therefore, we targeted

the delivery of CAV2-CMV-Cre to the caudal vlPAG and Cre-dependent AAV vectors to the rostral

PrL on the same side.

A craniotomy was made over the PAG (Anteroposterior (AP) �7.5�8.5, Mediolateral (ML) ±1.8

mm). CAV2-CMV-CRE (300 nl/4.95�108 physical particles each site; Institut De Génétique
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Moléculaire De Montpellier, France) was delivered to the vlPAG at two caudal sites; AP �7.5, ML

1.8, Dorsoventral (DV) 5.4 and AP �8.00, ML 1.8, DV 5.4 mm from the brain surface with a 9˚ lateral

to medial angle. Approximately 20 nl of fluorescent microspheres (RetroBeads, Interchim, USA) were

included in the injectant in some animals to mark the injection site.

A second craniotomy was made over mPFC (AP +3.0 to 5.0, ML ±0.4 to 0.8) allowing injection of

Cre-dependent AAVs encoding ChR2 and hM4Di:

. AAV2-EF1a-DIO-hChR2-EYFP (3.2�1012 vg�ml�1; UNC Vector Core, USA) and

. AAV2-hSyn-DIO-hM4Di-mCherry (4.6�1012 vg�ml�1; Addgene, USA).

These were mixed to equal titres and delivered to the rostral PrL at three anteroposterior loca-

tions and at two dorsoventral levels.

. AP +4.2, ML ±0.6, DV �2.5 and �2.0 mm

. AP +3.8, ML ±0.6, DV �3.3 and �2.5 mm

. AP +3.20, ML ±0.6, DV �3.3 and �2.5 mm

Viral vectors were delivered using a pulled glass pipette (Broomall, USA) attached via silicon tub-

ing to a 25-ml Hamilton syringe (Hamilton Company, USA). The whole system was filled with paraffin

oil to allow for back filling of the pipette tip with viral vector. Delivery of the vector was controlled

using a motorised syringe pump (Aladdin Syringe Pump, World Precision Instruments, USA), deliv-

ered at a rate of 200 nl/min and pipettes were left in place for ~10 min following vector delivery to

allow for vector redistribution into the parenchyma.

An optic fibre (Lambda B, NA 0.66, length 4.4 mm, light-emitting length 2 mm, tapering from a

width 200 to <5 mm at the tip, Optogenix, Italy) was inserted to AP +4.2, ML ±0.6, DV �3.3 mm

from the cortical surface to enable light delivery across the full dorsoventral extent of the rostral PrL.

Four skull screws were placed within separate cranial plates (M1, 1 mm diameter, 3 mm length;

NewStar Fastenings, UK). The optic fibre was secured to an adjacent scull screw using Gentamicin

CMW DePuy bone cement (DuPuy Synthes; Johnson and Johnson, USA). The craniotomies from the

vector injections were then filled with artificial dura (duraGel; Cambridge Neurotech, UK), the skull’s

surface covered with bone cement and the skin incision closed using adsorbable suture (Vicryl; Ethi-

con Inc, Johnson and Johnson, USA) leaving the optic fibre ferrule connector protruding.

Tibial nerve transection
Rats underwent recovery surgery for TNT to produce a neuropathic pain state (Richardson, 2015).

This model was chosen for its gradual development of hypersensitivity as well as known contribu-

tions of DPMS (Hughes et al., 2013; Hughes et al., 2015). Briefly, rats had induction of anaesthesia

using isoflurane (5% in O2; Henry Schinn, UK) and maintained at a surgical plane of anaesthesia using

2–3% isoflurane in O2. The tibial nerve contralateral to the transfected PrL-P pathway was exposed

and transected before the wound closed. An incision was made from below the hip, parallel to the

femur, and toward the knee. The underlying connective tissue was dissected away, and the fascial

plane between gluteus superficialis and bicep femoris was dissected to expose the branches of the

sciatic nerve. The Tibial nerve was identified and carefully freed from connective tissue. Two ligatures

of sterile 5.0 braided silk (Fine Science Tools, Germany) were tightly ligated ~5 mm apart. The length

of nerve between the two sutures was then transected and removed leaving the ligatures in place.

The overlying muscle and skin were closed using adsorbable suture. Post-surgery, no analgesic was

provided so as to not interfere with pain state development.

Nociceptive testing
Rats underwent longitudinal nociceptive sensory testing before and after TNT. This was conducted

with/without opto-activation and chemo-inhibition of PrL-P neurons to investigate their contribution

to nociceptive threshold/pain-like behaviour in naive and TNT rats. Neuropathic animals underwent

testing for mechanical (vF) before cold allodynia (acetone). There was more than 30 min between

pre-CNO and post-CNO. All behaviours were recorded using a video camera (c930; Logitech, Swit-

zerland) attached to a computer running video acquisition software (OBS Studio, Open Broadcaster

Software) for offline analysis.
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Heat sensitivity
Thermal withdrawal latencies were measured for the hindpaw (Hargreaves et al., 1988). Animals

were habituated to the testing apparatus and experimenter for 10 min for at least 5 days prior to

the start of the experiment. On experimental days, animals were placed in a Plexiglass chamber on

top of a raised glass plate so that the infrared (IR) beam (Ugo Basile Plantar test, Italy) could be posi-

tioned under the plantar surface of the hindpaws. The IR beam intensity was adjusted individually for

each animal so that animals withdrew their paws at a latency of ~8 s (mean IR intensity=57±0.6). Ani-

mals had IR light delivered to both left and right hindpaw with ~4 min interstimulus interval between

paws and hence >8 min interstimulus interval between consecutive stimuli on the same paw to pre-

vent sensitisation. A cut-off latency of 15 s was used to prevent tissue damage and subsequent sensi-

tisation. Stability of baseline withdrawal latency was considered to have been achieved when three

consecutive latencies were within 2 s of each other.

Punctate mechanical sensitivity
To assess mechanical sensitivity, animals were placed in a Plexiglass chamber on top of a raised

metal grid to allow access to the plantar surface of the hindpaw. Rats were habituated to the testing

apparatus and experimenter for 10 min at least 5 days before the start of the experiment. vF fila-

ments (range 2.36–5.18 mN; Ugo Basile, Italy) were applied to the lateral aspect of the plantar sur-

face of the hindpaw. The 50% withdrawal threshold was determined using the Massey-Dixon up-

down method (Chaplan et al., 1994).

Acetone
To assess cold sensitivity, rats were placed in a Plexiglass chamber on top of a raised metal grid to

allow access to the plantar surface of the hindpaw. Using a 1-ml syringe, a drop of acetone (~0.1 ml)

was applied to the lateral aspect of the hindpaw and the number of nocicfensive events (paw shakes,

licks, and/or bites) recoded for up to 1 min following application using event logging software

(Friard and Gamba, 2016). This was repeated three times for each paw with an ISI of 2 min.

Manipulation of PrL-P neurons
For experiments involving opto-activation of PrL-P neurons NaivePrL-P.ChR2:hM4Di, NaivePrL-P.Control,

TNTPrL-P.ChR2:hM4Di, and TNTPrL-P.Control rats were tethered to a light source (445 nm diode laser;

Omicron Laserage, Germany) using an optical fibre patch cable (FT200EMT; Thorlabs, USA) to con-

nect the head-mounted ferrule to the laser source allowing blue light to be delivered to the PrL via

the implanted optic fibre. Once stable baseline withdrawal latencies were obtained, two light stimu-

lation rounds (445 nm, 10–15 mW, 20 hz, 10 ms pulse width, starting 1 min before initiation of the IR

beam) and two no light rounds were delivered to the PrL in a randomised order. Output of optic

fibres was determined prior to implant by measuring the light power at the fibre tip over a range of

laser strengths using a monitor (PM120D; Thorlabs, USA). The average withdrawal latency for light

stimulation rounds was compared to the average withdrawal latency for low-light stimulation rounds.

Experiments involving chemo-inhibition of PrL-P neurons were conducted on a separate day to

opto-activation experiments. Once stable baseline withdrawal latencies for each hindpaw were

obtained, animals received clozapine-N-oxide (CNO), the selective ligand for the hM4Di receptor,

via an intraperitoneal injection at a dose of 2.5 mg�kg�1. Animals were placed back in the testing

box, and IR hindpaw stimulation started 10 min after CNO delivery. Withdrawal latencies to plantar

IR stimulation were recorded for both hindpaws for at least 60 min post-injection, and the average

withdrawal latency for recordings 20–40 min following CNO delivery were compared to the average

baseline latencies for each paw.

The effect of chemo-inhibition of PrL-P neurons on mechanical withdrawal thresholds was

assessed in TNTPrL-P.ChR2-hM4Di and TNTPrL-P.Control rats. Following, pre-CNO testing animals received

systemic CNO (2.5 mg�kg�1) via an i.p. injection and returned to their home cage.

Twenty minutes following CNO injection, animals were placed back in the testing chamber and

allowed to habituate for 10 min. vF testing was repeated at 30 min post-CNO. The 50% withdrawal

threshold obtained following CNO was compared to pre-CNO withdrawal threshold for that day.

The effect of opto-activation of PrL-P neurons on the 50% withdrawal thresholds was assessed in

TNTPrL-P.ChR2-hM4Di and TNTPrL-P.Control rats at a late state (>21 days). Rats underwent baseline vF
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testing prior to blue light delivery as previously described. Then, blue light (445 nm, 10–15 mW, 20

hz, 10 ms pulse width) was delivered continuously starting 1 min prior to vF testing and continuing

to the end of testing. The 50% withdrawal threshold of the ipsilateral (injured) paw was compared

with and without opto-activation of PrL-P neurons.

Behavioural testing
Conditioned place aversion: A second cohort of TNT rats that did not have longitudinal sensory test-

ing was tested in a conditioned place aversion paradigm to assess the contributions of PrL-P neurons

to affective state. TNTPrL-P.ChR2:hM4Di and TNTPrL-P.Control rats were habituated to a three-compart-

ment box with a neutral central compartment connecting two larger conditioning chambers. Cham-

bers differed in their visual and tactile cues (‘bars’ or ‘holes’ for flooring and vertically or horizontally

striped wallpaper with equal luminosity) to maximise their differentiation. A Baslar camera (acA1300-

60 gm) with a varifocal lens (Computar H3Z4512CS-IR) connected to EthovisionXT (Noldus, NL) was

used to record the time rats spent in each compartment. Rats were allowed to freely explore all

three compartments for 20 min on day 1 to obtain baseline preference. No rats exhibited excessive

chamber bias (>80% total time in a single chamber). After habituation, rats had TNT surgery and 2

days later started conditioning sessions (over 4 days) in which a compartment was paired with CNO

(2.5 mg�kg�1 i.p.) or vehicle (two sessions each). The chamber–drug pairings and the order in which

they were presented were randomised and counterbalanced among animals. For each pairing ses-

sion, rats received CNO or vehicle and were returned to their home cage for 10 min to prevent any

negative association between restraint/injection and conditioning compartment. Rats were then

placed in the conditioning compartment for 35 min. A single pairing session was conducted on each

of the 4 days to prevent carry over of any CNO effects. Pairing sessions for each rat were conducted

at the same time on each day. On the test day, animals were placed in the neutral compartment and

allowed to freely explore all three compartments for a total of 20 min and the time spent in each

compartment recorded. A ‘preference score’ was calculated by taking the percentage of time spent

in the CNO-paired compartment on the test day (relative to the total time spent in all three cham-

bers), normalised by the percentage time spent in the same chamber on pre-test day (relative to

total time spent in all three chambers; Meda et al., 2019). Preference scores for CNO- and vehicle-

paired chambers were compared within each animal. Preference or aversion to CNO-paired chamber

is expected to be influenced by the valence of chemo-inhibition of PrL-P neurons. Preference scores

of <1 indicate place aversion and those >1 indicate preference.

Electrophysiology
In vivo spinal dorsal horn recordings: TNTPrL-P.ChR2:hM4Di rats were terminally anaesthetised with ure-

thane (1.2–2 g�kg�1 i.p., Sigma). The spinal cord was exposed by laminectomy over T13–L3 spinal

segments to allow access to the spinal cord (Leith et al., 2014; Drake et al., 2016). The animal was

placed in a stereotaxic frame with spinal clamps (Narishige, Japan) and the spinal cord stabilised at

T12 and L4, and a bath formed by skin elevation. A reference electrode was placed in nearby muscu-

lature. The spinal dura matter was carefully removed using bent-tipped needles (25G) under binocu-

lar vision. The skin pool was filled with warm agar and, once cool, a recording window cut out and

the void filled with warm (~37˚C) mineral oil. Using a hydraulic manipulator (Narishige, Japan), a four

contact silicon probe (Q-probe; NeuroNexus, USA) was advanced into the spinal dorsal horn and

recordings of single dorsal horn neurons made between 250 and 800 mm deep to the surface. Neural

activity was amplified and digitised on a headstage microchip (RHD2132; Intan technology) and cap-

tured to computer at 30 kHz using an Open Ephys acquisition system and associated software

(OpenEphys, USA).

Low threshold brush and touch applied to the paw were used as a search stimulus as the record-

ing electrode was advanced into the spinal dorsal horn. Once single units were isolated, non-noxious

and/or noxious mechanical (vF filaments) and cold (acetone) were applied to the receptive field on

the lateral aspect of the ipsilateral hind leg/paw. WDR neurons were identified by their graded

response to non-noxious and noxious stimuli (�15 g vF). A baseline stimulus–response relationship

was obtained by applying 4 and 15 g vF filaments and a single drop of acetone to the receptive

field. This was repeated three times for each stimulus with a 10 s inter-stimulus interval between vF

filaments and 1 min between acetone drops. To optogenetically activate the PrL-P neurons, blue
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light was delivered via the implanted optic fibre (445 nm, 10–15 mW, 20 Hz, 10 ms pulse width) con-

tinuously starting 1 min prior to peripheral stimulation and lasting until the end of the stimulus set (4

and 15 g vF hairs and acetone stimuli were reapplied three times). The average number of evoked

action potentials for each stimulus was compared before, during, and 5 mins following opto-activa-

tion of PrL-P neurons.

Histological processing
Tissue collection and processing: Rats were killed with an overdose of pentobarbital (20 mg/100 g, i.

p., Euthalal, Merial Animal Health) and perfused trans-cardially with 0.9% NaCl (1 ml/g) followed by

4% formaldehyde in phosphate buffer (PB). The brains were dissected and post-fixed overnight in

the same solution before cryoprotection in 30% sucrose in PB. Coronal sections were cut at 40 mm

using a freezing microtome and left free floating for fluorescent immunohistochemistry or mounted

on slides to identify optic fibre tracts and/or injection sites for viral vector delivery using light

microscopy.

Immunofluorescence
Tissue sections were incubated free floating on a shaking platform with PB containing 0.3% Triton-

X100, 5% normal goat serum (Sigma), and primary antibodies to detect EGFP (ab13970, Abcam) or

mCherry (5993–100, BioVision) for 24 hr at room temperature. After washing with PB, sections were

incubated for 3 hr at room temperature with an appropriate Alexa Fluor secondary antibody. Then,

sections were washed before mounting on glass slides in 1% gelatin solution and, once dried, cover

slipped using FluroSave reagent (345789; Merck-Millipore, Germany). Sections were imaged on a

Leica DM16000 inverted epifluorescence microscope equipped with Leica DFC365FX digital camera

and LAS-X acquisition software.

Transduction mapping
To create maps of the distribution of transfected neurons within the mPFC, a series of coronal mPFC

sections from three animals were manually plotted. Each section was paired to a matching coronal

diagram from the Rat Brain Atlas (Paxinos and Watson, 2007), at ~120 mm intervals (every third sec-

tion). Using an epiflurescent microscope (Zeiss Axioskop II inverted microscope equipped with a

CooLED pE-100 excitation system, filter blocks – red: filter set number 15 [DM 580 nm, BP 546/12

nm, LP 590 nm] and green: filter set number 09 [DM 510 nm, BP 450–490 nm, LP 515 nm]), mCherry

+ cells were plotted. The diagrams were digitised into the photo editing software GIMP.2 (Creative

Commons), allowing superimposition to create conjunction maps indicating the extent of labelled

areas of the mPFC within each cohort. A digital grid was used to divide up the cortical field and the

number of positively labelled neurons counted within each 0.2 mm2 grid from each animal. The con-

sistency of positively labelled neurons within each grid square was represented on a grayscale with

black indicating positively labelled cells in all rats and white indicating no cells. To determine the

proportion of transfected neurons that co-expressed both ChR2-EYFP and hM4Di-mCherry compos-

ite widefield images were taken at 20� magnification of every sixth section in a series of consecutive

mPFC section from ~+5.10 to +2.8 mm from bregma and from three experimental animals. From

these images, the distribution of EYFP, mCherry, and colocalised neurons were quantified.

Drugs
ClozepineN-Oxide (Tocris, UK) was purchased and made up on the day of use in Dimethyl sulfoxide

(DMSO) and diluted with 0.9% NaCl to a final concentration of 2.5 mg�ml�1 and 5% DMSO.

Quantification and statistics
All statistical analyses were conducted using GraphPad Prism 8. All data are presented as mean ±

standard error of mean (SEM). Sample sizes were calculated using online power calculators with

alpha set at 0.05, power >0.9 and using effect sizes and sample variation estimated from previous

experience and with reference to literature (Hughes et al., 2013; Lee et al., 2015; Zhang et al.,

2015; Drake et al., 2016; Hirschberg et al., 2017). Student’s t-test (paired and unpaired), RM one-

and two-way ANOVAs, or mixed model were used to compare groups as appropriate. This mixed

model uses a compound symmetry covariance matrix and is fit using restricted maximum likelihood
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(REML). Sidak’s or Dunnett’s post-test was used for comparisons between multiple groups and

where appropriate. The number of replications (n) is the number of data points used in the statistical

test that is either the number of animals for behavioural testing or the number of neurons for

electrophysiological experiments.
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