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Abstract

Tonic sympathetic arousal is often inferred from spontaneous fluctuations in skin conductance, and this relies on

assumptions about the shape of these fluctuations and how they are generated. We have previously furnished a

psychophysiological model for this relation, and an efficient and reliable inversion method to estimate tonic arousal

from given data in the framework of dynamic causal modeling (DCM). Here, we provide a fast alternative inversion

method in the form of a matching pursuit (MP) algorithm. Analyzing simulated data, this algorithm approximates the

true underlying arousal up to about 10 spontaneous fluctuations per minute of data. For empirical data, we assess

predictive validity as the ability to differentiate two known psychological arousal states. Predictive validity is

comparable between the methods for three datasets, and also comparable to visual peak scoring. Computation time of

the MP algorithm is 2–3 orders of magnitude faster for the MP than the DCM algorithm. In summary, the new MP

algorithm provides a fast and reliable alternative to DCM inversion for SF data, in particular when the expected

number of fluctuations is lower than 10 per minute, as in typical experimental situations.

Descriptors: Electrodermal, Anxiety, Normal volunteers

Spontaneous fluctuations (SF) in skin conductance (also termed

nonspecific electrodermal responses) are commonly used to infer a

central state of tonic sympathetic arousal (tSA) (Boucsein, 2012),

for example, due to cognitive load, stress, or anxiety (Bach & Erd-

mann, 2007; Bach, Erdmann, Schmidtmann, & Monnikes, 2006;

Erdmann & Baumann, 1996). The number of SF per time unit is

among the most widely used indices of tSA (Boucsein, 2012) and is

a better predictor of anxiety than the amplitude of SF (Bach, Friston,

& Dolan, 2010). However, the identification of SF from skin con-

ductance recordings is nontrivial and requires assumptions about

their shape, often embodied in the expertise of researchers perform-

ing visual scoring (Boucsein, 2012). At the same time, beyond

amplitude thresholds there is no clear community consensus on for-

malized assumptions or analysis algorithms (Boucsein et al., 2012).

We have previously furnished a formal approach to fully auto-

mated analysis that removes subjective and potentially biasing ele-

ments embedded in visual inspection or semiautomated analysis of

SF. This approach is embodied in a psychophysiological model

(PsPM) of how tSA causes SF: tSA!SF. This model can be

inverted probabilistically to directly infer the most likely tSA,

given skin conductance measurements (Bach, Daunizeau, Kuel-

zow, Friston, & Dolan, 2011). Similar approaches have been pro-

posed for inferring phasic SA (Bach, Daunizeau, Friston, & Dolan,

2010; Bach et al., 2011; Bach, Flandin, Friston, & Dolan, 2009;

Bach & Friston, 2013; Bach, Friston, & Dolan, 2013).

Our PsPM splits up the relation tSA!SF into two relations:

tSA!SN!SF, where SN stands for the sudomotor nerve activity

that causes SF. A neural model tSA!SN defines how SA gener-

ates SN activity. Physiological investigation has demonstrated that

SF occur in the absence of external events, and are preceded by

compact firing bursts of SN activity, innervating the respective

skin region (Macefield & Wallin, 1996; Ogawa & Sugenoya, 1993;

Sugenoya, Iwase, Mano, & Ogawa, 1990). The neural model there-

fore defines compact short SN bursts, the number of which is a lin-

ear function of tSA. The peripheral model SN!SF is a biophysical

model that specifies how SN activity generates SF in the form

SF 5 SN*SCRF, where * is the convolution operator, and SCRF is

a “canonical” skin conductance response function.

Because the onset of SN is not specified in this PsPM, linear

methods are difficult to apply for model inversion. Consequently,

the PsPM is formulated in terms of nonlinear dynamic equations,

and inverted by a variational Bayes algorithm developed in the

framework of dynamic causal modeling (DCM; Daunizeau,
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Friston, & Kiebel, 2009). While this method produces reliable and

sensitive estimates of tSA, the inversion requires evaluation of

high-dimensional multivariate probability distributions and is nec-

essarily slow. Here, we sought to develop and evaluate a fast inver-

sion routine that closely approximates the tSA estimates derived by

DCM inversion.

Matching pursuit (MP) is a machine-learning algorithm that

seeks to decompose data into a small set of functions (termed

atoms), defined in an overcomplete set of possible functions

(termed dictionary; Mallat & Zhang, 1993). In our case, the dic-

tionary consists of all individual SF that could possibly be gener-

ated under the previously defined PsPM. The dictionary is

iteratively searched by a time-efficient, heuristic algorithm. On

each iteration, the algorithm identifies one atom that on its own

explains the maximum variance in the data. The contribution of

this atom is then subtracted from the data, and the next iteration

starts. The algorithm only considers one atom at a time and selects

the best individual atom. This means it can possibly miss a combi-

nation of atoms that together better explain the data but in which

the individual atoms explain less variance. Algorithms combining

locally optimal solutions rather than optimizing the final solution

are termed greedy in the machine learning literature. Such algo-

rithms are suboptimal by design but often simpler and/or faster

than other classes of algorithms.

In order to count the number of SF, our previous DCM uses an

amplitude criterion as generally recommended (Boucsein et al.,

2012). Hence, a precise amplitude estimate is required for each

SF. To achieve this, we complemented the MP algorithm by

subsequently reestimating the contribution of all identified atoms

simultaneously. In summary, we hypothesized that MP could

provide an approximation to the set of SF that most likely consti-

tutes the measured data and thereby achieve the same goal as the

original DCM algorithm, presumably with less precision but much

faster.

Hence, in the present paper, we sought to investigate the inver-

sion results and the computation time required by these two algo-

rithms. First, we report the precision with which both algorithms

detect the known structure of simulated data. Second, we analyze

three datasets of skin conductance recordings during public speak-

ing anticipation and mental load to examine the sensitivity of the

algorithms to infer tSA, that is, their predictive validity.

Method

Simulated Data

Simulated data were required to fulfill three criteria: (1) They

should be generated under the same PsPM used for data analysis in

order to benchmark the algorithms under noiseless conditions, (2)

the number of SF per data segment should reflect a certain range

such as to evaluate the algorithm in different situations, and (3)

simulated SN firing should occur in separable, compact bursts to

reflect physiological SN firing. Burst separability is not required in

the PsPM and is therefore an additional criterion.

We simulated 30,000 SN traces of 60-s duration and 10 Hz

sampling frequency, containing between 1 and 30 spontaneous SN

bursts, modeled as Gaussian bumps with 0.3 s standard deviation.

SN traces were then entered into the peripheral ordinary differential

equation model described in Bach et al., 2011, to generate synthetic

skin conductance data. Amplitude of the SN bursts was randomly

drawn from a uniform distribution between 0.1 and 2.0 units, where

an SN burst with unit amplitude causes an SF with 1 mS amplitude.

Onset of the SN bursts was iteratively generated from a Poisson

process; that is, their occurrence was uncorrelated, with the restric-

tion that bursts were separated by at least 1 s. Burst frequencies

ranged from 1 to 30 per minute. Starting with the lowest burst fre-

quency, we used the reciprocal of each desired burst frequency as

mean parameter for an exponential distribution from which we ran-

domly drew interburst intervals and added 1 s. Resulting burst

onset sequences were then binned according to the number of SN

bursts they contained. We used the first 1,000 sequences generated

for each desired number of SN bursts.

Participants

We reanalyzed two public speaking datasets from the same labora-

tory, both of which are based upon a similar paradigm and were

used to develop the DCM method (Bach et al., 2011). A third (as

yet unpublished) dataset was obtained to explore the predictive

validity of the algorithms to infer tSA under mental load. Dataset 1

served as training dataset, which we used to optimize the amplitude

threshold for counting SF. Datasets 2 and 3 served as independent

validation datasets.

Dataset 1 contained four measurements from each of 40 healthy

male university students (18–35 years) who participated in a public

speaking anticipation paradigm with a repeated measures factorial

design (Bach & Erdmann, 2007). Focus of the study was the interac-

tion of habitual and situational symptom focusing, operationalized

as attention toward neck muscle tension. The main experimental

manipulation had no effect on indices of skin conductance, and data

from the different experimental groups were combined for the pres-

ent analysis, where we focus on the effect of the public speaking

treatment. There were two baseline measurements, one measure-

ment after the announcement of a public speech, and another after

disclosure of the speech topic. This manipulation was originally car-

ried out in order to separate effects of anxiety and cognitive load.

Dataset 2 included four measurements for each of 32 healthy

female university students (19–29 years) who underwent a similar

public speaking experiment in a between-subjects design. That is to

say, half of the participants were to deliver a public speech, and the

other half a speech without an audience. There was one baseline

measurement, one measurement after announcement of the speech,

one after disclosure of the topic, and one immediately before the

speech. Fourteen of 128 epochs contained motion artifacts and

were excluded, which removed one participant from analysis alto-

gether for whom the baseline period could not be used.

In Dataset 3, 20 healthy participants (18–28 years, 11 female)

were assigned on a between-subject level to either an arithmetic or

an attention task. Each subject underwent both a resting and a treat-

ment condition. In the arithmetic task, participants were tasked to

mentally add three seven-digit numbers that were displayed on a

computer screen. They were informed that the experimenter would

provide them with pen and paper 2 min after display onset to write

down the result. In the corresponding attention task, the same three

numbers were presented for 2 min with the instruction to attend

them. Additionally, each participant was instructed to relax for

another 2 min in front of a blank computer screen. Order of the

resting and treatment epochs was balanced across participants

within the two conditions.

SCR Recordings and Preprocessing

After skin cleansing with propanol (Dataset 1, 2 only) and a resting

period of 30 min to allow for electrolyte equilibrium, skin
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conductance was recorded on thenar/hypothenar of the nondomi-

nant hand using 8 mm Ag/AgCl cup electrodes (Coulbourn, White-

hall, PA) and 0.5% NaCl electrode gel (Par, Berlin, Germany); 0.5

V constant voltage was provided by a S77-21 coupler (Coulbourn).

The signal was band-pass filtered (Dataset 1, 2 only, 0.0159 and 5

Hz), digitally converted with 10 Hz (Dataset 1), 100 Hz (Dataset 2),

or 1000 Hz (Dataset 3) sampling rate (DI-205, Dataq, Akron, OH),

and recorded (Windaq, Dataq). For Dataset 3, data were digitally

band-pass filtered (unidirectional Butterworth filter, 0.0159 and

5 Hz). All data were downsampled to 10 Hz resolution before

analysis.

MP Inversion

Creation of a dictionary. The overcomplete dictionary specifies

all SF that could possibly be observed under the forward model. In

order to specify these, we defined SN bursts as Gaussian bumps

with unit amplitude, 0.3 s standard deviation, centered on time

points ranging from 29 s relative to data onset to 11 s relative to

data offset in steps of 0.1 s, corresponding to the time resolution of

the data. These SN bursts were then used as input to the peripheral

model, embedded in an ordinary differential equation as specified

previously (see Appendix of Bach, Daunizeau, Kuelzow, Friston,

& Dolan, 2011). Note that this differential equation does not take

into account conduction delay. Conduction delay is subtracted

from SN burst latency estimates if the time point of central SF gen-

eration is required.

Greedy search algorithm. The matching pursuit algorithm finds

on each iteration the atom (g) from dictionary (D), which best

explains the residual signal (Rn), by maximizing the similarity

between the signal and the chosen atom. This similarity is quanti-

fied as signed inner product and reflects the amplitude of an SN.

The contribution of this atom to the residual signal is then sub-

tracted, and the new residual signal analyzed to find the next atom.

In pseudocode, the algorithm is:

R1 ¼ data; n 5 1

Repeat

find gcn
2 D that maximizes the inner product <gcn

;Rn >
an ¼< gcn

;Rn >
Rn11 ¼ Rn2angcn

n 5 n 1 1

until |Rn |2 < E or n>maxn, or an � 0

with E 5 (0.001N)1/2 and maxn 5 30 per minute of data

N: number of data points

In the original formulation of the MP algorithm, the absolute

inner product is maximized on each iteration (Mallat & Zhang,

1993)—this is maximizing the explained variance. However, nega-

tive weight values imply negative SF, which are biophysically

impossible. Therefore, only positive weights were accepted, which

is achieved by maximizing the signed inner product. Finally, the

indices of the matched dictionary atoms define the onset of the esti-

mated SF.

Our previous DCM modeled a fixed number of 30 SF per minute

of data. This is why we chose a maximum number of 30 SF of data

as a stopping criterion for the algorithm. Alternatively, if the resid-

ual sum of squares was below a threshold e, or new atoms with posi-

tive contribution could be identified, the algorithm would stop.

Reestimation of SF amplitude. When two SF overlap, the

greedy algorithm will overestimate the amplitude of one and under-

estimate the amplitude of the other, and this phenomenon can

impede scoring of above-threshold SF. Hence, in a final step, the

amplitudes (a) of all identified atoms (g) are reestimated by using

them as predictors in a multiple regression model and estimating

their respective weights. These weights then serve as amplitude

estimates of the SN bursts causing each SF. The number of above-

threshold bursts is taken as the estimate of tSA. This reestimation

is meant to improve scoring of above-threshold SF, not for precise

amplitude estimation of above-threshold SF.

The algorithm is freely available as function scr_sf_mp in the

software package PsPM (which includes the package SCRalyze)

and can be downloaded from http://pspm.sourceforge.net.

DCM Algorithm

For benchmarking, we inverted all simulated and experimental data

with a previously published DCM algorithm (Bach et al., 2011).

This algorithm finds the SN amplitude and onset parameters that

best explain the data, by considering all parameters simultaneously

using a variational Bayes approach (Daunizeau, Friston, & Kiebel,

2009). We modeled 30 SF per minute of data, analogous to the MP

settings and previous work. Inversion was performed using version

b2.1.8 of the package SCRalyze (http://pspm.sourceforge.net).

Visual Scoring

For comparison, all datasets were visually scored by a trained

expert. Files were automatically renamed with random file names,

such that the scorer was blind to the treatment condition. We used

the MS-DOS—based software Event Detection and Analysis

(E.D.A.; Kayser & Trosiener, 1993; Trosiener & Kayser, 1993)

within a Windows PowerShell. This program prepares analysis by

providing automated peak detection using the tool EventDetection;

visual scoring is done in a graphic interface using the tool Event-

Check. Initial threshold was 0.01 mS. Note that in a previous publi-

cation comparing DCM and visual scoring of Dataset 1 and 2,

visual analysis was done in the context of the original investiga-

tions and by different experts. To ensure comparability across all

three datasets, analyses for the present work were performed by the

same expert (MS).

Timing Considerations

To assess the computation time required for each inversion,

each dataset was sequentially inverted by DCM and by MP,

one immediately after the other. All computations were performed

on one core of a Dell Precision T3600 workstation with a 4-core

CPU (Intel Xeon E5-1620), a clock rate of 3.6 GHz, and 16 GB

RAM, operated under Windows 7 Professional and MATLAB

R2012b.

Simulation Benchmarking

In simulated data, ground truth is known. We report the estimated

number of SF as a function of the true number of SF, and the root

mean squared error (RMSE) between true and estimated number of

SF. For benchmarking of timing and amplitude estimates, we
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matched each estimated SF to the true SF that was closest in time,

starting with the pair of true/estimated SF with the smallest time

difference. Each true and each estimated SF was considered only

once. In case of mismatch in the number of true/estimated SF, this

procedure was continued until no pair could be formed any more.

We then computed the RMSE of amplitude and timing estimate for

these pairs, ignoring unmatched true/estimated responses, across all

simulations.

Empirical Data Benchmarking

Sensitivity of SCR analysis methods to recover a known ground

truth has been cast as a model comparison (Bach, Daunizeau, Fris-

ton, & Dolan, 2010; Bach et al., 2013), as a classification problem

(Bach, Friston, & Dolan, 2010), or as a search for the highest test

statistics for a given contrast (Bach et al., 2009; Barry, 1990).

These approaches are all equivalent in determining the most sensi-

tive method, but the model comparison approach also allows a

principled statement of whether a method is significantly more or

less sensitive than another method. Hence, we report sensitivity in

terms of a log Bayes factor (LBF)—the difference in log model

evidence between the MP results and the DCM results as reference.

According to the definitions used here, lower LBF indicates higher

model evidence (i.e., higher sensitivity to distinguish the two

experimental conditions).

Specifically, we used a general linear model with the contrast of

interest as the response variable, and the estimated SA as predictor.

Contrast of interest were (a) public speaking anticipation versus

rest for Dataset 1, (b) public speaking anticipation versus private

speaking anticipation for Dataset 2, (c) mental load versus rest for

Dataset 3, and (d) mental arithmetic versus attention for Dataset 3.

For between-subject contrasts 2 and 4, estimated tSA was calcu-

lated per participant as tSA(treatment) – tSA(rest). For contrasts 1

and 3, the design matrix included subject effects and the response

estimates per epoch. For contrast 2, tSA (treatment) was computed

as average tSA in the three public speaking conditions. For all con-

trast, the design matrix additionally included an intercept. This is

equivalent to an independent samples t test (contrasts 2/4) and a

paired t test (contrasts 1/3). In both cases, this approach tests

whether tSA estimates for the two different states are drawn from

distributions with different means. This approach allows computing

a residual sum of squares (RSS), which was converted to a negative

log likelihood value (NLL), such that smaller NLL values indicate

a higher predictive validity using the following relation taken from

Burnham and Anderson, 2004:

NLL ¼ n log
1

n
RSS

� �

where n is the number of observations. This disregards model com-

plexity, which was the same for all analyses of a particular dataset.

LBF is the difference in NLL between a given method and the ref-

erence method. Here, DCM with the currently recommended

amplitude threshold of 0.1 mS was used as reference method. An

absolute LBF of >3 is often regarded as decisive, by analogy to a

classic p value. If a classic test statistic falls into the rejection

region, the probability of the data given the null hypothesis is

p< .05. For an LBF> 3, the probability of the null hypothesis

given the data is 1/exp(3) � .05 (Penny, Stephan, Mechelli, & Fris-

ton, 2004; Raftery, 1995).

We also computed paired t tests for the winning amplitude

threshold, to facilitate an intuitive understanding of the difference

between the methods. LBF and t value are monotonically related—

higher t values translate to lower LBF and indicate higher

sensitivity.

Figure 1. Estimation of SF from simulated skin conductance data. A: True and estimated SF number. Dotted line: perfect correspondence between

true and estimated SF number. B: root mean squared error (RMSE) of the estimated SF number, in dependence on true number of SF. Dotted line:

RMSE predicted by a bias in SF number estimation using MP. C: RMSE of estimated SF number for 2 true SF, in dependence on their separation in

time. D: RMSE of SF amplitude estimates. E: RMSE of SF onset estimates. F: Computation time per minute of data (logarithmic scale).
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Results

Simulations

Inversion results for different true SF numbers per minute are

shown in Figure 1 The DCM inversion yields unbiased SF number

estimates for up to 20 SF, while MP starts to underestimate the true

SF number for 10 SF and more per minute. This bias almost

entirely explains the higher RMSE in the MP estimation of SF

number (Figure 1B).

We then analyzed how the separation in time of true SF affects

their estimation. For 2 SF per minute, the RMSE of the MP algo-

rithm is particularly high when the true SF are separated by less

than 4 s, while DCM is not particularly affected by the overlap of

true SF. On the other hand, RMSE of the DCM algorithm is partic-

ularly low when they are separated by more than 50 s, while MP

does not benefit from this separation in time.

SF amplitude and onset are not commonly analyzed but might

be of interest in special applications (Boucsein et al., 2012). The

RMSE of the DCM algorithm in terms of estimating amplitude and

onset does not depend on SF number. The RMSE of the MP algo-

rithm, however, increases linearly with SF number both for ampli-

tude and for onset estimation. For onset estimation, the maximum

RMSE is reached at about 15 SF per minute. Beyond that, RMSE

decreases—this is due to the fact that each estimated SF will be

matched with the closest true SF for analysis. As the number of SF

increases, the closest true SF will, on average, be closer in time.

While the MP algorithm performs generally worse in terms of

precision, it is also much faster. DCM computation time was in the

range of 10–100 s per minute of data and linearly increased with

the number of true SF (while the number of modeled SF was

always set to 30). In contrast, MP computation time was below

0.1 s per minute of data and hence 2–3 orders of magnitude

smaller.

Empirical Data

Figure 2 shows how the MP algorithm inverts an example epoch.

Inversion was terminated in most cases because no further atoms

with positive contribution could be identified (90, 105, and 30

cases for the three datasets, respectively), and in the remaining

cases because the squared error criterion was fulfilled (70, 55, and

10 cases for the three datasets, respectively). The algorithm never

reached the maximum allowed number of SF.

Following model inversion with DCM and MP, we analyzed

how amplitude thresholds for counting SF affect predictive validity

in Dataset 1. Figure 3A shows that both algorithms achieved maxi-

mum predictive validity in Dataset 1 at a threshold of 0.1 mS. The

two methods were not significantly different at this threshold, as

indicated by an absolute LBF difference smaller than 3. The t sta-

tistic for comparing public speaking anticipation versus rest was,

for the DCM estimates, t(39) 5 9.0, and for the MP estimates,

t(39) 5 9.6. Table 1 shows the tSA estimates obtained by the differ-

ent methods. Computation time was much faster for MP than for

DCM (Table 2).

This amplitude threshold was then used for Datasets 2 and 3.

Again, predictive validity was not significantly different between

the two methods for both datasets (Figure 3B,C). The t statistic for

comparing the two conditions in Dataset 2 was, for the DCM

Figure 2. MP inversion of an example epoch from Dataset 1. Black

line: filtered skin conductance data. Light gray lines: data fit after MP

inversion, and individual atoms of the solution, shown with standardized

amplitude. Dotted dark gray lines: individual atoms with above-

threshold amplitude of the final solution, shown with the reestimated

amplitude.

Figure 3. Predictive validity of the three algorithms, expressed as log Bayes factors (LBF) with respect to the reference method (DCM with amplitude

threshold of 0.1 mS). LBF is lower when the estimated tSA better separates two known psychological states (Dataset 1: rest vs. public speaking, Data-

set 2: public vs. nonpublic speaking, Dataset 3: mental load vs. rest). An absolute LBF of 3 is often considered significant and is indicated by a dotted

light gray line. A: Predictive validity for DCM, MP and visual scoring estimates in dependence on amplitude threshold in Dataset 1. B: Predictive

validity for Dataset 2, using the optimal amplitude threshold for each algorithm as derived from Dataset 1. C: Predictive validity for Dataset 3, using

the optimal amplitude threshold for each algorithm as derived from Dataset 1. M>R: mental load vs. rest (within-subject comparison). Ar>At: arith-

metic vs. attention (between-subjects comparison of within-subjects differences, corresponding to an interaction).
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estimates, t(29) 5 3.1, and for the MP estimates, t(29) 5 2.8. For

distinguishing mental load from rest in Dataset 3, t statistics were

t(19) 5 2.7 for DCM estimates, and t(19) 5 2.0 for MP estimates.

To differentiate mental arithmetic from attention, t statistics were

t(18) 5 0.9 for DCM estimates and t(18) 5 0.7 for MP estimates.

In an exploratory approach, we also extracted the optimal

amplitude threshold for Datasets 2 and 3. In Dataset 2, best

predictive validity was achieved for DCM with a threshold of

0.225 mS (LBF 5 25.1), and for MP with a threshold of 0.175 mS

(LBF 5 26.5). Both were thus significantly better than the refer-

ence method (DCM with a threshold of 0.1 mS), but with no signifi-

cant difference between MP and DCM at the optimal threshold. In

Dataset 3, best predictive validity was achieved for DCM with a

threshold of 0.1 mS for both contrasts. For MP, the best threshold

was at 0.15 mS (LBF 5 20.8, mental load vs. rest) and 0.125 mS,

respectively, (LBF 5 20.2, arithmetic vs. attention). Hence, at the

optimal thresholds, MP was not significantly better than at the pre-

determined threshold, or than the reference method.

Comparison with Visual Scoring

As a comparison, a trained expert visually scored all SF, using

an initial threshold of 0.01 mS. For Dataset 1, best predictive valid-

ity was achieved at a threshold of 0.05 mS and was, with an

LBF 5 25.5 at this threshold, significantly better than the refer-

ence method (DCM with a threshold of 0.1 mS). Using this ampli-

tude threshold for Datasets 2 and 3, predictive validity of visual

scoring was not significantly different from the reference method.

Best predictive validity for these datasets was achieved with a

threshold of 0.075 mS (Dataset 2, contrast arithmetic vs. attention

for Dataset 3) and 0.05 mS (contrast mental load vs. rest for Dataset

3). For Dataset 2, visual scoring at the optimal threshold had signif-

icantly lower predictive validity than DCM at the optimal threshold

(0.225 mS, LBF difference: 24.1 in favor of DCM). For Dataset 3,

DCM and visual scoring were not significantly different at the opti-

mal threshold.

Discussion

Inferring tSA from the number of SF in skin conductance data

requires assumptions about their shape, which we have previously

embodied in a PsPM that can be inverted with nonlinear methods

(Bach, Daunizeau, Kuelzow, Friston, & Dolan, 2011). This inver-

sion is necessarily slow. In this paper, we provide a fast approxima-

tion to the true solution by using a matching pursuit algorithm

(Mallat & Zhang, 1993). This machine learning algorithm is origi-

nally designed for fast data compression (for an example in the

context of skin conductance, see Chaspari, Tsiartas, Stein, Sermak,

& Narayanan, 2015) and finds, by greedy search, a decomposition

of the data into atoms from an overcomplete dictionary. We har-

ness this property for model inversion by creating a dictionary of

all possible SF that would be allowed under our PsPM, and decom-

posing the data into most likely SF that constitute the data. Because

negative SF are biophysically implausible, we only consider posi-

tive weights. Also, the MP algorithm might not return precise SF

amplitude estimates, because it considers locally optimal solutions

rather than the global set of SF. However, amplitude estimates are

crucially required for counting above-threshold SF (Boucsein et al.,

2012). Hence, after identification of the most likely SF, given the

data, the algorithm uses multiple regression to reestimate ampli-

tudes of identified SF.

Simulations demonstrate that the algorithm is suboptimal, due

to its design. In particular, when the true number of SF is higher

than 10 per minute, their number is underestimated. Also, when SF

are close together in time (below 4 s), the estimation of their num-

ber is less precise. Further, the precision of amplitude and onset

estimates linearly decreases with the number of true SF, in contrast

to our previous DCM algorithm.

Yet, when analyzing empirical data, both algorithms show simi-

lar predictive validity. That is, their ability to separate two different

tSA states is comparable. This might imply that the better precision

of the DCM inversion yields no empirical benefit. As a possible

reason, the average number of SF per minute of data was below 10

in all conditions of all datasets, and hence in a range where MP per-

formed well on simulated data. Further, the model itself is neces-

sarily an approximation to the true psychophysiological relation,

and this imprecision might be more severe than the imprecision in

the MP model inversion. However, we note that, under some exper-

imental circumstances, the number of SF may exceed 10 per

minute. In the experimental paradigms assessed in this paper, tonic

arousal was quantified in the absence of external events. In

Table 1. Means (Standard Deviations) Across Subjects of the Estimated Number of SF Per Minute of Data, for the Different
Algorithms

DCM MP Visual scoring

Rest Treatment Rest Treatment Rest Treatment

Dataset 1
Public speaking anticipation 3.1 (3.1) 8.2 (3.7) 3.8 (2.9) 8.5 (3.5) 3.9 (3.5) 8.6 (4.2)
Dataset 2
Nonpublic speaking anticipation 3.7 (5.1) 3.5 (3.2) 4.3 (5.1) 4.5 (3.0) 2.9 (3.4) 2.5 (2.5)
Public speaking anticipation 4.1 (4.5) 8.4 (3.7) 4.6 (4.3) 8.6 (3.2) 3.4 (4.0) 6.7 (3.3)
Dataset 3
Attention 7.1 (8.2) 10.5 (10.7) 7.8 (6.6) 9.7 (6.7) 3.8 (3.9) 5.2 (4.3)
Arithmetic 4.2 (3.0) 11.3 (8.5) 7.1 (4.0) 10.9 (6.4) 4.1 (2.3) 7.8 (5.0)

Table 2. Computation Time in Seconds per Minute of Data, for
the Two Algorithms Under Study

DCM MP
Mean 6 SD Mean 6 SD

Dataset 1 40.2 6 21.5 0.12 6 0.08
Dataset 2 44.7 6 63.7 0.10 6 0.02
Dataset 3 77.5 6 34.4 0.15 6 0.04

Note. In contrast, visual scoring took approximately 72 s per minute of
data, across all datasets. Computation time for the preparatory auto-
mated peak detection was not analyzed.
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situations with additional external stimulation, or in which partici-

pants engage in activities such as producing speech, we anticipate

SF to possibly occur with higher frequencies than reported here.

In this case, we would not recommend the use of the MP

algorithm.

At the same time, computation time for the MP algorithm was

2–3 orders of magnitude faster than for the DCM inversion. While

this is a general benefit, it may be of particular relevance for the

online quantification of tonic arousal. One important application is

biofeedback, where tonic arousal is quantified and fed back to the

participant online. Arousal-driven intervention is another applica-

tion, for example in advanced driving assistance systems and driver

drowsiness detection.

We compared this analysis with visual scoring. Visual scor-

ing had no consistent advantage or disadvantage in terms of pre-

dictive validity. At the optimal threshold, it performed

significantly better than DCM in one experiment and signifi-

cantly worse in another. On the other hand, it required more

time from the scoring expert than the computation time required

by the other methods.

In summary, analysis of empirical data shows that MP is a fast

and precise alternative to DCM with comparable accuracy for

experimental data. Simulations demonstrate this in particular when

the expected number of SF is below 10 per minute and they are

separated in time by more than 5 s.

Finally, we observed that, for both methods, the optimal ampli-

tude threshold for the two datasets was different. This was also

observed in visual scoring results. Whether this is normal variation

between samples, due to the different sample characteristics (males

in Dataset 1, females in Dataset 2, mixed in Dataset 3) or the differ-

ent contrasts tested, cannot be separated in this work and will be a

topic of future investigation.
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