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Abstract
The compound optimization monitor (COMO) approach was originally developed as a diagnostic approach to aid in evaluat-
ing development stages of analog series and progress made during lead optimization. COMO uses virtual analog populations 
for the assessment of chemical saturation of analog series and has been further developed to bridge between optimization 
diagnostics and compound design. Herein, we discuss key methodological features of COMO in its scientific context and 
present a deep learning extension of COMO for generative molecular design, leading to the introduction of DeepCOMO. 
Applications on exemplary analog series are reported to illustrate the entire DeepCOMO repertoire, ranging from chemical 
saturation and structure–activity relationship progression diagnostics to the evaluation of different analog design strategies 
and prioritization of virtual candidates for optimization efforts, taking into account the development stage of individual 
analog series.

Keywords Analog series · Lead optimization · Chemical saturation · SAR progression · Activity prediction · Generative 
deep learning

Introduction

The intuition- and experience-driven process of hit-to-lead 
and lead optimization (LO) presents key challenges for 
medicinal chemistry. If successful, it ranges from the initial 
demonstration of sustainable structure–activity relationships 
(SARs) of selected active compounds and the iterative gen-
eration of many analogs to the final stages of confirming 
pre-clinical candidate status of optimized compound(s). 
To this date, the LO process is difficult, if not impossible 
to rationalize. Work on analog series (ASs) continues until 
multi-property optimization criteria are met or insurmount-
able roadblocks are hit. This typically is far from being a 
black-and-white scenario. Partly unclear SAR responses or 
rather subtle differences between desirable and undesirable 
compound properties often propagate through optimization 

efforts until they amplify and result in large-magnitude prob-
lems. At such stages, when much work has already been 
spent on the long road to candidate compounds, it is often 
difficult to call it a day and discontinue work on advanced 
series. As a matter of fact, answering the question when 
sufficient numbers of analogs might have been generated 
and further progress would be unlikely to expect is at least 
as critical in the practice of medicinal chemistry as mak-
ing meaningful initial decisions which compounds or series 
to advance or not. In light of these caveats looming over 
optimization efforts, it is self-evident that any approaches 
providing decision support during LO are more than wel-
come. However, the problems associated with empirical 
optimization are conceptually difficult to tackle. Currently, 
only a limited number of computational approaches are 
available that are capable of supporting LO efforts. This is 
the scientific context in which the Compound Optimization 
MOnitor (COMO) methodology evolved. One of the roots of 
COMO was the development of a scoring scheme to evalu-
ate chemical saturation of compound series on the basis of 
biological screening data [1, 2]. Modifying and extending 
this scoring scheme and combining it with the assessment 
of SAR progression then gave rise to the introduction of the 

 * Jürgen Bajorath 
 bajorath@bit.uni-bonn.de

1 Department of Life Science Informatics, B-IT, LIMES 
Program Unit Chemical Biology and Medicinal Chemistry, 
Rheinische Friedrich-Wilhelms-Universität, Endenicher 
Allee 19c, 53115 Bonn, Germany

http://orcid.org/0000-0002-0557-5714
http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-020-00349-3&domain=pdf


1208 Journal of Computer-Aided Molecular Design (2020) 34:1207–1218

1 3

COMO approach [3–5], which was originally designed as 
a diagnostic. On the basis of COMO scoring, ASs can be 
assigned to different development stages. An integral feature 
of the COMO approach is the use of virtual analog (VA) 
populations to aid in the assessment of chemical saturation 
and SAR progression. By default, these VAs also represent 
potential candidate compounds for LO. Thus, although 
COMO was originally devised as a diagnostic/descriptive 
tool it also had the intrinsic potential to bridge between 
LO analysis and compound design. Accordingly, different 
analog design strategies and activity prediction approaches 
have been implemented in COMO to design and prioritize 
VAs [5, 6].

Herein, we report a methodological extension of COMO’s 
analog design strategies through deep learning and genera-
tive modeling using recurrent neural networks (RNNs). 
Accordingly, the combined diagnostic scoring and extended 
analog design approach is termed DeepCOMO. In addi-
tion, we discuss current computational approaches having 
the potential to support different stages of LO efforts. In 
this context, we also describe key components of the Deep-
COMO methodology. Furthermore, we present an applica-
tion of DeepCOMO on two exemplary ASs, illustrating its 
entire analysis and design spectrum, as it has evolved since 
its inception [6]. Here, emphasis is put on the compound 
design aspect applying the DeepCOMO framework.

The subsequent sections are organized as follows. First, 
we review computational approaches that are of at least 
some relevance for chemical optimization (except standard 
QSAR techniques). Second, we discuss key methodological 
features of DeepCOMO. Third, exemplary applications are 
presented.

Computational approaches supporting 
compound optimization

Methods specifically developed to aid in different stages 
of LO are rare. Approaches that have been adopted and 
applied in the broader context of LO include statistical 
multi-parameter balancing and optimization of compound 
sets to suggest candidates for synthesis [7]. Furthermore, 
statistical attrition analysis of candidate compounds has 
also been reported to monitor whether compounds synthe-
sized during LO meet pre-defined quality criteria [8]. Other 
approaches are focused on computational estimation of 
physicochemical properties [9], taking into consideration 
the widely applied rule-based oral availability paradigm 
[10] or ligand efficiency metrics [11]. Attempts have also 
been made to parameterize drug-likeness as a desirability 
function, aiming to generate preferred candidates [12]. Fur-
thermore, computational approaches have been devised to 
elucidate SAR trends in evolving compound data sets [13] 

and analyze such trends in a qualitative [14] and quantitative 
[15] manner. Another interesting methodology that is based 
upon a statistical framework aims to quantify and visualize 
LO progression and assess the efficiency and tractability of 
different projects [16]. In addition, computational tools have 
been introduced to assess synthetic feasibility of candidate 
compound [17]. Given that compound design is of major 
importance during LO, computational approaches provid-
ing guidance for compound synthesis have been applied for 
experimental design [18]. Recently, artificial intelligence has 
entered the de novo design arena providing complex genera-
tive deep learning architectures that are also employed in 
support of LO campaigns [19, 20].

Taken together, most of the computational approaches 
that can be considered in the context of LO focus on com-
pound property analysis, candidate selection, or design. By 
contrast, only very few methods have been introduced to 
monitor compound optimization and/or SAR trends in differ-
ent ways [13, 16]. Hence, from this viewpoint, the diagnostic 
COMO framework was conceptualized to fill a void. As it 
has further evolved, a unique feature of the approach has 
become that it bridges between assessing progress in the 
optimization of ASs and compound design, as exemplified 
by the DeepCOMO extension introduced in the following.

Methodology: from COMO to DeepCOMO

Main principles and diagnostic scoring

COMO combines different scoring schemes including chem-
ical saturation, multi-property, SAR progression, and SAR 
heterogeneity scores [3–6]. For AS diagnostics, the chemi-
cal saturation (S score) and SAR progression (P score) are 
primary measures for assigning ASs to different develop-
ment stages. For the calculation of these diagnostic scores, 
VA populations play a central role because they serve as 
a representative sample of series-centric chemical space. 
In addition, the scoring scheme relies on the application 
of a chemical neighborhood (NBH) principle. Specifically, 
for chemical saturation and SAR progression diagnostics, 
the NBH of each existing analog (EA) comprising a series 
is defined and other compounds falling into the NBH are 
identified. Accordingly, for a given series, EAs and random 
samples of a chosen VA population are projected together 
into a user-defined chemical reference space (typically a vec-
tor space formed by numerical chemical descriptors) and 
the NBH of EAs is defined based on distance relationships 
between VAs, which determine chemical space coverage, 
given their large number compared to EAs. In a subsequent 
step, the proportion of VAs located in NBHs of EAs is calcu-
lated, giving rise to the coverage (C) and density (D) scores. 
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The C score quantifies how extensively EAs cover series-
relevant chemical space and is defined as:

where VANBH is the number of VAs falling into any NBH of 
EAs and VAall is the number of all projected VAs.

In addition, the D determines how densely EAs map 
chemical space by quantifying the overlap of their NBHs:

The term dmean is defined as the number of overlapping 
NBHs containing VAs ( NBHO_VA ) relative to the total num-
ber of VAs ( nNBH) contained in NBHs of EAs:

Both scores are complementary in their nature and can 
be summarized into the S score which is a composite metric 
defined as the harmonic mean of C and D:

While the C, D, and S scores are solely devised to quan-
tify chemical saturation, the P score measures the degree 
of SAR progression as a function of SAR discontinuity in 
overlapping NBHs of EAs. Hence, for VAs located in over-
lapping NBHs, the mean pairwise potency range among 
EAs associated with those NBHs is quantified as the NBH-
specific term 

−

Δi:

Here, mi is the number of EAs with overlapping NBHs 
containing VA(s), potj and potk represent the logarithmic 
(log) potency of EA j and k , respectively. The P score for 
the entire AS represents the mean over 

−

Δi for all n VAs in 
overlapping NBHs of EAs applying a weighting scheme 
wi =

1

mi

 if mi > 1 and wi = 0 if mi = 1:

Hence, large potency variations between structurally sim-
ilar EAs with overlapping NBHs containing VAs correspond 
to a strong SAR response to small chemical modifications 
and, accordingly, to high SAR progression within an AS.

As designed, these scores are robust and practically insen-
sitive to the number of VAs that are used, provided VAs 
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outnumber EAs by at least two to three times [2–4]. Further-
more, the choice of chemical reference spaces for compound 
distance calculations is variable and can be modified accord-
ing to the characteristic features and requirements of specific 
optimization efforts. Herein, a seven-dimensional chemical 
reference space composed of seven LO-relevant physico-
chemical descriptors (calculated with RDKit [21]) was used, 
which was shown to provide sufficient chemical resolution 
for the characterization of ASs in our previous studies [3–5]. 
Since the NBH concept plays a central role in the COMO 
approach, score calculations depend on the definition of 
a suitable NBH radius that adequately mirrors distances 
between EAs and VAs. Therefore, this hyper-parameter can 
be fine-tuned according to different VA populations and/or 
chemical space representations that might be used [2–4].

Virtual analog design strategies

Different strategies were designed and implemented to gen-
erate VA populations as diagnostic tools for COMO scoring 
and as candidate compounds for optimization efforts [2–4]. 
These analog design strategies are tailored towards different 
stages of the LO process (Fig. 1). First, VAs can be gen-
erated following a scaffold enumeration procedure. In this 
case, all substitution sites on the AS core scaffold are deco-
rated with randomly selected terminal fragments according 
to pre-defined synthetic reactions. For ASs with multiple 
substitution sites, this procedure can often produce very 
large and complex VA structures that may not adequately 
represent AS-specific chemical space. This problem is cir-
cumvented by restricting VA size ranges to those of EAs and 
by randomly decorating one or more substitution sites with 
a hydrogen atom instead of an organic substituent based on 
an AS-specific substitution probability [4].

Applying the scaffold-based enumeration approach, two 
populations of VAs can be generated, termed diverse and 
close-in VAs, which differ only in the choice of substitu-
ents for enumeration. For diverse VAs, an external pool of 
R-groups is chosen that have not been used for EAs. For 
example, such a pool can be extracted from databases of 
known bioactive compounds. Conversely, for close-in VAs, 
only substituents obtained from fragmentation of the EAs 
comprising the AS under study are used for enumeration. 
Thus, in the case of diverse VAs novel, new chemistry might 
be introduced, which is more likely to be pursued during 
early stages of LO. On the other hand, close-in VAs are 
by design chemically more conservative and should thus be 
more relevant for mid-stages of LO projects.

In addition to AS scaffold-based enumeration, the Free-
Wilson (FW) additivity principle [22, 23] has been adapted 
and converted into a design strategy for generating VA can-
didates for late LO stages [5]. Therefore, matched molec-
ular pairs (MMPs) [24] are calculated for EAs of an AS 
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and systematically organized in MMP networks (generated 
with the NetworkX Python library [25]). Then, analog sets 
are identified to which FW analysis of substituent contri-
butions is applicable [22]. Such compounds can either be 
found among EAs (termed FW EAs) or they may represent 
VAs (FW VAs) with as of yet unexplored combinations of 
substituents. FW VAs are designed to become FW predic-
tion targets on the basis of qualifying EAs. By definition, 
FW VAs can be viewed as a subset of close-in VAs since 
they contain only R-groups present in the AS. The FW VA 
population has the advantage of being specifically tailored 
towards FW potency predictions. Ensuing compound quar-
tets meeting FW requirements consist of three EAs and an 
FW EA whose putative potency is predicted based upon FW 
principles. Such quartets represent local mini-QSAR models 
that have been shown to be surprisingly accurate in many 
cases and capable of complementing global QSAR strategies 
for VA prediction and prioritization [5]. Accuracy of FW 
predictions intrinsically depends on the presence of SAR 
continuity.

Herein we introduce a strategy for de novo design of 
VAs (termed sampled VAs) using an RNN architecture. This 
extension of AS-based VA design was inspired by the poten-
tial to further extend VA generation by taking information 
from related compound series or sets into account. Among 
the many recently introduced approaches for de novo com-
pound design using deep learning, we have given preference 
to transfer learning (TL) considering the characteristics of 
the COMO framework.

For COMO-based design, TL [26] is applied to focus 
a generalized pre-trained generative model by fine-tuning 
using all EAs of a given AS. The implementation is based 
upon freely accessible code from the REINVENT 2.0 pro-
ject [27] as implemented in PyTorch [28], which provides 
a robust pre-trained generative model (so-called Prior). The 
model has been trained on more than 1.4 million compounds 
from ChEMBL (release 25) [29] using tokenized SMILES 
strings with maximal sequence length of 256 elements [30]. 
Randomization of SMILES strings was applied as data aug-
mentation technique [30]. As reported, the RNN architecture 
consists of an embedding layer of size 512, followed by three 
Long-Short-Term Memory (LSTM) layers of size 512, no 
drop-out layers, and a linear transformation layer of size 31 
(equal to the vocabulary size of the corresponding training 
data), followed by a softmax function to convert the output 
into a token probability distribution. Furthermore, adaptive 

learning rate based on exponential learning rate decay with 
fixed patience was used [30] and the ADAM optimizer was 
applied [31]. In addition, a custom Uniformity-Complete-
ness Jensen-Shannon Divergence (UC-JSD) metric [32] was 
used for estimating model performance. Further details are 
provided in the source publications [27, 30]. Since typically 
more than 99% of the compounds sampled using the Prior 
model have valid SMILES syntax [30] this model can serve 
as a starting point for TL on the basis of small and structur-
ally confined sets of compounds such as ASs. During mul-
tiple epochs, the Prior model is fine-tuned to focus on AS-
specific chemical space and generate complementary VAs. 
As introduced herein, DeepCOMO represents the TL-based 
extension of COMO’s analog design capacity.

Potency prediction

To prioritize VAs for synthesis, potency prediction 
approaches are applied. In practice, it is hardly possible to 
systematically generate reliable linear or non-linear machine 
learning regression models for given ASs [5]. This is often 
due to their confined size, which limits the applicability of 
machine learning, and also to the presence of series-spe-
cific chemical features and SAR discontinuity in AS, both 
of which might constrain predictive modeling. Furthermore, 
regression models predict potency values for all VAs, which 
is also an approximation at best since VAs might often be 
inactive. However, compounds predicted to be most potent 
within VA populations principally represent preferred candi-
dates for further consideration. For large ASs, we generally 
attempt to build global support vector machine regression 
(SVR) [33] and linear ridge regression [34] models to pri-
oritize VAs. In addition, for all ASs, local FW predictions 
are attempted, which are supported by the generation of FW 
VAs for a given AS [5, 6], as described above.

Exemplary applications

To illustrate the different stages of DeepCOMO analysis, 
two exemplary ASs were selected as model series mimick-
ing practical LO applications. These two ASs were obtained 
from our in-house high-confidence activity data version of 
ChEMBL (release 26) [29]. From this compound database, 
ASs were extracted using the compound-core-relationship 
algorithm [35]. Initially, all active compounds were sub-
jected to systematic fragmentation of acyclic single bonds. 
Subsequently, resulting compound cores were organized into 
different series. To ensure that algorithmically generated AS 
cores contained synthetically accessible substitution sites, 
compound fragmentation was guided by 12 retrosynthetic 
rules [36, 37] and augmented by nine additional synthetic 

Fig. 1  Exemplary analogs and design strategies. a On the left, three 
exemplary EAs (black) from AS 1 are displayed (compounds I, II, 
and III). Sections on the right illustrate different VA design strategies 
of DeepCOMO, as discussed in the text. For each strategy, exemplary 
VAs are shown (red). b On the left, three EAs from AS 2 are shown 
(blue). On the right, exemplary VAs (red) are depicted resulting from 
the different design strategies according to (a)

◂
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reactions [38] implemented with the aid of the OpenEye 
cheminformatics toolkit [39].

Selected analog series

The ASs studied here (termed AS 1 and AS 2) were active 
against the P2X purinoreceptor 3 (AS 1) and the sodium 
channel protein type IX alpha subunit (AS 2) and consisted 
of 219 and 158 analogs, respectively. For all compounds, 
 IC50 measurements were available and recorded as nega-
tive logarithmic potency values  (pIC50). The composition 
of AS 1 and 2 is summarized in Table 1. These ASs were 
selected for several reasons. They were among the largest 
ASs that we algorithmically extracted from public domain 
data. Furthermore, these ASs were of moderate structural 
complexity and contained different core structures with four 
(AS 1) and three (AS 2) substitution sites, hence provid-
ing ample opportunities for analog design. Figure 1a and 
b shows exemplary analogs from AS 1 and 2, respectively.

Diverse, close‑in, and Free Wilson virtual analogs

Alternative analog design strategies are schematically illus-
trated in Fig. 1a. As discussed in detail below, TL produced 
initial sets of 51,200 SMILES representations per AS. For 
comparison, equally sized sets of diverse and close-in ana-
logs were generated utilizing all substitution sites per AS. 
Diverse VAs were randomly enumerated using a pool of 
44,636 substituent fragments comprising at most 13 atoms 
that were extracted from bioactive compounds in ChEMBL 
(release 26). For enumerating close-in VAs, series-based sets 

of 70 (AS 1) and 133 substituents (AS 2) were used. Differ-
ent from diverse and close-in VAs, the number of FW VAs 
per AS is not variable but depends on intra-series structural 
relationships, the corresponding distribution of MMPs, and 
the potential to complement FW NBHs formed by EAs with 
FW VAs (see above). For AS 1 and 2, a total number of 907 
and 3167 FW VAs was obtained, respectively. Figure 1a and 
b show exemplary VAs for AS 1 and 2, respectively.

Diagnostic scoring

Next, chemical saturation and SAR progression scores 
were calculated for both series using the respective close-
in VAs as diagnostic VA populations. Therefore, sets of 
1000 VAs were randomly selected for 10 independent score 
calculations, producing very similar results. Mean scores 
are reported in Table 1. These scores clearly differentiated 
between the two ASs. Although AS 1 contained only ~ 25% 
more compounds than AS 2, it was found to be chemically 
much more saturated (S score = 0.58) with high substan-
tial coverage of chemical reference space (C score = 0.43) 
and particularly high density of coverage (D score = 0.90). 
By contrast, chemical saturation of AS 2 was significantly 
lower (S score = 0.29), resulting from low coverage (C 
score = 0.18) of chemical space and more moderate density 
of coverage (D score = 0.73). However, a different picture 
emerged when SAR progression scores were compared. 
Here, AS 2 displayed much stronger SAR responses (P 
score = 0.95) than AS 1 (P score = 0.55), reflecting the pres-
ence of higher SAR discontinuity in overlapping NBHs of 
EAs. Hence, AS 1 was characterized as a further explored 

Table 1  Analog series 
characteristics

EA existing analog, NBH neighborhood

Analog series ID 1 2

Biological target P2X purinoreceptor 3 Sodium channel protein type 
IX alpha subunit

ChEMBL target ID 2998 4296
Potency measurement type IC50 IC50
# EAs 219 158
# EAs in Free-Wilson NBHs 183 (84%) 45 (28%)
# substitution sites 4 3
# unique substituents 70 133
Analog series core

C score 0.43 (± 0.01) 0.18 (± 0.02)
D score 0.90 (± 0.00) 0.73 (± 0.03)
S score 0.58 (± 0.01) 0.29 (± 0.02)

0.55 (± 0.03) 0.95 (± 0.05)
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compound series with higher series-specific chemical satura-
tion and more balanced potency variations among analogs. 
On the other hand, the scores indicated that AS 2 still had 
significantly potential for obtaining analogs with further 
improved potency. Thus, on the basis of this comparison, 
AS 1 was categorized as a later-stage series, whereas AS 2 
represented an early-/mid-stage series. Notably, conclusions 
drawn from scoring were fully consistent with the numbers 
of FW NBHs and participating EAs detected in both ASs. 
While the subset of FW EAs from AS 1 amounted to 183 
(84%) EAs associated with at least one FW NBH, this was 
the case for only 45 (28%) of the EAs from AS 2, hence 
reflecting the more advanced development stage of AS 1. 
Based on these diagnostic findings, one can then decide 
which VA design strategy would be preferred to generate 
additional candidate compounds. For instance, AS 1 is likely 
to benefit from FW VAs as potential candidates (high struc-
tural similarity to EAs), given its advanced development 
stage. On the other hand, for AS 2, a more explorative design 
strategy would be preferred to further diversify candidate 
compounds.

Transfer learning

The TL extension included in DeepCOMO was then applied 
to sample different VAs, aiming to navigate from generalized 
drug-like space towards narrowly confined series-centric 
space and further extend VA design.

The generative model was trained for 50 epochs with 
1024 sampled VAs per epoch obtained as SMILES strings, 
which resulted in a total of 51,200 initially sampled strings 
per AS. Then, the population of sampled VAs was analyzed 
with respect to model TL performance. Because TL was 
increasingly focused on a specific AS core structure a well-
performing model should be capable of generating many 
chemically meaningful structures and unique compounds 
similar to yet chemically distinct from EAs. Figure 2 shows 
the evolution of the TL model during training and fine-tun-
ing. Beginning with epoch 1, the generalized Prior model 
produced a uniform random VA sample without compounds 
containing the AS cores. However, over the course of only 
few epochs, the model rapidly learned to sample increas-
ing numbers of compounds similar to EAs, as indicated by 
the steep rise of the curves accounting for the proportion of 
sampled VAs with AS cores. The models also reproduced 
EAs from the training sets (Fig. 2), confirming focused 
sampling of VAs. Furthermore, the apparent focusing effect 
was accompanied by a similarly steep decrease in the total 
numbers of unique sampled VAs. By the 50th epoch, less 
than 50% and 60% of the sampled VAs represented unique 
compounds for AS 1 and 2, respectively. Around the 30th 
epoch, the proportion of generated VAs sharing the AS cores 
or reproduced EAs reached a plateau at which the ratios 

between the different curves remain relatively constant. By 
the 50th epoch, approximately 67% of the EAs of both ASs 
were reproduced within a single epoch run, whereas the frac-
tion of unique sampled VAs containing the AS core was con-
sistently above 80% and 75% for AS 1 and 2, respectively. 
Taken together, the analysis revealed successful focusing of 
the TL model for both ASs, with increasing levels of redun-
dancy when sampling VAs.

Next, we analyzed how effectively the TL model 
sampled VAs across different epochs. The 50 training 
epochs with a SMILES sample size of 1024 produced a 
total of 26,081 and 28,592 unique VA structures for AS 
1 and AS 2, respectively, which corresponded to ~ 51% 
and ~ 55% of all sampled SMILES strings for AS 1 and 
AS 2, respectively. These ratios were a consequence of 
increasing sampling of duplicate structures and repro-
duced EAs within individual epochs (Fig. 2). Since this 
effect propagated throughout the fine-tuning phase, some 
VAs were sampled in multiple epochs, whereas others 
were obtained in very few or just one. As illustrated in 
Fig. 3, the majority of sampled VAs was generated during 
only one of the epochs. In addition, the number of VAs 
sampled in multiple epochs significantly decreased over 
increasing number of epochs. In Fig. 3, four exemplary 
structures of VAs of AS 1 are depicted that were sampled 
in different numbers of epochs. These VAs were selected 
from the batch generated during the 40th epoch when the 
output of the generative model was stable (Fig. 2). The 

Fig. 2  Design of virtual analogs via transfer learning. Shown is the 
evolution of multiple parameters across 50 epochs of sampling VAs 
via transfer learning for AS 1 (black lines) and 2 (blue). The x-axis 
reports the number of epochs and the y-axis the number of sampled 
VAs (SMILES strings). Curves with filled circles monitor increasing 
numbers of sampled VAs containing their AS cores. Dotted horizon-
tal lines indicate the number of EAs for each AS. Curves below these 
lines record the number of duplicated (reproduced) EAs of each AS. 
At the bottom, curves with squares monitor the fraction of sampled 
VAs with invalid SMILES strings
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VA in the upper left corner in Fig. 3 was sampled only 
once during the 50 generative epochs because it did not 
contain core of AS 1 but represented a simpler structure, 
consistent with the initial generalization capability of the 
Prior model. The next sampled VA to the right contained 
a substructure of the AS 1 core.

In which the signature o-alkoxyphenyl ring at the 
gamma lactam position was substituted with a thiophene 
ring. Although this sampled VA not contain the entire 
AS 1 core, it was sampled six times (in epochs 8, 16, 26, 
40, 41, and 48) including the late stages of TL. Thus, 
the model consistently diversified structural features of 
sampled VAs including core modifications, even after 
focusing on the same core over many epochs. These 
observations mirrored an intrinsic advantage of the deep 
generative architecture over the simpler VA enumeration 
strategies based upon a conserved AS core. The third VA 
from the left in Fig. 3 contained the complete core of AS 
1, but was only sampled during 12 of 50 epochs. This 
is likely due to the varying frequency of occurrence of 
individual substituents among the EAs used for training. 
For example, the o-methylthiazole and trifluoromethyl 
groups were only present in two and 15 training instances, 
respectively. By contrast, the VA on the right with differ-
ent more frequently occurring substituents was most fre-
quently sampled in 46 epochs. These comparisons illus-
trate the spectrum of structural modifications of sampled 
VAs obtained by AS-centric fine-tuning of the model, 
yielding an expansion of VA space.

Comparison of virtual analog populations

Next, the coverage of AS-specific chemical space by VA 
populations produced using the four design strategies of the 
DeepCOMO framework was analyzed and compared. First, 
the overlap between differently designed VA populations 
(and between VAs and EAs) was determined, as reported 
in Table 2. From the pools of diverse and close-in VAs of 
AS 1 and 2, subsets were randomly selected to match the 
number of sampled VAs. For both ASs, nearly all EAs were 
reproduced by TL. However, the TL model sampled only 
69% of the FW VAs of AS 1 and 45% of AS 2. Apart from 
this, the overlap between different compound populations 
was generally larger for AS 2 than AS 1. The largest differ-
ence was observed between the overlap of close-in VAs with 
other compound populations. Nonetheless, in both cases, all 
four VA design strategies produced significant numbers of 
unique compounds, indicating their principal complemen-
tarity in charting analog space. In the next step, VA dis-
tributions in series-centric chemical space were compared. 
Therefore, EAs and equally sized random samples of all VA 
populations were projected into the descriptor-based seven-
dimensional reference space and subjected to dimension 
reduction using principal component analysis (PCA). Plots 
were generated using the first two principal components. For 
both series, equivalent observations were made. For AS 1, 
pairwise comparisons of the EA distribution and different 
VA distributions are shown in Fig. 4a–d. As expected, the 
FW VA population mapped most closely to EAs (Fig. 4a), 
consistent with the underlying FW NBH-directed design 
strategy. Close-in VAs were already more widely distrib-
uted but mostly covered regions proximal to EA (4b). For 
diverse VAs, a more extensive spread was observed (4c). For 
PCA, sampled VAs shown were exclusively selected from 
the batch obtained for 40th epoch and thus represented a 

Fig. 3  Sampling frequencies of virtual analogs. The bar plot reports 
the frequency of occurrence for sampled VAs during TL (AS 1, 
black; AS 2, blue). The x-axis reports the number of epochs and the 
y-axis the numbers of VAs falling into each category on a logarithmic 
(log) scale. For AS 1, exemplary sampled VAs with different sam-
pling frequencies (indicated by the black arrows) are depicted

Table 2  Virtual analogs statistics

EA existing analog, VA virtual analog, FW Free-Wilson, & intersec-
tion

Analog series ID 1 2

# experimental EAs 219 158
# FW VAs 907 3167
# unique sampled VAs
# diverse VAs
# close-in VAs

26,295 28,748

Sampled VAs & EAs 214 156
Sampled VAs & FW VAs 624 1436
Sampled VAs & close-in VAs 208 1669
Sampled VAs & diverse VAs 0 18
Close-in VAs & diverse VAs 35 37
FW VAs & close-in VAs 53 2909
FW VAs & diverse VAs 0 0
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late-stage “snapshot” of the fine-tuned TL model. Deriving 
this VA population combined information from compounds 
with varying structural relationships to EAs and facilitated 
additional core modifications. Accordingly, the comparison 
of sampled VAs and EAs in Fig. 4d revealed a combina-
tion of different patterns observed for other VAs including 
strong focusing on subsets of EAs, proximal mapping to 
many others, but also substantial diversification. Hence, the 
distribution of sampled VAs combined and further extended 
characteristics of VA populations obtained with simpler 
design strategies.

Synthetic accessibility of virtual analogs

Synthetic accessibility of VAs continues to represent a much 
discussed topic, especially for compounds generated using 

deep learning architectures. Accordingly, we also calculated 
and compared synthetic accessibility (SA) scores [17] for 
our VA populations (using the public RDKit implementation 
available on GitHub [17]). The SA score ranges from 1 to 10 
and accounts for fragment contributions to compounds based 
upon empirical assessment of synthetic building blocks, 
stereo chemistry, and non-standard structural features [17]. 
Increasing scores indicate the presence of chemically com-
plex compounds that are increasingly challenging to synthe-
size. As shown in Fig. 5, VA populations for AS 2 yielded 
SA scores that were comparable to or only slightly higher 
than EA scores, hence indicating general synthetic feasibil-
ity. Equivalent observations were made for AS 1. Overall 
broadest score distributions including subset of higher scor-
ing compounds were observed for diverse VA, which one 
might expect, as these VAs combine substituent fragments 

Fig. 4  Chemical space coverage. In a–d, PC plots compare the cov-
erage of chemical reference space by AS 1 with its four VA popu-
lations. Sampled VAs were randomly selected from the batch of the 

40th epoch. For each principal component, it is reported for how 
much of the original data variance it accounts
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from the entire universe of current bioactive compounds, 
regardless of their core structures.

Prioritization of virtual analogs

VAs predicted to be most potent represent preferred can-
didates for further optimization efforts. For AS 1 and AS 
2, global series-based and local FW NBH-based predic-
tion models were derived. For global predictions, SVR [33] 
models were trained via three-fold double cross-validation 
[40]. For model building, a folded (2048-bit) version of the 
extended connectivity fingerprint with bond diameter of 4 
(ECFP4) [41] was used in combination with the Tanimoto 
kernel [42] as a similarity function. All calculations were 
carried out using Python’s scikit-learn library [43]. For train-
ing, 517 (AS 1) and 1135 (AS 2) compounds with activity 
against each AS target were collected from ChEMBL that 
did not belong to the AS (representing structurally diverse 
active compounds) and combined with 50% of the respective 
AS. The remaining 50% of the EAs were used as an external 
validation set. The SVR models were then used to predict 
the potency of these EAs and of the different VA popula-
tions. Furthermore, FW NBH-based potency predictions 
were carried out for FW VAs and qualifying FW EAs. For 
AS 1, prediction results are reported in Fig. 6 (comparable 
observations were made for AS 2). Accurate retrospective 
potency predictions were obtained for EAs using both local 
and global models, with  R2 values of 0.84 (± 0.0) and 0.81 
(± 0.03), respectively, and mean absolute errors of 0.18 
(± 0.0) and 0.2 (± 0.03), respectively. For VA populations, 
global models generally predicted lower potency values 
than for EAs, as observed previously [5]. Overall highest 
potency was predicted using local and global models for 

FW VAs, which most closely resembled EAs. However, for 
all except diverse VAs, at least few “outlier” compounds 
were predicted to have higher potency than most of the EAs. 
These compounds provide focal points for VA prioritization 
as potential candidates depending on the development stages 
of an AS, as assessed by COMO scoring.

Conclusions

In medicinal chemistry, LO is still more of an art form than 
a scientific exercise following firm and generally applicable 
rules. It is governed by the recurrent need to decide which 
compounds to make next. These largely experience- and 
chemical intuition- driven optimization efforts greatly ben-
efit from any approaches that are capable to rationalize at 
least a part of the proceedings and provide decision support 
beyond subjective judgment. In principle, computational 
methods are prime candidates to support LO. However, 
as discussed herein, only few relevant approaches besides 
standard QSAR techniques have thus far been introduced 
to aid in this process. Within this scientific context, COMO 
was conceptualized, originally as a diagnostic framework, 
and then further expanded to bridge between chemical/
SAR analysis and compound design. Herein, we have dis-
cussed key features of the methodology and presented the 
DeepCOMO extension for further advanced compound 
design. DeepCOMO provides four design strategies that 
yield complementary VA populations with varying AS-
centric chemical space coverage. It has been applied to two 
exemplary ASs at different development stages, illustrating 
the spectrum of its diagnostic and design components and 

Fig. 5  Synthetic accessibility. Violin plots report SA score distribu-
tions for AS 2 and its VA populations

Fig. 6  Compound potency predictions. Box plots report potency 
predictions for AS 1 and its VA populations using global (SVR) and 
local (FW) models. The latter models are only applicable to FW EAs 
and FW VAs
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rationalizing how to combine these components for COMO-
guided decision making. We hope that our discussion and 
findings presented herein might catalyze the development 
of additional computational concepts and methods to aid in 
compound optimization efforts, which would certainly be 
beneficial for the practice of medicinal chemistry. Appli-
cations of DeepCOMO in practical medicinal projects are 
underway.
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