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Abstract

Background: In this work, we analyzed and compared the distribution profiles of a wide variety of molecular
properties for three compound classes: drug-like compounds in MDL Drug Data Report (MDDR), non-drug-like
compounds in Available Chemical Directory (ACD), and natural compounds in Traditional Chinese Medicine
Compound Database (TCMCD).

Results: The comparison of the property distributions suggests that, when all compounds in MDDR, ACD and
TCMCD with molecular weight lower than 600 were used, MDDR and ACD are substantially different while TCMCD
is much more similar to MDDR than ACD. However, when the three subsets of ACD, MDDR and TCMCD with
similar molecular weight distributions were examined, the distribution profiles of the representative
physicochemical properties for MDDR and ACD do not differ significantly anymore, suggesting that after the
dependence of molecular weight is removed drug-like and non-drug-like molecules cannot be effectively
distinguished by simple property-based filters; however, the distribution profiles of several physicochemical
properties for TCMCD are obviously different from those for MDDR and ACD. Then, the performance of each
molecular property on predicting drug-likeness was evaluated. No single molecular property shows good
performance to discriminate between drug-like and non-drug-like molecules. Compared with the other descriptors,
fractional negative accessible surface area (FASA-) performs the best. Finally, a PCA-based scheme was used to
visually characterize the spatial distributions of the three classes of compounds with similar molecular weight
distributions.

Conclusion: If FASA- was used as a drug-likeness filter, more than 80% molecules in TCMCD were predicted to be
drug-like. Moreover, the principal component plots show that natural compounds in TCMCD have different and
even more diverse distributions than either drug-like compounds in MDDR or non-drug-like compounds in ACD.

Keywords: Drug-likeness, Traditional Chinese medicines, Principal component analysis (PCA), Property distribution,
Molecular properties
* Correspondence: junmei.wang@utsouthwestern.edu; tjhou@suda.edu.cn
†Equal contributors
3Department of Biochemistry, The University of Texas Southwestern Medical
Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
2College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu
215123, China
Full list of author information is available at the end of the article

© 2012 Shen et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:junmei.wang@utsouthwestern.edu
mailto:tjhou@suda.edu.cn
http://creativecommons.org/licenses/by/2.0


Shen et al. Journal of Cheminformatics 2012, 4:31 Page 2 of 13
http://www.jcheminf.com/content/4/1/31
Background
The development of high-throughput screening (HTS)
technique brings increased capability for screening large
number of compounds against relevant biological targets
in a relatively short period of time [1]. In order to meet
the increasing demand of HTS many chemical compan-
ies tried to collect extensive small molecule libraries
commercially available for medicinal chemists. In the
latest version of Available Chemicals Directory (ACD)
database, over 3,870,000 unique chemicals can be pur-
chased from 901 suppliers. However, it is not a wise
strategy to purchase all these commercial available
molecules for HTS, as only a small fraction of com-
pounds in these commercial available databases are
drug-like. Therefore, in the first step of drug discovery
it is quite necessary to apply some drug-like filters to
eliminate the non-drug-like molecules from the data-
bases and then focus on drug-like molecules only.
Nowadays, drug-likeness evaluation (e.g. the Lipinski’s
Rule-of-Five [2], the Opera’s rules of drug-likeness [3],
the ROES filter [4], etc.) has already been, to some
extent, integrated into the computational drug design/
discovery pipelines. In the last decades, substantial
efforts have been made in the development of computa-
tional approaches for differentiating drug-like molecules
from reagents, such as the simple property-based filters or
rules [2-8], the drug-like index to rank molecules [9,10],
the characterization of molecular frameworks and side
chains [11-13], the classification models of drug-likeness
based on decision trees (DTs), artificial neural networks
(ANNs), support vector machines (SVMs), etc. [14-18].
Traditional medicines, especially herbal or botanic

medicines, are very important in health care systems
around the world. According to the statistics from the
World Health Organization (WHO), in many Asian and
African countries, 80% of the population depends on
traditional medicines for primary health care. Herbal
treatments are the most popular form of traditional medi-
cines. In China, traditional Chinese medicines (TCMs)
have been developed for therapeutic use for more than
4000 years. The classic TCMs are primarily based on a
large number of herbal formulations that are used for the
treatment of a wide variety of diseases. It is believed that
TCMs are a rich source of therapeutic leads for the
pharmaceutical industry [19]. TCMs are gaining more
and more attention in clinical practices throughout the
world [20,21]. Considering the dominant role of natural
products in the discovery and development of drugs
for the treatment of human diseases, discovery of new
bioactive compounds from herbs used in TCMs and
identification of their pharmacological effects are becom-
ing a promising way for finding new drugs [22]. Certainly,
the path from traditional Chinese medicines to Western
pharmaceuticals is fraught with challenges, including
isolation and identification of active components or
compounds, elucidation of pharmaceutical mechanism,
and development as a pharmaceutical.
Previous studies showed that compounds from the

herbs used in TCMs may be a good source for drug
discovery after being evaluated by drug-likeness filters
[6]. However, the in-depth analysis of the structural
features and the drug-likeness evaluation of compounds
identified in TCMs are still lacking. To give relatively
accurate evaluation of the structural features and drug-
likeness for TCMs, the following two requirements
need to be satisfied: first of all, reliable drug-like filters,
reasonable schemes to characterize structural features
and accurate prediction models of drug-likeness are
necessary; second, the number of compounds from
TCMs should be enough in order to guarantee the stat-
istical robustness of drug-likeness analysis. Recently, the
Traditional Chinese Medicine Compound Database
(TCMCD) developed in our group has been updated
and the latest version contains more than 60,000
unique compounds [23]. To our knowledge, the num-
ber of the molecules in TCMCD is larger than those in
several other similar databases developed in other
groups [24-26]. We believe that based on the extensive
data in TCMCD reliable results and conclusions can be
guaranteed.
In this paper series, we set out to investigate the prop-

erty distributions, characterize the structural features and
evaluate the drug-likeness of molecules in TCMCD sys-
tematically, which include (1) the analysis and compari-
son of the property distributions for ACD, MDDR and
TCMCD, (2) the characterization and comparison of the
scaffold architectures for ACD, MDDR and TCMCD,
and (3) the quantitative evaluation of drug-likeness for
TCMCD based on the classification models of drug-
likeness [27]. There are two objectives of this series. First
of all, we hope to examine and establish a set of compu-
tational strategies, including the property-based rules, the
characterization of molecular frameworks and the classi-
fication models based on naïve Bayesian classification
technique, for drug-likeness evaluation at different levels.
Second, we try to conduct in-depth drug-likeness analysis
for TCMCD using different strategies. We expect that
our studies can guide pharmaceutical scientists to pro-
mote the development of TCMs.
In the first paper of this series, we focused on the ana-

lysis of the property distributions for ACD, MDDR and
TCMCD, and then compared the performance of the
simple property-based filters of drug-likeness and evalu-
ated the drug-likeness of TCMCD by using these filters.
Compared with property-based filters, the classification
models of drug-likeness based on machine learning tech-
niques can give more accurate predictions. However, in
drug design process, the property-based filters, such as
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the Lipinski’s Rule-of-Five [2] and the Opera’s rules of
drug-likeness [3], are much more popular than the more
complicated classification models because they can be
easily understood and utilized by scientists besides the
computational chemists. It should be noted that the
property-based filters developed from different databases
are not always consistent and the prediction accuracies
of some filters are not reliable. Therefore, in this study,
we not only just used the popular filters but also evalu-
ated the new filters based on different molecular
properties.

Methods
Preparation of the datasets
Here, the MDDR and ACD databases were chosen as
representatives for drug-like and non-drug-like datasets,
respectively. The Traditional Chinese Medicine Com-
pound Database (TCMCD) was developed in our group
[23,28]. The latest version of TCMCD has 63,759
organic molecules identified from more than 5,000 herbs
in TCMs. All the molecules in these three databases
were minimized in MOE [29] by using molecular
mechanics (MM) with the MMFF94 force field [30]. The
three databases were preprocessed using the following
protocol [6,31,32]: (1). Molecules were examined for bad
valence states, and molecules containing one or more
atoms with bad valence states were removed; (2). The
salt fragments in the input molecules were identified
and removed; (3). The molecules with atoms other than
C, H, O, N, P, S, F, Cl, Br and I were removed; (4). The
solvent molecules in the input molecules were identified
and removed; (5). The input molecules with multiple or-
ganic parts were identified and the largest connected
structural fragment in each input molecule was reserved;
(6). Duplicates were removed in each individual data-
base; (7). Identical compounds found in both ACD and
MDDR databases were removed from ACD. For MDDR,
antineoplastic drugs were removed because they are
often highly cytotoxic and are likely to react with protein
targets. In addition, the compounds (adsorption promo-
ters, anesthetics, diagnostic agents (isotope), diagnostics
for AIDS, diagnostics for cancer, drug delivery systems,
magnetic resonance imaging agents, sweeteners, and
dental agents) without therapeutic activity were elimi-
nated from MDDR. As a result, we got 2,175,382
molecules from ACD, 142,747 molecules from MDDR
and 63,759 molecules from TCMCD for the following
analysis.
It should be noted that we did not remove com-

pounds with reactive functional groups. We did a sur-
vey on how many reactive compounds in three data
sets. A simple filter was designed to remove compounds
with reactive functional groups, and the reactive func-
tional groups used by us include aldehyde, alkyl-halide,
anhydride, diazo, dicarbonyl, disulfide, hydrazine-N-NH2,
isocyanate, isothiocyanates, peroxide, quaternaryamine and
acyl-halide.[6] When this filter was applied, ~5% of com-
pounds in MDDR were removed as reactive molecules;
however, ~6% of launched drugs in MDDR were also
removed as reactive molecules. Moreover, based on
Opera’s analysis, removing reactive compounds from
ACD and MDDR does not have obvious impact on the
performance of the drug-likeness filters [3], so we did not
remove the molecules with reactive functional groups.
It is well-known that too large molecules usually do

not have good absorption property [33,34], and there-
fore we set the cutoff for molecular weight (MW) to be
600, and the sub-databases, namely ACD1, MDDR1
and TCMCD1, respectively, were constructed by only
choosing the molecules with MW less than 600. Fur-
thermore, to examine the influence of the MW cutoff
on our analysis, three more subsets (ACD2, MDDR2
and TCMCD2) with MW less than 800 were generated.
The numbers of the compounds in MDDR1, ACD1
and TCMCD1 are 123,927, 1,999,530 and 50,962, re-
spectively, and the numbers of the compounds in
MDDR2, ACD2 and TCMCD2 are 138,507, 2,007,594
and 57,809, respectively.
Comparison study showed that the mean MW of

compounds in ACD1 was about 120 less than that of
compounds in MDDR1. It is believed that many mo-
lecular properties are dependent on MW, and so in
order to construct the filters or models of drug-likeness
unrelated to MW, a subset of ACD1 designated as
ACD3 and a subset of TCMCD1 labeled as TCMCD3
were constructed, and ACD3, TCMCD3 and MDDR1
have almost the same MW distributions. In total,
there are 123,927 123,929 and 33,961 entries in ACD3,
MDDR1 and TCMCD3, respectively. For the purpose
of performing principal component analysis (PCA),
the same number of entries as that of TCMCD3 (33,961)
were randomly selected from MDDR1 and ACD3
to form another two subsets, MDDR3 and ACD4,
respectively.

Calculations of molecular descriptors
In the current study, 44 molecular descriptors were
used, including octanol-water partitioning coefficient
(AlogP) based on the Ghose and Crippen's method [7],
the apparent partition coefficient at pH = 7.4 (logD7.4)
based on the Csizmadia’s method [35], molecular solu-
bility (logS) based on the multiple linear regression
model developed by Tetko et al. [36], MW, the number
of hydrogen bond donors (nHBD), the number of hydro-
gen bond acceptors (nHBA), the number of rotatable
bonds (nrot), polar surface area (PSA), the number of
hydrogen bond donors used by Lipinski’s Rule-of-Five
(nHBDL), the number of hydrogen bond acceptors used
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by Lipinski’s Rule-of-Five (nHBAL), molecular surface area
(MSA), the number of carbon atoms (Nc), the number of
nitrogen atoms (Nn), the number of oxygen atoms (No),
the number of halogens (Nhalogen), 23 descriptors to
count atoms, bonds and rings (descriptors 16 ~ 38),
and 6 Kier & Hall subgraph count index (descriptors
39 ~ 44) [37]. All the descriptors were calculated using
Discovery Studio molecular simulation package (version
2.5) [38]. The descriptions of the descriptors are sum-
marized in Additional file 1: Table S1 in the supporting
materials.

Performance of each molecular property for drug-likeness
evaluation
The performance of each property shown in Additional
file 1: Table S1 for distinguishing ACD from MDDR was
evaluated, and the best value for classification was deter-
mined by a grid search. It should be noted that many
descriptors in Additional file 1: Table S1 are molecular
size dependent. It is obvious that larger compounds bear,
on average, more functional groups, which may produce
more hydrogen bond donors, hydrogen bond acceptors,
flexible bonds, ring systems, and larger polar surface
area. It is therefore understandable that the drug-
likeness filters based on these molecular descriptors are
database dependent because the distributions of the
size-related descriptors are different from a database to
another. In order to develop drug-likeness filters that are
database independent for distinguishing drug-like from
non-drug-like molecules, the size-unrelated descriptors
are preferred. Here, 16 molecular descriptors based on
the ratio of different molecular properties (Additional
file 1: Table S2 in the supporting materials) were exam-
ined. These descriptors in Additional file 1: Table S2 in-
clude fraction of rotatable bonds (frot), fraction of polar
surface area (fPSA), six fractional descriptors for water ac-
cessible surface, six fractional descriptors for van der
Waals surface, C3P, and UNC_C3. The twelve fractional
descriptors for water accessible surface and van der
Waals surface were calculated using MOE molecular
simulation package [29]. The descriptors, C3P, and
UNC_C3, were proposed by Zheng and coworkers [6].
The descriptor C3P is the ratio of the number of sp3
hybridized C atoms to the number of the total heavy
atoms except halogen atoms; and the descriptor UNC_C3
represents the ratio of the number of unsaturated carbon
atoms to the number of sp3 carbon atoms and is believed
to be related to molecular saturation and rigidity. The
quality of each descriptor for distinguishing ACD from
MDDR was measured by the quantity of true positives
(TP), true negatives (TN), false positives (FP), false nega-
tives (FN), sensitivity (SE), and specificity (SP), the pre-
diction accuracy for MDDR molecules (PRE1), the
prediction accuracy for ACD molecules (PRE2), the
global accuracy (GA), and the Matthews correlation
coefficient (C):

SE ¼ TP
TP þ FN

ð1Þ

SP ¼ TN
TN þ FP

ð2Þ

PRE1 ¼ TN
TN þ FP

ð3Þ

PRE2 ¼ TN
TN þ FN

ð4Þ

GA ¼ TP þ TN
TP þ TN þ FP þ FN

ð5Þ

C ¼ TPxTN � FNxFP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FNð Þ TN þ FPð Þp

ð6Þ
GA and C are two important indicators for classifica-

tion accuracy.

Principal component analysis (PCA) for ACD, MDDR and
TCMCD
The principal component analysis was performed using
the MOE molecular simulation package. All descriptors
listed in Additional file 1: Tables S1 and S2 were
included in PCA. The PCA were performed for the three
subsets (ACD4, MDDR3 and TCMCD3) that have the
same number of entries (33,961). Because ACD3,
MDDR1 and TCMCD3 were constructed to have similar
MW distributions, the three subsets in PCA also have
similar MW distributions. To ensure that the selected
subsets were representative, the means of important mo-
lecular properties were calculated for these randomly
generated subsets (ACD4, MDDR3 and TCMCD3). All
were found to be almost as the same as the values for
the complete datasets (ACD3, MDDR1 and TCMCD3).

Results and discussion
Distributions of important properties for ACD1, MDDR1
and TCMCD1
First, we performed profile analysis of eight important
molecular properties for all molecules with MW smaller
than 600 extracted from ACD, MDDR and TCMCD
(ACD1, MDDR1 and TCMCD1). These eight important
molecular properties, include logP, logD7.4, logS, MW,
nrot, PSA, nHBD and nHBA, are widely used in drug-
likeness analysis and ADME predictions [33,34,39-42].
The distributions of these molecular properties for
ACD1, MDDR1 and TCMCD1 are shown in Figure 1.
The mean values of all descriptors listed in Additional
file 1: Table S1 are displayed in Table 1.



Figure 1 The distributions of eight important molecular property descriptors for ACD1, MDDR1 and TCMCD1.
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Table 1 The mean values of different properties for ACD, MDDR and TCMCD

No. Descriptors ACD MDDR TCMCD

1 2 3 1 2 1 2 3

<600 <800 <600 <600 <800 <600 <800 <600

1 AlogP 2.29 2.30 3.84 3.24 3.30 2.84 2.73 3.02

2 logD7.4 1.78 1.79 3.45 2.71 2.77 2.53 2.41 2.71

3 logS −3.76 −3.79 −6.00 −5.51 −5.76 −4.34 −4.41 −4.71

4 MW 270 272 398 400 425 366 403 400

5 NHBA 3.22 3.24 4.41 4.83 5.22 5.27 6.32 5.82

6 NHBD 1.25 1.26 1.24 1.64 1.82 2.12 2.72 2.33

7 Nrot 4.28 4.32 6.08 6.45 7.02 4.44 5.08 4.88

8 PSA 61.4 61.8 81.3 88.2 95.4 84.5 99.7 92.4

9 NHBAL 3.88 3.90 5.33 6.02 6.51 5.50 6.48 6.04

10 NHBDL 1.54 1.55 1.39 1.83 2.01 2.14 2.74 2.35

11 MSA 262 264 365 382 406 358 394 390

12 NC 13.5 13.6 19.6 21.2 22.4 20.3 22.4 22.2

13 NN 1.94 1.94 2.30 2.89 3.03 0.477 0.300 0.459

14 NO 1.94 1.96 3.03 3.12 3.48 5.03 6.18 5.59

15 NHalogen 0.655 0.658 1.12 0.647 0.664 0.139 0.0130 0.154

16 NAtom 18.3 18.4 26.5 28.2 29.9 26.1 28.9 28.5

17 NBonds 19.2 19.3 28.5 30.6 32.5 28.3 31.5 31.0

18 Npositive 0.0478 0.048 0.0706 0.0519 0.056 0.0348 0.017 0.0347

19 Nnegative 0.0508 0.052 0.0797 0.0696 0.074 0.0341 0.012 0.0341

20 NSpiro 0.00428 0.0040 0.0101 0.0200 0.021 0.0388 0.042 0.0459

21 NBHA 0.0229 0.0240 0.0355 0.106 0.121 0.456 0.542 0.503

22 NRingb 10.6 10.7 16.8 18.6 19.3 16.9 18.7 18.5

23 Naromatic 8.16 8.19 13.0 12.4 12.7 5.79 6.01 6.07

24 NBridge 0.0880 0.0930 0.139 0.456 0.555 1.75 2.13 1.92

25 NRings 1.92 1.93 3.00 3.41 3.52 3.27 3.59 3.58

26 NAR 1.43 1.44 2.27 2.19 2.25 0.999 1.03 1.05

27 NRA 1.65 1.66 2.43 2.52 2.59 1.51 1.67 1.61

28 NR3 0.0407 0.041 0.0198 0.0401 0.043 0.0770 0.0721 0.0823

29 NR4 0.00864 0.0090 0.00635 0.0427 0.044 0.0111 0.0120 0.0103

30 NR5 0.474 0.475 0.644 0.815 0.825 0.705 0.696 0.762

31 NR6 1.38 1.38 2.31 2.44 2.53 2.35 2.68 2.59

32 NR7 0.0154 0.015 0.0193 0.0625 0.062 0.0693 0.064 0.0735

33 NR8 0.00202 0.0020 0.00148 0.00356 0.0040 0.0128 0.020 0.0152

34 NR9+ 6.21E-4 8.27E-4 0.00285 0.00620 0.018 0.0425 0.043 0.0446

35 NChains 21.0 21.1 26.7 30.6 32.7 33.3 37.3 36.5

36 NChainA 8.51 8.55 12.7 13.5 14.0 12.0 13.3 13.1

37 NStereo 0.550 0.561 0.720 1.25 1.49 4.14 5.12 4.76

38 NStereoB 0.163 0.166 0.442 0.493 0.524 1.06 1.09 1.13

39 SC0 18.3 18.4 26.5 28.2 29.9 26.0 28.9 28.4

40 SC1 19.2 19.3 28.5 30.6 32.5 28.3 31.5 31.0

41 SC2 26.1 26.3 40.0 43.2 45.9 42.9 48.1 47.4

42 SC3P 32.0 32.3 51.5 56.5 60.0 60.0 67.8 66.9

43 SC3C 6.20 6.25 9.88 10.7 11.5 13.6 15.4 15.4

44 SC3CH 0.0407 0.041 0.0198 0.0401 0.043 0.0770 0.072 0.0823
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There is remarkable difference in the distributions be-
tween ACD1 and MDDR1. The mean values of MW for
ACD1 and MDDR1 molecules are 270 ± 68.8 and 400 ±
95.5, respectively. The mean value of MW for TCMCD1
molecules is 366 ± 113.6, which is quite close to that of
drug-like molecules in MDDR1 while significantly higher
than that of non-drug-like molecules in ACD1. As
shown in Figure 1, the MW distribution of TCMCD1 is
highly overlapped with that of MDDR1 and slightly
skewed toward lower molecular weights. Feher and co-
workers also observed that the MW distribution of nat-
ural compounds peaks at a similar position as drugs.
However, after inspecting the results reported by Feher
et al. [8], we found that our results were quite different
from the previous observations. In Feher’s work, the
MW distributions of drugs and natural compounds are
quite different although they peak at a similar position.
According to the Feher’s results, the mean molecular
weights for drugs and natural compounds are 340 and
414, respectively, which are obviously different from
those shown in Table 1. In Feher’s analysis, the numbers
of drugs and natural compounds are quite limited
(10,968 and 3278, respectively), which might not guaran-
tee the reliability of their results.
For the molecular descriptors studied here, three of

them are related to hydrophobicity of a molecule: logP,
logD7.4 and logS. The distributions of these three
descriptors for ACD1, MDDR1 and TCMCD1 are shown
in Figure 1. The mean values of logP for MDDR1 versus
ACD1 are 3.24 and 2.29, respectively, which reflects the
fact that the mean MW of ACD1 is much smaller than
those of MDDR1 and TCMCD1 since small molecules
are usually less hydrophobic. The average values of
logD7.4 for MDDR1 versus ACD1 are 2.71 and 1.78, re-
spectively. As shown in Figure 1 and Table 1, molecules
in TCMCD1 (the mean values of logP and logD7.4 for
TCMCD1 are 2.84 and 2.53, respectively) are a little
more lipophilic than drug-like molecules in MDDR1 but
much more hydrophobic than non-drug-like molecules
in ACD1. To summarize, the distributions of logP and
logD7.4 of TCMCD1 are closer to those of MDDR1 than
those of ACD1.
The calculated mean values of logS for MDDR1,

ACD1 and TCMCD1 are around −5.51, -3.76 and −4.34,
respectively. From the distributions of logS for MDDR1
and ACD1 shown in Figure 1, we conclude that logS is a
better descriptor than logP and logD7.4 to discriminate
ACD1 from MDDR1. Obviously, drug-like molecules in
MDDR1 show an obvious tendency towards decreased
solubility. Overall, molecules in TCMCD1 are more sol-
uble than those in MDDR1 while less soluble than
those in ACD1. However, interestingly, at high logS
range (> − 1.75), TCMCD1 (9.6%) has higher percentage
than ACD1 (6.9%); moreover, at low logS range (<−6.0),
TCMCD1 (26.7%) also has higher percentage than
ACD1 (13.5%). It is obvious that TCMCD1 has a wider
distribution of logS than ACD1.
Three descriptors, including PSA, nHBD and nHDA,

represent the electrostatic or H-bonding features of a
molecule. The mean values of PSA for MDDR1,
TCMCD1 and ACD1 are 88.2, 84.5 and 61.4, respect-
ively. As shown in Figure 1, the PSA distribution of
TCMCD1 is quite similar to that of MDDR1, but is
slightly skewed toward higher value. The mean values of
nHBD and nHBA are listed in Table 1 and their distribu-
tions are displayed in Figure 1. The mean values of
nHBD and nHBA for TCMCD1 compounds are 2.12 and
5.27, respectively, which are slightly larger than those
for MDDR1 compounds (1.64 and 4.83) while substan-
tially larger than those for ACD1 compounds (1.25 and
3.22). An examination of the frequency of occurrence of
elemental composition (Table 1) shows that TCMCD1
has much fewer nitrogen atoms than MDDR1 and
ACD1, but has much more oxygen atoms than MDDR1
and ACD1. On average, the total number of oxygen and
nitrogen atoms for ACD1, MDDR1, and TCMCD1 are
3.84, 6.01, and 5.50, respectively. Therefore, in compari-
son with ACD1, natural compounds in TCMCD1 have
significantly more polar functions groups which can act
as H-bond acceptors.
The distributions of the number of rotatable bonds for

ACD1, MDDR1 and TCMCD1 are shown in Figure 1,
with the mean numbers given in Table 1. All the studied
datasets follow an asymmetrical Gaussian distribution.
The mean numbers of rotatable bonds for ACD1,
MDDR1 and TCMCD1 are 4.28, 6.45 and 4.44, respect-
ively. Moreover, compared with ACD1, TCMCD1 is
more skewed to lower values. Considering that the mean
MW of TCMCD1 is significantly larger than that of
ACD1, natural compounds in TCMCD1 are substantially
more rigid than compounds in ACD1. It is well-known
that the flexibility of a molecule is essential to determine
its binding capacity in the active site of a target. In
principle, when two molecules with different flexibility
can form the same interaction patterns with a target, the
rigid molecule usually has stronger binding affinity than
the flexible one due to lower entropic loss [8]. Therefore,
molecules in TCMCD1 have thermodynamic advantages
to achieve more favorable binding properties than those
in ACD1 and MDDR1. Our observations for TCMCD1
are also consistent with the results reported by Feher
and Schmidt [8]. They found that the dataset of 3287
natural compounds has a steadily decreasing distribution
from the peak to zero rotatable bonds. The prevalence
of rings was believed to be another measurement for the
rigidity of molecules. There are 14 descriptors in Table 1
to characterize the ring systems in molecules. As can be
seen from Table 1, the mean number of bonds in
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aromatic rings of TCMCD1 (5.79) is obviously lower
than those of MDDR1 (12.4) and ACD1 (8.16), and the
mean number of bonds in ring systems (16.9) of
TCMCD1 is slightly lower than that (18.6) of MDDR1
while significantly larger than that of ACD1 (10.6).
Therefore, natural compounds in TCMCD1 are on aver-
age much more saturated than non-drug-like molecules
in ACD1 and drug-like molecules in MDDR1. The most
apparent difference between natural compounds in
TCMCD1 and other molecules is the greater mean value
of bonds in bridgehead ring systems (any rings that
share more than one bond in common). The averaged
number of bonds in bridgehead ring systems (1.75) of
TCMCD1 is significantly larger than those of MDDR1
(0.456) and ACD1 (0.088). That is to say, even when the
number of rings in TCMCD1 is smaller than that in
MDDR1, the rings in TCMCD1 are frequently linked to-
gether to form more complicated ring systems. Cer-
tainly, the complicated ring systems of natural molecules
in TCMs have positive contribution to stabilize the
molecules. Moreover, the higher percentages of stereo
atoms and stereo bonds (4.14 and 1.06) for natural com-
pounds in TCMCD1, in contrast to 1.25 and 0.49 in
MDDR1 and 0.55 and 0.16 in ACD1, also reflect the dif-
ference in structural complexity: natural compounds in
TCMCD1 are obviously more complicated than those in
MDDR1 and substantially more complicated than those
in ACD1.
In summary, if all molecules with MW< 600 were

included in analysis, the property distributions of TCMCD1
are remarkably different from those of ACD1, and quite
similar to those of MDDR1. However, when comparing
MDDR1 and TCMCD1, one still can find some apparent
differences. For example, on average, TCMCD1 contains
about 2 less rotatable bonds, 1.9 more oxygen atoms, 2.4
less nitrogen atoms, 6.6 less aromatic bonds, 1.3 more
bonds in bridgehead ring systems, and about 2.9 more
stereo atoms than MDDR1. As a comparison study, the
mean values of the molecular property descriptors for the
molecules with MW less than 800 (ACD2, MDDR2 and
TCMCD2) were also summarized in Table 1. It is obvious
that two different MW cutoffs lead to consistent conclu-
sions. In brief, natural compounds in TCMCD2 are more
complicated than drug-like molecules in MDDR2 and non-
drug-like molecules in ACD2.

Distributions of important properties for ACD3, MDDR1
and TCMCD3
According to the profile analysis of the property distri-
butions in the previous section, it appears that TCMCD1
is much closer to MDDR1 than ACD1. Therefore,
TCMCD may be a good source of lead or drug-like
molecules. It must be noted that ACD1, MDDR1 and
TCMCD1 have quite different MW distributions as
shown in Figure 1. Considering that a lot of molecular
properties are closely related to MW, it is possible that
the distribution difference shown in Figure 1 is simply
caused by the influence of MW. In order to uncover the
fundamental difference of the important molecular prop-
erties among MDDR, ACD and TCMCD, we extracted
two subsets from ACD1 and TCMCD1, namely, ACD3
and TCMCD3, which have similar MW distributions to
MDDR1; then we performed profile analysis of the
selected molecular properties for ACD3, MDDR1 and
TCMCD3. As shown in Figure 2 and Table 1, the MW
distributions and the mean values of MW for ACD3,
MDDR1 and TCMCD3 (398, 400 and 400, respectively)
are almost the same, and therefore we believe that the
dependence of property distributions on MW can be
effectively eliminated. The distributions of eight import-
ant molecular properties are shown in Figure 2 and the
mean values for all descriptors are summarized in
Table 1.
The distributions of logP and logD7.4 for ACD3,

MDDR1 and TCMCD3 are shown in Figure 2, with the
mean values listed in Table 1. Compared with TCMCD1,
the mean logP of TCMCD3 increases slightly from 2.84
to 3.02; while the mean logP of ACD3 increases greatly
from 2.29 to 3.84 compared with that of ACD1. There-
fore, when ACD3 and MDDR1 have similar MW distri-
butions, the average value of logP for non-drug-like
molecules is even larger than that of drug-like mole-
cules. Similar finding was also observed for logD7.4: the
mean value of logD7.4 for ACD3 also increases from 1.78
to 2.71, while that of TCMCD3 only changes a little.
That is to say, if ACD3 and MDDR1 have similar MW
distributions, ACD compounds are even more hydro-
phobic than MDDR compounds. This finding supports
our rational hypothesis that the low mean values of logP
and logD7.4 for ACD1 are caused by much more low
MW molecules in the dataset.
The distributions of calculated logS for the three

groups of compounds are shown in Figure 2. It is notice-
able that if ACD3 and MDDR1 have similar MW distri-
butions, MDDR1 compounds are more soluble than
ACD3 compounds. Obviously, the logS distribution of
ACD is closely related to the MW distribution. This ob-
servation is understandable because MW is an import-
ant descriptor for the prediction of solubility [43].
Correlation analysis shows that MW of ACD has an ob-
vious anti-correlation with solubility: logS = −0.0097 ×
MW-0.78 (r = −0.43), indicating that molecules with
lower MW usually have better solubility. Therefore,
when ACD3 shifts to higher MW than ACD1, the solu-
bility, on average, becomes worse. As demonstrated in
Table 1 and Figure 2, we concluded that natural com-
pounds in TCMCD3 are more soluble than drug-like
molecules in MDDR1 and non-drug-like molecules in



Figure 2 The distributions of eight important molecular property descriptors for ACD3, MDDR1 and TCMCD3.
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ACD3. The higher solubility of TCMCD3 may be par-
tially explained by the higher occurrence of oxygen
atoms in TCMCD3. The mean numbers, given in Table 1,
show that TCMCD3 (5.59) has more oxygen atoms than
MDDR1 (3.12) and ACD3 (3.03). According to the atom
additive prediction model of solubility developed in our
group [43], the positive contribution of oxygen element
is very significant, and even much higher than that of ni-
trogen element, and therefore more oxygen atoms give
more favorable contributions to solubility.
The average numbers of H-bond donors and acceptors

for ACD3, MDDR1 and TCMCD3 are listed in Table 1,
and their distribution curves are displayed in Figure 2.
The mean numbers of H-bond donors and acceptors
(2.33 and 5.82) of natural compounds in TCMCD3 are
the highest in contrast to ACD3 (1.24 and 4.41) and
MDDR1 (1.64 and 4.83). Interestingly, the mean number
of H-bond donors of ACD3 is comparable to that of
ACD1, while the mean number of H-bond acceptors
increases significantly from 3.22 for ACD1 to 4.41 for
ACD3. However, the mean numbers of H-bond donors
and acceptors for ACD3 are still lower than those for
MDDR1, which are 1.64 and 4.83, respectively. In con-
clusion, compared with non-drug-like molecules in
ACD3 and drug-like molecules in MDDR1, natural com-
pounds in TCMCD3 have the best H-bonding capabil-
ities, indicated by the highest mean numbers of H-bond
acceptors (5.82) and H-bond donors (2.33) and margin-
ally higher mean polar surface area (92.4). Again this ob-
servation can also be explained by the highest mean
number of oxygen atoms in TCMCD3.
The percentage distributions of the number of rotat-

able bonds for ACD3, MDDR1 and TCMCD3 are shown
in Figure 2, with the average numbers given in Table 1.
For the number of rotatable bonds, the average value
increases from 4.28 for ACD1 to 6.08 for ACD3, which
is just slightly lower than that for MDDR1 (6.45). Mean-
while, compared with TCMCD1, the average number of
rotatable bonds for TCMCD3 only slightly increases
from 4.44 to 4.88. Therefore, compared with molecules
in ACD3 and MDDR1, natural compounds in TCMCD3
are obviously more rigid.
In summary, when three subsets of ACD, MDDR and

TCMCD (ACD3, MDDR1 and TCMCD3) have similar
MW distributions, the difference of the property distri-
butions between ACD3 and MDDR1 is not very signifi-
cant compared with that between ACD1 and MDDR1
(Figures 1 and 2 and Table 1). On the other hand,
the distributions of several molecular properties for
TCMCD3 show substantial difference to those of ACD3
and MDDR1, and these important properties include
solubility, the number of nitrogen atoms, the number of
oxygen atoms, the number of halogens, the number of
bridgehead atoms connecting a bridge to a ring, the
number of bonds in aromatic rings, the number of
bridgehead bonds connecting a bridge to a ring, the
number of rotatable bonds, the number of H-bond
acceptors or donors, etc. In brief, TCMCD3 compounds
are slightly more hydrophilic than MDDR1 compounds
and greatly more hydrophilic than ACD3 compounds,
more soluble and more rigid than MDDR1 and ACD3
compounds, and have more complicated structures, es-
pecially ring systems, than MDDR1 and ACD3 com-
pounds. Ten representative molecules with complicated
structures in TCMCD3 are illustrated in Figure S1 in the
supporting materials.

If we can develop reliable simple filters to distinguish
drug-like from non-drug-like and evaluate the
drug-likeness of TCMCD?
According to the analysis and discussion in the previous
section, we observe that the distributions of some im-
portant molecular properties for drug-like and non-
drug-like molecules do not have substantial difference
when the two datasets have similar MW distributions.
At this point, one may raise the following question: if
drug-like and non-drug-like molecules can be distin-
guished by using simple property-based filters. In all
these drug-like filters, Lipinski’s Rule-of-Five is the most
famous one [2]. However, Rule-of-Five has been proven
to be not effective to distinguish drugs from non-drugs
[3]. When the violation number of Rule-of-Five less or
equal to 1 was defined as the cutoff of drug-likeness,
86.8% of ACD3 molecules, 88.3% of MDDR1 molecules
and 85.4% of TCMCD3 were identified to be drug-like.
That is to say, when drug-like, non-drug-like and natural
compounds have similar MW distributions, Rule-of-Five
does not have any prediction capability to distinguish
drug-like from non-drug-like molecules. Opera devel-
oped a set of filters including RNG (the number of rings)
and RGB (rigid bonds) for defining drug-likeness in
order to overcome the limitation of Rule-of-Five. They
found that 63% of ACD compounds have 0 ≤ RNG ≤ 2
and RGB ≤ 17, while 29% of ACD compounds have 3 ≤
RNG ≤ 13 and 18 ≤ RGB ≤ 56. In contrast, 61% of MDDR
compounds are in the space of dimension with RNG ≥ 3
and RGB ≥ 18, and only 25% of MDDR compounds are
located in the range of 0 ≤ RNG ≤ 2 and RGB ≤ 17 [3].
Here, we also applied RNG and RGB filters to evaluate
the ACD, MDDR, and TCMCD databases. If the ACD1,
MDDR1 and TCMCD1 subsets (MW < 600) were used,
76.3% of ACD1 molecules, 14.0% of MDDR1 molecules
and 23.6% of TCMCD1 molecules have 0 ≤ RNG ≤ 2 and
RGB ≤ 17, while 17.3% of ACD1 molecules, 74.3% of
MDDR1 molecules and 63.1% of TCMCD1 molecules
have RNG ≥ 3 and RGB ≥ 18. That is to say, most mole-
cules in MDDR1 and TCMCD1 are drug-like while most
molecules in ACD1 are non-drug-like. However, if the



Figure 3 The plot of the first two principal components for (a)
ACD4, (b) MDDR3 and (c) TCMCD3.
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three subsets, ACD3, MDDR1 and TCMCD3, with simi-
lar MW distributions were used, 29.8% of ACD3 mole-
cules, 14.0% of MDDR1 molecules and 13.6% of
TCMCD3 molecules have 0 ≤ RNG ≤ 2 and RGB ≤ 17
while 59.5% of ACD3 molecules, 74.3% of MDDR1
molecules and 72.1% of TCMCD3 molecules have
RNG ≥ 3 and RGB ≥ 18. That is to say, if ACD mole-
cules have similar MW distributions to MDDR mole-
cules, most ACD molecules (59.5%) were also
identified to be drug-like. Therefore, it is obvious that
the prediction accuracy of Opera’s filters for non-drug-
like molecules is closely related to the MW distribution
of the non-drug-like dataset. If the non-drug-like dataset
has the similar MW distribution to the drug-like dataset,
the false positive rate of the Opera’s filters for non-
drug-like molecules is very high.
Then we evaluated the performance of 44 molecular

descriptors in Additional file 1: Table S1 and 16 size-
independent molecular descriptors in Additional file 1:
Table S2 to distinguish MDDR1 from ACD3. The classi-
fication performance of these descriptors is summarized
in Additional file 1: Tables S3 and S4 in the supplemen-
tary materials. For all these molecular descriptors, most
of them do not show any classification capability, and
only five of them can achieve global classification accur-
acy higher than 0.60. The top six descriptors for distin-
guish MDDR1 from ACD3 are FASA-, C3, C3P,
PEOE_VAS_FPOS, PEOE_VAS_FNEG and UNC_C3.
However, it is interesting to find that C3P underper-
forms than FASA-, and UNC_C3 performs worst in the
top six descriptors. As shown in Additional file 1: Table
S4, the global accuracy (GA) of FASA- is around 62.6%.
According to the definition, FASA- is the fractional
water accessible surface area of all atoms with negative
partial charge. In a molecule, the polar atoms (such as
O, S, N, etc.) usually have negative charges. If FASA-
smaller than 0.339 was used as a drug-likeness filter,
~62% of MDDR1 molecules were identified to be drug-
like, while only ~38% of ACD3 molecules to be drug-
like. Evaluated by FASA- (<0.339), ~85.9% (29167/
33961) of molecules in TCMCD3 can be identified as
drug-like molecules. That is to say, the percentage of
drug-like molecules in TCMCD3 is even higher than
that in MDDR1. Obviously, FASA- is not a reliable filter
to discriminate drug-like from non-drug-like molecules,
but our analysis indicates that TCMCD may be a good
source of drug-like molecules.

Principle component plots for ACD, MDDR and TCMCD
The property distributions shown in Figure 2 and the
mean values of the studied molecular descriptors sum-
marized in Table 1 demonstrate that some property
distributions of natural compounds in TCMCD are
substantially different from those in ACD and MDDR
even when TCMCD3, MDDR1 and ACD3 have similar
MW distributions.
In order to characterize the spatial distribution of ACD3,

MDDR1 and TCMCD3 with similar MW distributions, we
conducted PCA for ACD4, MDDR3 and TCMCD3. It is
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pointed out that ACD4 and MDDR3 are randomly selected
from ACD3 and MDDR1, respectively. All the three data
sets, ACD4, MDDR3 and TCMCD3 have the same num-
bers of molecules (33,961) with similar MW distributions.
The plot of the first two principle components is shown in
Figure 3. The first two components explain about 41.9% of
the variance, and the first three explain about 54.0%. In Fig-
ure 3, it is apparent that the ACD4 and MDDR3 databases
cover similar space. Therefore, when the ACD and MDDR
databases share similar MW distributions, the property pro-
files of these two databases (ACD4 and MDDR3) do not
have significant difference in general. However, the distribu-
tion pattern of TCMCD3 in Figure 3 is substantially differ-
ent from those of ACD4 and MDDR3. Moreover, it appears
that TCMCD3 has more diverse distribution in principal
component plot than ACD4 and MDDR3. Our finding is
very interesting because it demonstrates that natural com-
pounds in TCMCD3 have different and even more diverse
distributions than either drug-like compounds in MDDR3
or non-drug-like compounds in ACD4 when TCMCD3,
MDDR3 and ACD4 have similar MW distributions. We be-
lieve that some molecules in TCMCD can fall into the
chemical space not covered by MDDR and ACD.

Conclusion
To evaluate the drug-likeness of natural compounds
from traditional Chinese medicines quantitatively, we
have examined three compound collections, including
ACD, MDDR and TCMCD, with respect to the distribu-
tion profiles of a variety of molecular descriptors. The
comparison of property distributions for ACD1 and
MDDR1 shows that the distributions of the important
physicochemical properties for drug-like and non-drug-
like molecules have intrinsic difference, but those for
TCMCD1 are much more similar to those of MDDR1
than those of ACD1.
In order to remove the dependence of molecular weight

on the analysis, we generated three subsets of ACD,
MDDR and TCMCD, namely ACD3, MDDR1 and
TCMCD3, with similar MW distributions and conducted
the distribution analysis of the representative physico-
chemical properties. The analysis demonstrates that the
property distributions of drug-like and non-drug-like
molecules do not differ significantly anymore, implying
that a single molecular property may not be used as a ef-
fective filter to distinguish drug-like from non-drug-like
molecules. Compared with ACD3 and MDDR1, TCMCD3
still shows substantial difference for several molecular
properties. On average, TCMCD3 compounds are a little
more hydrophilic than MDDR1 compounds and substan-
tially more hydrophobic than ACD3 compounds, more
soluble and more rigid than MDDR1 and ACD3 com-
pounds, and have more complicated structures, especially
ring systems, than MDDR1 and ACD3 compounds.
Then, we quantitatively characterized the performance
of each molecular descriptor to distinguish drug-like
from non-drug-like molecules. In all these studied
descriptors, the fractional negative accessible surface
area (FASA-) outperforms the others. If FASA- was used
as a drug-likeness filter, most molecules in TCMCD3
were identified to be drug-like. Finally, a PCA-based
scheme was used to characterize the spatial distributions
of molecular properties for the three classes of com-
pounds. The principal component plots show that nat-
ural compounds in TCMCD3 have different and even
more diverse distributions than either drug-like com-
pounds in MDDR3 or non-drug-like compounds in
ACD4 when TCMCD3, MDDR3 and ACD4 have similar
MW distributions.
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